Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
/* adxl362.c - ADXL362 Three-Axis Digital Accelerometers */
/*
 * Copyright (c) 2017 IpTronix S.r.l.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <kernel.h>
#include <string.h>
#include <sensor.h>
#include <init.h>
#include <gpio.h>
#include <misc/printk.h>
#include <misc/byteorder.h>
#include <misc/__assert.h>
#include <spi.h>

#include "adxl362.h"


static struct adxl362_data adxl362_data;

static int adxl362_set_reg(struct device *dev, u16_t register_value,
			   u8_t register_address, u8_t count)
{
	struct adxl362_data *adxl362_data = dev->driver_data;
	u8_t buffer[4];
	int ret;

	buffer[0] = ADXL362_WRITE_REG;
	buffer[1] = register_address;
	buffer[2] = (register_value & 0x00FF);
	buffer[3] = (register_value >> 8);

	ret = spi_slave_select(adxl362_data->spi,
			       adxl362_data->spi_slave);
	if (ret) {
		SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
		return ret;
	}

	ret = spi_transceive(adxl362_data->spi, buffer, count + 2,
			     buffer, count + 2);
	if (ret) {
		SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
		return ret;
	}

	return 0;
}

static int adxl362_get_reg(struct device *dev, u8_t *read_buf,
			   u8_t register_address, u8_t count)
{
	struct adxl362_data *adxl362_data = dev->driver_data;
	u8_t buffer[4];
	u8_t index;
	int ret;

	buffer[0] = ADXL362_READ_REG;
	buffer[1] = register_address;
	for (index = 0; index < count; index++) {
		buffer[index + 2] = read_buf[index];
	}

	ret = spi_slave_select(adxl362_data->spi,
			       adxl362_data->spi_slave);
	if (ret) {
		SYS_LOG_DBG("spi_slave_select FAIL %d\n", ret);
		return ret;
	}

	ret = spi_transceive(adxl362_data->spi, buffer, count + 2,
			     buffer, count + 2);
	if (ret) {
		SYS_LOG_DBG("spi_transceive FAIL %d\n", ret);
		return ret;
	}

	for (index = 0; index < count; index++) {
		read_buf[index] = buffer[index + 2];
	}

	return 0;
}

static int adxl362_software_reset(struct device *dev)
{
	return adxl362_set_reg(dev, ADXL362_RESET_KEY,
			       ADXL362_REG_SOFT_RESET, 1);
}

static int adxl362_set_power_mode(struct device *dev, u8_t mode)
{
	u8_t old_power_ctl;
	u8_t new_power_ctl;
	int ret;

	ret = adxl362_get_reg(dev, &old_power_ctl, ADXL362_REG_POWER_CTL, 1);
	if (ret) {
		return ret;
	}

	new_power_ctl = old_power_ctl & ~ADXL362_POWER_CTL_MEASURE(0x3);
	new_power_ctl = new_power_ctl |
		      (mode *
		       ADXL362_POWER_CTL_MEASURE(ADXL362_MEASURE_ON));
	return adxl362_set_reg(dev, new_power_ctl, ADXL362_REG_POWER_CTL, 1);
}

/*
 * Output data rate map with allowed frequencies:
 * freq = freq_int + freq_milli / 1000
 *
 * Since we don't need a finer frequency resolution than milliHz, use u16_t
 * to save some flash.
 */
static const struct {
	u16_t freq_int;
	u16_t freq_milli; /* User should convert to uHz before setting the
			      * SENSOR_ATTR_SAMPLING_FREQUENCY attribute.
			      */
} adxl362_odr_map[] = {
	{ 12, 500 },
	{ 25, 0 },
	{ 50, 0 },
	{ 100, 0 },
	{ 200, 0 },
	{ 400, 0 },
};

static int adxl362_freq_to_odr_val(u16_t freq_int, u16_t freq_milli)
{
	size_t i;

