Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/*
 * Copyright (c) 2017 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <string.h>

#include <zephyr.h>
#include <misc/byteorder.h>
#include <bluetooth/hci.h>

#include "util/util.h"
#include "util/mem.h"

#include "pdu.h"
#include "ctrl.h"
#include "ll.h"
#include "ll_adv.h"
#include "ll_filter.h"

#define ADDR_TYPE_ANON 0xFF

#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER)
#include "common/log.h"

#include "hal/debug.h"
#include "pdu.h"

/* Hardware whitelist */
static struct ll_filter wl_filter;
u8_t wl_anon;

#if defined(CONFIG_BT_CTLR_PRIVACY)
#include "common/rpa.h"

/* Whitelist peer list */
static struct {
	u8_t      taken:1;
	u8_t      id_addr_type:1;
	u8_t      rl_idx;
	bt_addr_t id_addr;
} wl[WL_SIZE];

static u8_t rl_enable;
static struct rl_dev {
	u8_t      taken:1;
	u8_t      rpas_ready:1;
	u8_t      pirk:1;
	u8_t      lirk:1;
	u8_t      dev:1;
	u8_t      wl:1;

	u8_t      id_addr_type:1;
	bt_addr_t id_addr;

	u8_t      local_irk[16];
	u8_t      pirk_idx;
	bt_addr_t curr_rpa;
	bt_addr_t peer_rpa;
	bt_addr_t *local_rpa;

} rl[CONFIG_BT_CTLR_RL_SIZE];

static u8_t peer_irks[CONFIG_BT_CTLR_RL_SIZE][16];
static u8_t peer_irk_rl_ids[CONFIG_BT_CTLR_RL_SIZE];
static u8_t peer_irk_count;

static bt_addr_t local_rpas[CONFIG_BT_CTLR_RL_SIZE];

BUILD_ASSERT(ARRAY_SIZE(wl) < FILTER_IDX_NONE);
BUILD_ASSERT(ARRAY_SIZE(rl) < FILTER_IDX_NONE);

/* Hardware filter for the resolving list */
static struct ll_filter rl_filter;

#define DEFAULT_RPA_TIMEOUT_MS (900 * 1000)
u32_t rpa_timeout_ms;
s64_t rpa_last_ms;

struct k_delayed_work rpa_work;

#define LIST_MATCH(list, i, type, addr) (list[i].taken && \
		    (list[i].id_addr_type == (type & 0x1)) && \
		    !memcmp(list[i].id_addr.val, addr, BDADDR_SIZE))

static void wl_clear(void)
{
	for (int i = 0; i < WL_SIZE; i++) {
		wl[i].taken = 0;
	}
}

static u8_t wl_find(u8_t addr_type, u8_t *addr, u8_t *free)
{
	int i;

	if (free) {
		*free = FILTER_IDX_NONE;
	}

	for (i = 0; i < WL_SIZE; i++) {
		if (LIST_MATCH(wl, i, addr_type, addr)) {
			return i;
		} else if (free && !wl[i].taken && (*free == FILTER_IDX_NONE)) {
			*free = i;
		}
	}

	return FILTER_IDX_NONE;
}

static u32_t wl_add(bt_addr_le_t *id_addr)
{
	u8_t i, j;

	i = wl_find(id_addr->type, id_addr->a.val, &j);

	/* Duplicate  check */
	if (i < ARRAY_SIZE(wl)) {
		return BT_HCI_ERR_INVALID_PARAM;
	} else if (j >= ARRAY_SIZE(wl)) {
		return BT_HCI_ERR_MEM_CAPACITY_EXCEEDED;
	}

	i = j;

	wl[i].id_addr_type = id_addr->type & 0x1;
	bt_addr_copy(&wl[i].id_addr, &id_addr->a);
	/* Get index to Resolving List if applicable */
	j = ll_rl_find(id_addr->type, id_addr->a.val, NULL);
	if (j < ARRAY_SIZE(rl)) {
		wl[i].rl_idx = j;
		rl[j].wl = 1;
	} else {
		wl[i].rl_idx = FILTER_IDX_NONE;
	}
	wl[i].taken = 1;

