Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | /* * Copyright (c) 2017, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL CORPORATION OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * SoC Watch - QMSI power profiler */ #if (SOC_WATCH_ENABLE) /* * Header files common to LMT and ARC Sensor. */ #include "soc_watch.h" #include "qm_common.h" #include "qm_soc_regs.h" /* * Header files and macro defines specific to LMT and ARC Sensor. */ #if (!QM_SENSOR) #include <x86intrin.h> /* 64bit Timestamp counter. */ #define get_ticks() _rdtsc() #else #include "qm_sensor_regs.h" /* Timestamp counter for sensor subsystem is 32bit. */ #define get_ticks() __builtin_arc_lr(QM_SS_TSC_BASE + QM_SS_TIMER_COUNT) #endif /* * Define a macro for exposing some functions and other definitions * only when unit testing. If we're not unit testing, then declare * them as static, so that their declarations are hidden to normal * code. */ #if (UNIT_TEST) #define NONUTSTATIC #else #define NONUTSTATIC static #endif /** * "Event strings" table, describing message structures. * The first character is the event code to write to the data file. * The 2nd and subsequent characters describe how to format the record's * data. Note that the ordering here needs to agree with the * enumeration list in qmsw_stub.h. * * Table characters: * + First char = event code to write into the result file. * + T = TSC Timestamp (Hi-res timestamp) * + t = RTC Timestamp (lo-res timestamp) * + 1 = interpret ev_data as a 1-byte value * + 4 = interpret ev_data as a 4-byte value * + R = Using ev_data as a register enumeration, read that register, * + and put that 4-byte value into the data file. * + L = Trigger an RTC timestamp Later */ NONUTSTATIC const char *ev_strs[] = { "HT", /* Halt event */ "IT1", /* Interrupt event */ "STtL", /* Sleep event */ "RT1R", /* Register read event: Timestamp, reg enum, reg value*/ "UTs4", /* User event: timestamp, subtype, data value. */ "FTf", /* Frequency change event */ }; /* * This list of registers corresponds to the SoC Watch register ID * enumeration in soc_watch.h, and MUST STAY IN AGREEMENT with that * list, since that enumeration is used to index this list. * * To record a register value, the SoC Watch code indexes into this * array, and reads the corresponding address found in that slot. */ #if (QUARK_D2000) static const uint32_t *platform_regs[] = { (uint32_t *)(&QM_SCSS_CCU->osc0_cfg1), (uint32_t *)(&QM_SCSS_CCU->ccu_lp_clk_ctl), (uint32_t *)(&QM_SCSS_CCU->ccu_sys_clk_ctl), /* Clock Gating Registers */ (uint32_t *)(&QM_SCSS_CCU->ccu_periph_clk_gate_ctl), (uint32_t *)(&QM_SCSS_CCU->ccu_ext_clock_ctl), /* Power Consumption regs */ (uint32_t *)(&QM_SCSS_CMP->cmp_pwr), (uint32_t *)(&QM_SCSS_PMUX->pmux_pullup), (uint32_t *)(&QM_SCSS_PMUX->pmux_slew), (uint32_t *)(&QM_SCSS_PMUX->pmux_in_en)}; #elif(QUARK_SE) static const uint32_t *platform_regs[] = { (uint32_t *)(&QM_SCSS_CCU->osc0_cfg1), (uint32_t *)(&QM_SCSS_CCU->ccu_lp_clk_ctl), (uint32_t *)(&QM_SCSS_CCU->ccu_sys_clk_ctl), /* Clock Gating Registers */ (uint32_t *)(&QM_SCSS_CCU->ccu_periph_clk_gate_ctl), (uint32_t *)(&QM_SCSS_CCU->ccu_ss_periph_clk_gate_ctl), (uint32_t *)(&QM_SCSS_CCU->ccu_ext_clock_ctl), /* Power Consumption regs */ (uint32_t *)(&QM_SCSS_CMP->cmp_pwr), (uint32_t *)(&QM_SCSS_PMU->slp_cfg), (uint32_t *)(&QM_SCSS_PMUX->pmux_pullup), (uint32_t *)(&QM_SCSS_PMUX->pmux_pullup[1]), (uint32_t *)(&QM_SCSS_PMUX->pmux_pullup[2]), (uint32_t *)(&QM_SCSS_PMUX->pmux_pullup[3]), (uint32_t *)(&QM_SCSS_PMUX->pmux_slew), (uint32_t *)(&QM_SCSS_PMUX->pmux_slew[1]), (uint32_t *)(&QM_SCSS_PMUX->pmux_slew[2]), (uint32_t *)(&QM_SCSS_PMUX->pmux_slew[3]), (uint32_t *)(&QM_SCSS_PMUX->pmux_in_en), (uint32_t *)(&QM_SCSS_PMUX->pmux_in_en[1]), (uint32_t *)(&QM_SCSS_PMUX->pmux_in_en[2]), (uint32_t *)(&QM_SCSS_PMUX->pmux_in_en[3])}; #endif /* QUARK_SE */ /* Define VERBOSE to turn on printf-based logging */ #ifdef VERBOSE #define SOC_WATCH_TRACE QM_PRINTF #else #define SOC_WATCH_TRACE(...) #endif /* * mlog routines -- low-level memory debug logging. * Only enable if there's a need to debug this module. */ #ifdef MLOG_ENABLE #define MLOG(e) mlog(e) #define MLOG_BYTE(b) mlog_byte(b) #define MLOG_SIZE 512 /* Must be a power of 2 */ static uint8_t mlog_events[MLOG_SIZE]; static uint16_t mlog_idx = 0; void mlog(uint8_t event) { mlog_events[++mlog_idx % (MLOG_SIZE)] = event; } void mlog_byte(uint8_t byte) { const char c[] = {"0123456789ABCDEF"}; MLOG(c[byte >> 4]); MLOG(c[byte & 4]); } #else /* !MLOG_ENABLE */ #define MLOG(event) #define MLOG_BYTE(b) #endif /* !MLOG_ENABLE */ /* * Defines for frequency related platform registers. */ #define SW_OSC0_CFG1 (0) #define SW_SYS_CLK_CTL (2) /* * CONFIGURABLE: Set this to control the number of bytes of RAM you * want to dedicate to event buffering. The larger the buffer, * the fewer (expensive) flushes we will have to do. The smaller, * the lower the memory cost, but the more flushes you will do. */ #define SOC_WATCH_EVENT_BUFFER_SIZE (256) /* Measured in bytes */ /** * Power profiling event data buffer. Symbol must be globally * visible, so that it can be seen by external tools. */ struct sw_profiling_event_buffer { uint8_t eb_idx; /* Index of next byte to be written */ uint8_t eb_size; /* Buffer size == SOC_WATCH_EVENT_BUFFER_SIZE */ uint8_t event_data[SOC_WATCH_EVENT_BUFFER_SIZE - 2]; /* Event data - sizeof(idx + size) */ } soc_watch_event_buffer = {0, SOC_WATCH_EVENT_BUFFER_SIZE - 1, {0}}; /* High water mark, i.e. "start trying to flush" point. */ #define SW_EB_HIGH_WATER (((SOC_WATCH_EVENT_BUFFER_SIZE - 2) * 7) >> 3) NONUTSTATIC int soc_watch_buffer_full(void) { return (soc_watch_event_buffer.eb_idx >= SW_EB_HIGH_WATER); } /** * Flag used by the JTAG data extraction routine. During setup, a HW * watchpoint is placed on this address. During the flush routine, * software writes to it, causing the HW watchpoint to fire, and * OpenOCD to extract the data. This symbol MUST be globally visible * in order for JTAG data transfer to work. */ volatile uint8_t soc_watch_flush_flag = 0; /* * soc_watch_event_buffer_flush -- Trigger the data buffer flush. */ static void soc_watch_event_buffer_flush(void) { /* Figure out if we can successfully flush the data out. * If we're sleeping, the JTAG query will fail. */ #if (QUARK_D2000) /** * If the "we're going to sleep" bit is set, parts of the * SOC are already asleep, and transferring data over * the JTAG port is not always reliable. So defer transferring * the data until later. * @TODO: Determine if there is also a sensitivity to the * clock rate. */ MLOG('F'); if (QM_SCSS_PMU->aon_vr & QM_AON_VR_VREG_SEL) { MLOG('-'); return; /* We would only send junk, so don't flush. */ } #endif soc_watch_flush_flag = 1; /* Trigger the data extract brkpt */ soc_watch_event_buffer.eb_idx = 0; MLOG('+'); } /* Store a byte in the event buffer. */ static void eb_write_char(uint8_t data) { SOC_WATCH_TRACE("c%d:0x%x [0]=%x\n", soc_watch_event_buffer.eb_idx, data, soc_watch_event_buffer.event_data[0]); soc_watch_event_buffer.event_data[soc_watch_event_buffer.eb_idx++] = data; } /* Store a word in the event buffer. */ static void eb_write_uint32(uint32_t *data) { uint32_t dst_data = *data; uint8_t byte_count = 0; SOC_WATCH_TRACE("I%d:0x%x\n", soc_watch_event_buffer.eb_idx, *data); while (byte_count < sizeof(uint32_t)) { soc_watch_event_buffer .event_data[soc_watch_event_buffer.eb_idx++] = ((dst_data & 0xFF)); dst_data = dst_data >> 8; byte_count++; } } /* * soc_watch