	/* An ODR of 0 Hz is not allowed */
	if (freq_int == 0 && freq_milli == 0) {
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(adxl362_odr_map); i++) {
		if (freq_int < adxl362_odr_map[i].freq_int ||
		    (freq_int == adxl362_odr_map[i].freq_int &&
		     freq_milli <= adxl362_odr_map[i].freq_milli)) {
			return i;
		}
	}

	return -EINVAL;
}

static const struct adxl362_range {
	u16_t range;
	u8_t reg_val;
} adxl362_acc_range_map[] = {
	{2,	ADXL362_RANGE_2G},
	{4,	ADXL362_RANGE_4G},
	{8,	ADXL362_RANGE_8G},
};

static s32_t adxl362_range_to_reg_val(u16_t range)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(adxl362_acc_range_map); i++) {
		if (range <= adxl362_acc_range_map[i].range) {
			return adxl362_acc_range_map[i].reg_val;
		}
	}

	return -EINVAL;
}

static int adxl362_set_range(struct device *dev, u8_t range)
{
	struct adxl362_data *adxl362_data = dev->driver_data;
	u8_t old_filter_ctl;
	u8_t new_filter_ctl;
	int ret;

	ret = adxl362_get_reg(dev, &old_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
	if (ret) {
		return ret;
	}

	new_filter_ctl = old_filter_ctl & ~ADXL362_FILTER_CTL_RANGE(0x3);
	new_filter_ctl = new_filter_ctl | ADXL362_FILTER_CTL_RANGE(range);
	ret = adxl362_set_reg(dev, new_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
	if (ret) {
		return ret;
	}

	adxl362_data->selected_range = (1 << range) * 2;
	return 0;
}

static int adxl362_set_output_rate(struct device *dev, u8_t out_rate)
{
	u8_t old_filter_ctl;
	u8_t new_filter_ctl;

	adxl362_get_reg(dev, &old_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
	new_filter_ctl = old_filter_ctl & ~ADXL362_FILTER_CTL_ODR(0x7);
	new_filter_ctl = new_filter_ctl | ADXL362_FILTER_CTL_ODR(out_rate);
	adxl362_set_reg(dev, new_filter_ctl, ADXL362_REG_FILTER_CTL, 1);

	return 0;
}


static int axl362_acc_config(struct device *dev, enum sensor_channel chan,
			     enum sensor_attribute attr,
			     const struct sensor_value *val)
{
	switch (attr) {
#if defined(CONFIG_ADXL362_ACCEL_RANGE_RUNTIME)
	case SENSOR_ATTR_FULL_SCALE:
	{
		int range_reg;

		range_reg = adxl362_range_to_reg_val(sensor_ms2_to_g(val));
		if (range_reg < 0) {
			SYS_LOG_DBG("invalid range requested.");
			return -ENOTSUP;
		}

		return adxl362_set_range(dev, range_reg);
	}
	break;
#endif
#if defined(CONFIG_ADXL362_ACCEL_ODR_RUNTIME)
	case SENSOR_ATTR_SAMPLING_FREQUENCY:
	{
		int out_rate;

		out_rate = adxl362_freq_to_odr_val(val->val1,
						   val->val2 / 1000);
		if (out_rate < 0) {
			SYS_LOG_DBG("invalid output rate.");
			return -ENOTSUP;
		}

		return adxl362_set_output_rate(dev, out_rate);
	}
	break;
#endif
	default:
		SYS_LOG_DBG("Accel attribute not supported.");
		return -ENOTSUP;
	}

	return 0;
}

static int adxl362_attr_set(struct device *dev, enum sensor_channel chan,
		    enum sensor_attribute attr, const struct sensor_value *val)
{
	switch (chan) {
	case SENSOR_CHAN_ACCEL_X:
	case SENSOR_CHAN_ACCEL_Y:
	case SENSOR_CHAN_ACCEL_Z:
	case SENSOR_CHAN_ACCEL_XYZ:
		return axl362_acc_config(dev, chan, attr, val);

	default:
		SYS_LOG_DBG("attr_set() not supported on this channel.");
		return -ENOTSUP;
	}

	return 0;
}


static int adxl362_read_temperature(struct device *dev, s32_t *temp_celsius)
{
	u8_t raw_temp_data[2];
	int ret;