	return 0;
}

static u32_t wl_remove(bt_addr_le_t *id_addr)
{
	/* find the device and mark it as empty */
	u8_t i = wl_find(id_addr->type, id_addr->a.val, NULL);

	if (i < ARRAY_SIZE(wl)) {
		u8_t j = wl[i].rl_idx;

		if (j < ARRAY_SIZE(rl)) {
			rl[j].wl = 0;
		}
		wl[i].taken = 0;
		return 0;
	}

	return BT_HCI_ERR_UNKNOWN_CONN_ID;
}

#endif /* CONFIG_BT_CTLR_PRIVACY */

static void filter_clear(struct ll_filter *filter)
{
	filter->enable_bitmask = 0;
	filter->addr_type_bitmask = 0;
}

static void filter_insert(struct ll_filter *filter, int index, u8_t addr_type,
			   u8_t *bdaddr)
{
	filter->enable_bitmask |= BIT(index);
	filter->addr_type_bitmask |= ((addr_type & 0x01) << index);
	memcpy(&filter->bdaddr[index][0], bdaddr, BDADDR_SIZE);
}

#if !defined(CONFIG_BT_CTLR_PRIVACY)
static u32_t filter_add(struct ll_filter *filter, u8_t addr_type, u8_t *bdaddr)
{
	int index;

	if (filter->enable_bitmask == 0xFF) {
		return BT_HCI_ERR_MEM_CAPACITY_EXCEEDED;
	}

	for (index = 0;
	     (filter->enable_bitmask & BIT(index));
	     index++) {
	}

	filter_insert(filter, index, addr_type, bdaddr);
	return 0;
}

static u32_t filter_remove(struct ll_filter *filter, u8_t addr_type,
			   u8_t *bdaddr)
{
	int index;

	if (!filter->enable_bitmask) {
		return BT_HCI_ERR_INVALID_PARAM;
	}

	index = 8;
	while (index--) {
		if ((filter->enable_bitmask & BIT(index)) &&
		    (((filter->addr_type_bitmask >> index) & 0x01) ==
		     (addr_type & 0x01)) &&
		    !memcmp(filter->bdaddr[index], bdaddr, BDADDR_SIZE)) {
			filter->enable_bitmask &= ~BIT(index);
			filter->addr_type_bitmask &= ~BIT(index);
			return 0;
		}
	}

	return BT_HCI_ERR_INVALID_PARAM;
}
#endif

#if defined(CONFIG_BT_CTLR_PRIVACY)
bt_addr_t *ctrl_lrpa_get(u8_t rl_idx)
{
	if ((rl_idx >= ARRAY_SIZE(rl)) || !rl[rl_idx].lirk ||
	    !rl[rl_idx].rpas_ready) {
		return NULL;
	}

	return rl[rl_idx].local_rpa;
}

u8_t *ctrl_irks_get(u8_t *count)
{
	*count = peer_irk_count;
	return (u8_t *)peer_irks;
}

u8_t ctrl_rl_idx(bool whitelist, u8_t devmatch_id)
{
	u8_t i;

	if (whitelist) {
		LL_ASSERT(devmatch_id < ARRAY_SIZE(wl));
		LL_ASSERT(wl[devmatch_id].taken);
		i = wl[devmatch_id].rl_idx;
	} else {
		LL_ASSERT(devmatch_id < ARRAY_SIZE(rl));
		i = devmatch_id;
		LL_ASSERT(rl[i].taken);
	}

	return i;
}

u8_t ctrl_rl_irk_idx(u8_t irkmatch_id)
{
	u8_t i;

	LL_ASSERT(irkmatch_id < peer_irk_count);
	i = peer_irk_rl_ids[irkmatch_id];
	LL_ASSERT(i < CONFIG_BT_CTLR_RL_SIZE);
	LL_ASSERT(rl[i].taken);

	return i;
}

bool ctrl_irk_whitelisted(u8_t rl_idx)
{
	if (rl_idx >= ARRAY_SIZE(rl)) {
		return false;
	}