	/* Reads the temperature of the device. */
	ret = adxl362_get_reg(dev, raw_temp_data, ADXL362_REG_TEMP_L, 2);
	if (ret) {
		return ret;
	}

	*temp_celsius = (s32_t)(raw_temp_data[1] << 8) + raw_temp_data[0];
	*temp_celsius *= 65;

	return ret;
}

static int adxl362_fifo_setup(struct device *dev, u8_t mode,
			      u16_t water_mark_lvl, u8_t en_temp_read)
{
	u8_t write_val;
	int ret;

	write_val = ADXL362_FIFO_CTL_FIFO_MODE(mode) |
		   (en_temp_read * ADXL362_FIFO_CTL_FIFO_TEMP) |
		   ADXL362_FIFO_CTL_AH;
	ret = adxl362_set_reg(dev, write_val, ADXL362_REG_FIFO_CTL, 1);
	if (ret) {
		return ret;
	}

	ret = adxl362_set_reg(dev, water_mark_lvl, ADXL362_REG_FIFO_SAMPLES, 2);
	if (ret) {
		return ret;
	}

	return 0;
}

static int adxl362_setup_activity_detection(struct device *dev,
					    u8_t ref_or_abs,
					    u16_t threshold,
					    u8_t time)
{
	u8_t old_act_inact_reg;
	u8_t new_act_inact_reg;
	int ret;

	/**
	 * mode
	 *              must be one of the following:
	 *			ADXL362_FIFO_DISABLE      -  FIFO is disabled.
	 *			ADXL362_FIFO_OLDEST_SAVED -  Oldest saved mode.
	 *			ADXL362_FIFO_STREAM       -  Stream mode.
	 *			ADXL362_FIFO_TRIGGERED    -  Triggered mode.
	 * water_mark_lvl
	 *              Specifies the number of samples to store in the FIFO.
	 * en_temp_read
	 *              Store Temperature Data to FIFO.
	 *              1 - temperature data is stored in the FIFO
	 *                  together with x-, y- and x-axis data.
	 *          0 - temperature data is skipped.
	 */

	/* Configure motion threshold and activity timer. */
	ret = adxl362_set_reg(dev, (threshold & 0x7FF),
			      ADXL362_REG_THRESH_ACT_L, 2);
	if (ret) {
		return ret;
	}

	ret = adxl362_set_reg(dev, time, ADXL362_REG_TIME_ACT, 1);
	if (ret) {
		return ret;
	}

	/* Enable activity interrupt and select a referenced or absolute
	 * configuration.
	 */
	ret = adxl362_get_reg(dev, &old_act_inact_reg,
			      ADXL362_REG_ACT_INACT_CTL, 1);
	if (ret) {
		return ret;
	}

	new_act_inact_reg = old_act_inact_reg & ~ADXL362_ACT_INACT_CTL_ACT_REF;
	new_act_inact_reg |= ADXL362_ACT_INACT_CTL_ACT_EN |
			  (ref_or_abs * ADXL362_ACT_INACT_CTL_ACT_REF);
	ret = adxl362_set_reg(dev, new_act_inact_reg,
			      ADXL362_REG_ACT_INACT_CTL, 1);
	if (ret) {
		return ret;
	}

	return 0;
}

static int adxl362_setup_inactivity_detection(struct device *dev,
					      u8_t ref_or_abs,
					      u16_t threshold,
					      u16_t time)
{
	u8_t old_act_inact_reg;
	u8_t new_act_inact_reg;
	int ret;

	/* Configure motion threshold and inactivity timer. */
	ret = adxl362_set_reg(dev, (threshold & 0x7FF),
			      ADXL362_REG_THRESH_INACT_L, 2);
	if (ret) {
		return ret;
	}

	ret = adxl362_set_reg(dev, time, ADXL362_REG_TIME_INACT_L, 2);
	if (ret) {
		return ret;
	}

	/* Enable inactivity interrupt and select a referenced or
	 * absolute configuration.
	 */
	ret = adxl362_get_reg(dev, &old_act_inact_reg,
			      ADXL362_REG_ACT_INACT_CTL, 1);
	if (ret) {
		return ret;
	}

	new_act_inact_reg = old_act_inact_reg &
			    ~ADXL362_ACT_INACT_CTL_INACT_REF;
	new_act_inact_reg |= ADXL362_ACT_INACT_CTL_INACT_EN |
			     (ref_or_abs * ADXL362_ACT_INACT_CTL_INACT_REF);
	ret = adxl362_set_reg(dev, new_act_inact_reg,
			      ADXL362_REG_ACT_INACT_CTL, 1);
	if (ret) {
		return ret;
	}

	return 0;
}

static int adxl362_sample_fetch(struct device *dev, enum sensor_channel chan)
{
	struct adxl362_data *data = dev->driver_data;
	u8_t buf[2];
	s16_t x, y, z;
	int ret;

	ret = adxl362_get_reg(dev, buf, ADXL362_REG_XDATA_L, 2);
	if (ret) {
		return ret;
	}

	x = (buf[1] << 8) + buf[0];
	ret = adxl362_get_reg(dev, buf, ADXL362_REG_YDATA_L, 2);
	if (ret) {
		return ret;
	}

	y = (buf[1] << 8) + buf[0];
	ret = adxl362_get_reg(dev, buf, ADXL362_REG_ZDATA_L, 2);
	if (ret) {
		return ret;
	}

	z = (buf[1] << 8) + buf[0];

	data->acc_x = (s32_t)x * (adxl362_data.selected_range / 2);
	data->acc_y = (s32_t)y * (adxl362_data.selected_range / 2);
	data->acc_z = (s32_t)z * (adxl362_data.selected_range / 2);

	ret = adxl362_read_temperature(dev, &data->temp);
	if (ret) {
		return ret;
	}

	return 0;
}

static int adxl362_channel_get(struct device *dev,
			       enum sensor_channel chan,
			       struct sensor_value *val)
{
	struct adxl362_data *data = dev->driver_data;

	switch (chan) {
	case SENSOR_CHAN_ACCEL_X: /* Acceleration on the X axis, in m/s^2. */
		val->val1 = data->acc_x / 1000;
		val->val2 = (data->acc_x % 1000) * 1000;
		break;
	case SENSOR_CHAN_ACCEL_Y: /* Acceleration on the Y axis, in m/s^2. */
		val->val1 = data->acc_y / 1000;
		val->val2 = (data->acc_y % 1000) * 1000;
		break;
	case SENSOR_CHAN_ACCEL_Z: /* Acceleration on the Z axis, in m/s^2. */
		val->val1 = data->acc_z / 1000;
		val->val2 = (data->acc_z % 1000) * 1000;
		break;
	case SENSOR_CHAN_TEMP: /* Temperature in degrees Celsius. */
		val->val1 = data->temp / 1000;
		val->val2 = (data->temp % 1000) * 1000;
		break;
	default:
		return -ENOTSUP;
	}

	return 0;
}

static const struct sensor_driver_api adxl362_api_funcs = {
	.attr_set     = adxl362_attr_set,
	.sample_fetch = adxl362_sample_fetch,
	.channel_get  = adxl362_channel_get,
};

static int adxl362_chip_init(struct device *dev)
{
	int ret;

	/* Configures activity detection.
	 *	Referenced/Absolute Activity or Inactivity Select.
	 *		0 - absolute mode.
	 *		1 - referenced mode.
	 *	threshold
	 *		11-bit unsigned value that the adxl362 samples are
	 *		compared to.
	 *	time
	 *		8-bit value written to the activity timer register.
	 *		The amount of time (in seconds) is:
	 *			time / ODR,
	 *		where ODR - is the output data rate.
	 */
	ret = adxl362_setup_activity_detection(dev, 0, 250, 1);
	if (ret) {
		return ret;
	}