	LL_ASSERT(rl[rl_idx].taken);

	return rl[rl_idx].wl;
}
#endif

struct ll_filter *ctrl_filter_get(bool whitelist)
{
#if defined(CONFIG_BT_CTLR_PRIVACY)
	if (whitelist) {
		return &wl_filter;
	}
	return &rl_filter;
#else
	LL_ASSERT(whitelist);
	return &wl_filter;
#endif
}

u32_t ll_wl_size_get(void)
{
	return WL_SIZE;
}

u32_t ll_wl_clear(void)
{
	if (radio_adv_filter_pol_get() || (radio_scan_filter_pol_get() & 0x1)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

#if defined(CONFIG_BT_CTLR_PRIVACY)
	wl_clear();
#else
	filter_clear(&wl_filter);
#endif /* CONFIG_BT_CTLR_PRIVACY */
	wl_anon = 0;

	return 0;
}

u32_t ll_wl_add(bt_addr_le_t *addr)
{
	if (radio_adv_filter_pol_get() || (radio_scan_filter_pol_get() & 0x1)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	if (addr->type == ADDR_TYPE_ANON) {
		wl_anon = 1;
		return 0;
	}

#if defined(CONFIG_BT_CTLR_PRIVACY)
	return wl_add(addr);
#else
	return filter_add(&wl_filter, addr->type, addr->a.val);
#endif /* CONFIG_BT_CTLR_PRIVACY */
}

u32_t ll_wl_remove(bt_addr_le_t *addr)
{
	if (radio_adv_filter_pol_get() || (radio_scan_filter_pol_get() & 0x1)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	if (addr->type == ADDR_TYPE_ANON) {
		wl_anon = 0;
		return 0;
	}

#if defined(CONFIG_BT_CTLR_PRIVACY)
	return wl_remove(addr);
#else
	return filter_remove(&wl_filter, addr->type, addr->a.val);
#endif /* CONFIG_BT_CTLR_PRIVACY */
}

#if defined(CONFIG_BT_CTLR_PRIVACY)

static void filter_wl_update(void)
{
	u8_t i;

	/* Populate filter from wl peers */
	filter_clear(&wl_filter);

	for (i = 0; i < WL_SIZE; i++) {
		u8_t j;

		if (!wl[i].taken) {
			continue;
		}

		j = wl[i].rl_idx;

		if (!rl_enable || j >= ARRAY_SIZE(rl) || !rl[j].pirk ||
		    rl[j].dev) {
			filter_insert(&wl_filter, i, wl[i].id_addr_type,
				      wl[i].id_addr.val);
		}
	}
}

static void filter_rl_update(void)
{
	u8_t i;

	/* No whitelist: populate filter from rl peers */
	filter_clear(&rl_filter);

	for (i = 0; i < CONFIG_BT_CTLR_RL_SIZE; i++) {
		if (rl[i].taken) {
			filter_insert(&rl_filter, i, rl[i].id_addr_type,
				      rl[i].id_addr.val);
		}
	}
}

void ll_filters_adv_update(u8_t adv_fp)
{
	/* enabling advertising */
	if (adv_fp && !(radio_scan_filter_pol_get() & 0x1)) {
		/* whitelist not in use, update whitelist */
		filter_wl_update();
	}

	if (rl_enable && !radio_scan_is_enabled()) {
		/* rl not in use, update resolving list LUT */
		filter_rl_update();
	}
}

void ll_filters_scan_update(u8_t scan_fp)
{
	/* enabling advertising */
	if ((scan_fp & 0x1) && !radio_adv_filter_pol_get()) {
		/* whitelist not in use, update whitelist */
		filter_wl_update();
	}

	if (rl_enable && !radio_adv_is_enabled()) {
		/* rl not in use, update resolving list LUT */
		filter_rl_update();
	}
}

u8_t ll_rl_find(u8_t id_addr_type, u8_t *id_addr, u8_t *free)
{
	u8_t i;

	if (free) {
		*free = FILTER_IDX_NONE;
	}

	for (i = 0; i < CONFIG_BT_CTLR_RL_SIZE; i++) {
		if (LIST_MATCH(rl, i, id_addr_type, id_addr)) {
			return i;
		} else if (free && !rl[i].taken && (*free == FILTER_IDX_NONE)) {
			*free = i;
		}
	}

	return FILTER_IDX_NONE;
}

bool ctrl_rl_idx_allowed(u8_t irkmatch_ok, u8_t rl_idx)
{
	/* If AR is disabled or we don't know the device or we matched an IRK
	 * then we're all set.
	 */
	if (!rl_enable || rl_idx >= ARRAY_SIZE(rl) || irkmatch_ok) {
		return true;
	}

	LL_ASSERT(rl_idx < CONFIG_BT_CTLR_RL_SIZE);
	LL_ASSERT(rl[rl_idx].taken);

	return !rl[rl_idx].pirk || rl[rl_idx].dev;
}

void ll_rl_id_addr_get(u8_t rl_idx, u8_t *id_addr_type, u8_t *id_addr)
{
	LL_ASSERT(rl_idx < CONFIG_BT_CTLR_RL_SIZE);
	LL_ASSERT(rl[rl_idx].taken);

	*id_addr_type = rl[rl_idx].id_addr_type;
	memcpy(id_addr, rl[rl_idx].id_addr.val, BDADDR_SIZE);
}

bool ctrl_rl_addr_allowed(u8_t id_addr_type, u8_t *id_addr, u8_t *rl_idx)
{
	u8_t i, j;

	/* If AR is disabled or we matched an IRK then we're all set. No hw
	 * filters are used in this case.
	 */
	if (!rl_enable || *rl_idx != FILTER_IDX_NONE) {
		return true;
	}

	for (i = 0; i < CONFIG_BT_CTLR_RL_SIZE; i++) {
		if (rl[i].taken && (rl[i].id_addr_type == id_addr_type)) {
			u8_t *addr = rl[i].id_addr.val;
			for (j = 0; j < BDADDR_SIZE; j++) {
				if (addr[j] != id_addr[j]) {
					break;
				}
			}

			if (j == BDADDR_SIZE) {
				*rl_idx = i;
				return !rl[i].pirk || rl[i].dev;
			}
		}
	}

	return true;
}

bool ctrl_rl_addr_resolve(u8_t id_addr_type, u8_t *id_addr, u8_t rl_idx)
{
	/* Unable to resolve if AR is disabled, no RL entry or no local IRK */
	if (!rl_enable || rl_idx >= ARRAY_SIZE(rl) || !rl[rl_idx].lirk) {
		return false;
	}

	if ((id_addr_type != 0) && ((id_addr[5] & 0xc0) == 0x40)) {
		return bt_rpa_irk_matches(rl[rl_idx].local_irk,
					  (bt_addr_t *)id_addr);
	}

	return false;
}

bool ctrl_rl_enabled(void)
{
	return rl_enable;
}

#if defined(CONFIG_BT_BROADCASTER)
void ll_rl_pdu_adv_update(u8_t idx, struct pdu_adv *pdu)
{
	u8_t *adva = pdu->type == PDU_ADV_TYPE_SCAN_RSP ?
				  &pdu->payload.scan_rsp.addr[0] :
				  &pdu->payload.adv_ind.addr[0];

	struct ll_adv_set *ll_adv = ll_adv_set_get();

	/* AdvA */
	if (idx < ARRAY_SIZE(rl) && rl[idx].lirk) {
		LL_ASSERT(rl[idx].rpas_ready);
		pdu->tx_addr = 1;
		memcpy(adva, rl[idx].local_rpa->val, BDADDR_SIZE);
	} else {
		pdu->tx_addr = ll_adv->own_addr_type & 0x1;
		ll_addr_get(ll_adv->own_addr_type & 0x1, adva);
	}