	/* Configures inactivity detection.
	 *	Referenced/Absolute Activity or Inactivity Select.
	 *		0 - absolute mode.
	 *		1 - referenced mode.
	 *	threshold
	 *		11-bit unsigned value that the adxl362 samples are
	 *		compared to.
	 *	time
	 *		16-bit value written to the activity timer register.
	 *		The amount of time (in seconds) is:
	 *			time / ODR,
	 *		where ODR - is the output data rate.
	 */
	ret = adxl362_setup_inactivity_detection(dev, 0, 100, 1);
	if (ret) {
		return ret;
	}

	/* Configures the FIFO feature. */
	ret = adxl362_fifo_setup(dev, ADXL362_FIFO_DISABLE, 0, 0);
	if (ret) {
		return ret;
	}

	/* Selects the measurement range.
	 * options are:
	 *		ADXL362_RANGE_2G  -  +-2 g
	 *		ADXL362_RANGE_4G  -  +-4 g
	 *		ADXL362_RANGE_8G  -  +-8 g
	 */
	ret = adxl362_set_range(dev, ADXL362_DEFAULT_RANGE_ACC);
	if (ret) {
		return ret;
	}

	/* Selects the Output Data Rate of the device.
	 * Options are:
	 *		ADXL362_ODR_12_5_HZ  -  12.5Hz
	 *		ADXL362_ODR_25_HZ    -  25Hz
	 *		ADXL362_ODR_50_HZ    -  50Hz
	 *		ADXL362_ODR_100_HZ   -  100Hz
	 *		ADXL362_ODR_200_HZ   -  200Hz
	 *		ADXL362_ODR_400_HZ   -  400Hz
	 */
	ret = adxl362_set_output_rate(dev, ADXL362_DEFAULT_ODR_ACC);
	if (ret) {
		return ret;
	}

	/* Places the device into measure mode. */
	ret = adxl362_set_power_mode(dev, 1);
	if (ret) {
		return ret;
	}

	return 0;
}

/**
 * @brief Initializes communication with the device and checks if the part is
 *        present by reading the device id.
 *
 * @return  0 - the initialization was successful and the device is present;
 *         -1 - an error occurred.
 *
 */
static int adxl362_init(struct device *dev)
{
	struct adxl362_data *data = dev->driver_data;
	struct spi_config spi_config;
	u8_t value;
	int ret;

	data->spi = device_get_binding(CONFIG_ADXL362_SPI_DEV_NAME);
	if (!data->spi) {
		SYS_LOG_DBG("spi device not found: %s",
			    CONFIG_ADXL362_SPI_DEV_NAME);
		return -EINVAL;
	}

	spi_config.config = SPI_WORD(8) | SPI_TRANSFER_MSB | SPI_MODE_CPOL |
			    SPI_MODE_CPHA;
	spi_config.max_sys_freq = 4;
	ret = spi_configure(data->spi, &spi_config);
	if (ret) {
		SYS_LOG_DBG("SPI configuration error %s %d\n",
			    CONFIG_ADXL362_SPI_DEV_NAME, ret);
		return ret;
	}

	data->spi_slave = CONFIG_ADXL362_SPI_DEV_SLAVE;

	adxl362_software_reset(dev);

	adxl362_get_reg(dev, &value, ADXL362_REG_PARTID, 1);
	if (value != ADXL362_PART_ID) {
		return -ENODEV;
	}

	if (adxl362_chip_init(dev) < 0) {
		return -ENODEV;
	}

	return 0;
}

DEVICE_AND_API_INIT(adxl362, CONFIG_ADXL362_DEV_NAME, adxl362_init,
		    &adxl362_data, NULL, POST_KERNEL,
		    CONFIG_SENSOR_INIT_PRIORITY, &adxl362_api_funcs);