	/* TargetA */
	if (pdu->type == PDU_ADV_TYPE_DIRECT_IND) {
		if (idx < ARRAY_SIZE(rl) && rl[idx].pirk) {
			pdu->rx_addr = 1;
			memcpy(&pdu->payload.direct_ind.tgt_addr[0],
			       rl[idx].peer_rpa.val, BDADDR_SIZE);
		} else {
			pdu->rx_addr = ll_adv->id_addr_type;
			memcpy(&pdu->payload.direct_ind.tgt_addr[0],
			       ll_adv->id_addr, BDADDR_SIZE);
		}
	}
}

static void rpa_adv_refresh(void)
{
	struct radio_adv_data *radio_adv_data;
	struct ll_adv_set *ll_adv;
	struct pdu_adv *prev;
	struct pdu_adv *pdu;
	u8_t last;
	u8_t idx;

	ll_adv = ll_adv_set_get();

	if (ll_adv->own_addr_type != BT_ADDR_LE_PUBLIC_ID &&
	    ll_adv->own_addr_type != BT_ADDR_LE_RANDOM_ID) {
		return;
	}

	radio_adv_data = radio_adv_data_get();
	prev = (struct pdu_adv *)&radio_adv_data->data[radio_adv_data->last][0];
	/* use the last index in double buffer, */
	if (radio_adv_data->first == radio_adv_data->last) {
		last = radio_adv_data->last + 1;
		if (last == DOUBLE_BUFFER_SIZE) {
			last = 0;
		}
	} else {
		last = radio_adv_data->last;
	}

	/* update adv pdu fields. */
	pdu = (struct pdu_adv *)&radio_adv_data->data[last][0];
	pdu->type = prev->type;
	pdu->rfu = 0;

	if (IS_ENABLED(CONFIG_BT_CTLR_CHAN_SEL_2)) {
		pdu->chan_sel = prev->chan_sel;
	} else {
		pdu->chan_sel = 0;
	}

	idx = ll_rl_find(ll_adv->id_addr_type, ll_adv->id_addr, NULL);
	LL_ASSERT(idx < ARRAY_SIZE(rl));
	ll_rl_pdu_adv_update(idx, pdu);

	memcpy(&pdu->payload.adv_ind.data[0], &prev->payload.adv_ind.data[0],
	       prev->len - BDADDR_SIZE);
	pdu->len = prev->len;

	/* commit the update so controller picks it. */
	radio_adv_data->last = last;
}
#endif

static void rl_clear(void)
{
	for (u8_t i = 0; i < CONFIG_BT_CTLR_RL_SIZE; i++) {
		rl[i].taken = 0;
	}

	peer_irk_count = 0;
}

static int rl_access_check(bool check_ar)
{
	if (check_ar) {
		/* If address resolution is disabled, allow immediately */
		if (!rl_enable) {
			return -1;
		}
	}

	return (radio_adv_is_enabled() || radio_scan_is_enabled()) ? 0 : 1;
}

void ll_rl_rpa_update(bool timeout)
{
	u8_t i;
	int err;
	s64_t now = k_uptime_get();
	bool all = timeout || (rpa_last_ms == -1) ||
		   (now - rpa_last_ms >= rpa_timeout_ms);
	BT_DBG("");

	for (i = 0; i < CONFIG_BT_CTLR_RL_SIZE; i++) {
		if ((rl[i].taken) && (all || !rl[i].rpas_ready)) {

			if (rl[i].pirk) {
				u8_t irk[16];

				/* TODO: move this swap to the driver level */
				sys_memcpy_swap(irk, peer_irks[rl[i].pirk_idx],
						16);
				err = bt_rpa_create(irk, &rl[i].peer_rpa);
				LL_ASSERT(!err);
			}

			if (rl[i].lirk) {
				bt_addr_t rpa;

				err = bt_rpa_create(rl[i].local_irk, &rpa);
				LL_ASSERT(!err);
				/* pointer read/write assumed to be atomic
				 * so that if ISR fires the local_rpa pointer
				 * will always point to a valid full RPA
				 */
				rl[i].local_rpa = &rpa;
				bt_addr_copy(&local_rpas[i], &rpa);
				rl[i].local_rpa = &local_rpas[i];
			}

			rl[i].rpas_ready = 1;
		}
	}

	if (all) {
		rpa_last_ms = now;
	}

	if (timeout) {
#if defined(CONFIG_BT_BROADCASTER)
		if (radio_adv_is_enabled()) {
			rpa_adv_refresh();
		}
#endif
	}
}

static void rpa_timeout(struct k_work *work)
{
	ll_rl_rpa_update(true);
	k_delayed_work_submit(&rpa_work, rpa_timeout_ms);
}

static void rpa_refresh_start(void)
{
	if (!rl_enable) {
		return;
	}

	BT_DBG("");
	k_delayed_work_submit(&rpa_work, rpa_timeout_ms);
}

static void rpa_refresh_stop(void)
{
	if (!rl_enable) {
		return;
	}

	k_delayed_work_cancel(&rpa_work);
}

void ll_adv_scan_state_cb(u8_t bm)
{
	if (bm) {
		rpa_refresh_start();
	} else {
		rpa_refresh_stop();
	}
}

u32_t ll_rl_size_get(void)
{
	return CONFIG_BT_CTLR_RL_SIZE;
}

u32_t ll_rl_clear(void)
{
	if (!rl_access_check(false)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	rl_clear();

	return 0;
}

u32_t ll_rl_add(bt_addr_le_t *id_addr, const u8_t pirk[16],
		const u8_t lirk[16])
{
	u8_t i, j;

	if (!rl_access_check(false)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	i = ll_rl_find(id_addr->type, id_addr->a.val, &j);

	/* Duplicate check */
	if (i < ARRAY_SIZE(rl)) {
		return BT_HCI_ERR_INVALID_PARAM;
	} else if (j >= ARRAY_SIZE(rl)) {
		return BT_HCI_ERR_MEM_CAPACITY_EXCEEDED;
	}

	/* Device not found but empty slot found */
	i = j;

	bt_addr_copy(&rl[i].id_addr, &id_addr->a);
	rl[i].id_addr_type = id_addr->type & 0x1;
	rl[i].pirk = mem_nz((u8_t *)pirk, 16);
	rl[i].lirk = mem_nz((u8_t *)lirk, 16);
	if (rl[i].pirk) {
		/* cross-reference */
		rl[i].pirk_idx = peer_irk_count;
		peer_irk_rl_ids[peer_irk_count] = i;
		/* AAR requires big-endian IRKs */
		sys_memcpy_swap(peer_irks[peer_irk_count++], pirk, 16);
	}
	if (rl[i].lirk) {
		memcpy(rl[i].local_irk, lirk, 16);
		rl[i].local_rpa = NULL;
	}
	memset(rl[i].curr_rpa.val, 0x00, sizeof(rl[i].curr_rpa));
	rl[i].rpas_ready = 0;
	/* Default to Network Privacy */
	rl[i].dev = 0;
	/* Add reference to  a whitelist entry */
	j = wl_find(id_addr->type, id_addr->a.val, NULL);
	if (j < ARRAY_SIZE(wl)) {
		wl[j].rl_idx = i;
		rl[i].wl = 1;
	} else {
		rl[i].wl = 0;
	}
	rl[i].taken = 1;

	return 0;
}

u32_t ll_rl_remove(bt_addr_le_t *id_addr)
{
	u8_t i;

	if (!rl_access_check(false)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	/* find the device and mark it as empty */
	i = ll_rl_find(id_addr->type, id_addr->a.val, NULL);
	if (i < ARRAY_SIZE(rl)) {
		u8_t j, k;

		if (rl[i].pirk) {
			/* Swap with last item */
			u8_t pi = rl[i].pirk_idx, pj = peer_irk_count - 1;

			if (pj && pi != pj) {
				memcpy(peer_irks[pi], peer_irks[pj], 16);
				for (k = 0;
				     k < CONFIG_BT_CTLR_RL_SIZE;
				     k++) {

					if (rl[k].taken && rl[k].pirk &&
					    rl[k].pirk_idx == pj) {
						rl[k].pirk_idx = pi;
						peer_irk_rl_ids[pi] = k;
						break;
					}
				}
			}
			peer_irk_count--;
		}

		/* Check if referenced by a whitelist entry */
		j = wl_find(id_addr->type, id_addr->a.val, NULL);
		if (j < ARRAY_SIZE(wl)) {
			wl[j].rl_idx = FILTER_IDX_NONE;
		}
		rl[i].taken = 0;
		return 0;
	}

	return BT_HCI_ERR_UNKNOWN_CONN_ID;
}

void ll_rl_crpa_set(u8_t id_addr_type, u8_t *id_addr, u8_t rl_idx, u8_t *crpa)
{
	if ((crpa[5] & 0xc0) == 0x40) {

		if (id_addr) {
			/* find the device and return its RPA */
			rl_idx = ll_rl_find(id_addr_type, id_addr, NULL);
		}

		if (rl_idx < ARRAY_SIZE(rl) && rl[rl_idx].taken) {
				memcpy(rl[rl_idx].curr_rpa.val, crpa,
				       sizeof(bt_addr_t));
		}
	}
}

u32_t ll_rl_crpa_get(bt_addr_le_t *id_addr, bt_addr_t *crpa)
{
	u8_t i;

	/* find the device and return its RPA */
	i = ll_rl_find(id_addr->type, id_addr->a.val, NULL);
	if (i < ARRAY_SIZE(rl) &&
	    mem_nz(rl[i].curr_rpa.val, sizeof(rl[i].curr_rpa.val))) {
			bt_addr_copy(crpa, &rl[i].curr_rpa);
			return 0;
	}

	return BT_HCI_ERR_UNKNOWN_CONN_ID;
}

u32_t ll_rl_lrpa_get(bt_addr_le_t *id_addr, bt_addr_t *lrpa)
{
	u8_t i;

	/* find the device and return the local RPA */
	i = ll_rl_find(id_addr->type, id_addr->a.val, NULL);
	if (i < ARRAY_SIZE(rl)) {
		bt_addr_copy(lrpa, rl[i].local_rpa);
		return 0;
	}

	return BT_HCI_ERR_UNKNOWN_CONN_ID;
}

u32_t ll_rl_enable(u8_t enable)
{
	if (!rl_access_check(false)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	switch (enable) {
	case BT_HCI_ADDR_RES_DISABLE:
		rl_enable = 0;
		break;
	case BT_HCI_ADDR_RES_ENABLE:
		rl_enable = 1;
		break;
	default:
		return BT_HCI_ERR_INVALID_PARAM;
	}

	return 0;
}

void ll_rl_timeout_set(u16_t timeout)
{
	rpa_timeout_ms = timeout * 1000;
}

u32_t ll_priv_mode_set(bt_addr_le_t *id_addr, u8_t mode)
{
	u8_t i;

	if (!rl_access_check(false)) {
		return BT_HCI_ERR_CMD_DISALLOWED;
	}

	/* find the device and mark it as empty */
	i = ll_rl_find(id_addr->type, id_addr->a.val, NULL);
	if (i < ARRAY_SIZE(rl)) {
		switch (mode) {
		case BT_HCI_LE_PRIVACY_MODE_NETWORK:
			rl[i].dev = 0;
			break;
		case BT_HCI_LE_PRIVACY_MODE_DEVICE:
			rl[i].dev = 1;
			break;
		default:
			return BT_HCI_ERR_INVALID_PARAM;
		}
	} else {
		return BT_HCI_ERR_UNKNOWN_CONN_ID;
	}

	return 0;
}

#endif /* CONFIG_BT_CTLR_PRIVACY */

void ll_filter_reset(bool init)
{
	wl_anon = 0;

#if defined(CONFIG_BT_CTLR_PRIVACY)
	wl_clear();

	rl_enable = 0;
	rpa_timeout_ms = DEFAULT_RPA_TIMEOUT_MS;
	rpa_last_ms = -1;
	rl_clear();
	if (init) {
		k_delayed_work_init(&rpa_work, rpa_timeout);
	} else {
		k_delayed_work_cancel(&rpa_work);
	}
#else
	filter_clear(&wl_filter);
#endif /* CONFIG_BT_CTLR_PRIVACY */

}