is duplicating the implementation of qm_irq_lock/unlock APIs * for both sensor and x86. This is required to remove the dependency on * qm_interrupt.h * Reason: soc_watch driver is common to both zephyr and QMSI based applications * and zephyr * has it's own interrupt handling implementation. * Both the functions are added as static inline and hence no side-effects. */ #if (QM_SENSOR) static inline unsigned int soc_watch_irq_lock(void) { unsigned int key = 0; /* * Store the ARC STATUS32 register fields relating to interrupts into * the variable `key' and disable interrupt delivery to the core. */ __asm__ __volatile__("clri %0" : "=r"(key)); return key; } static inline void soc_watch_irq_unlock(unsigned int key) { /* * Restore the ARC STATUS32 register fields relating to interrupts based * on the variable `key' populated by qm_irq_lock(). */ __asm__ __volatile__("seti %0" : : "ir"(key)); } #else /* x86 */ /* x86 CPU FLAGS.IF register field (Interrupt enable Flag, bit 9), indicating * whether or not CPU interrupts are enabled. */ #define X86_FLAGS_IF BIT(9) /** * Save interrupt state and disable all interrupts on the CPU. * Defined locally for modularity when used in other contexts (i.e. RTOS) * * @return An architecture-dependent lock-out key representing the "interrupt * disable state" prior to the call. */ static inline unsigned int soc_watch_irq_lock(void) { unsigned int key = 0; /* * Store the CPU FLAGS register into the variable `key' and disable * interrupt delivery to the core. */ __asm__ __volatile__("pushfl;\n\t" "cli;\n\t" "popl %0;\n\t" : "=g"(key) : : "memory"); return key; } /** * * Restore previous interrupt state on the CPU saved via soc_watch_irq_lock(). * Defined locally for modularity when used in other contexts (i.e. RTOS) * * @param[in] key architecture-dependent lock-out key returned by a previous * invocation of soc_watch_irq_lock(). */ static inline void soc_watch_irq_unlock(unsigned int key) { /* * `key' holds the CPU FLAGS register content at the time when * soc_watch_irq_lock() was called. */ if (!(key & X86_FLAGS_IF)) { /* * Interrupts were disabled when soc_watch_irq_lock() was * invoked: * do not re-enable interrupts. */ return; } /* Enable interrupts */ __asm__ __volatile__("sti;\n\t" : :); } #endif /* Log an event with one parameter. */ void soc_watch_log_event(soc_watch_event_t event_id, uintptr_t ev_data) { soc_watch_log_app_event(event_id, 0, ev_data); } /* * Log an event with two parameters, where the subtype comes from * the user. Note that what actually makes this an 'application event' is * the event_id, not the fact that it is coming in via this interface. */ void soc_watch_log_app_event(soc_watch_event_t event_id, uint8_t ev_subtype, uintptr_t ev_data) { static uint8_t record_rtc = 0; const uint32_t *rtc_ctr = (uint32_t *)&QM_RTC[QM_RTC_0]->rtc_ccvr; const char *cp; unsigned int irq_flag = 0; #if (!QM_SENSOR) uint64_t tsc = 0; /* hi-res timestamp */ #else uint32_t tsc = 0; #endif uint32_t rtc_val = *rtc_ctr; #define AVG_EVENT_SIZE 8 /* Size of a typical message in bytes. */ MLOG('['); irq_flag = soc_watch_irq_lock(); /* TODO: We know exactly how many bytes of storage we need, * since we know the event code. So don't do an "AVG" size thing * here--use the exact size! */ if ((soc_watch_event_buffer.eb_idx + AVG_EVENT_SIZE) <= soc_watch_event_buffer.eb_size) { /* Map a halt event to a sleep event where appropriate. */ #if (QUARK_D2000) if (event_id == SOCW_EVENT_HALT) { if (QM_SCSS_PMU->aon_vr & QM_AON_VR_VREG_SEL) { event_id = SOCW_EVENT_SLEEP; } } #endif /* Record the RTC of the waking event, if it's rousing us from * sleep. */ if (record_rtc) { eb_write_char('t'); eb_write_uint32((uint32_t *)(&rtc_val)); /* Timestamp */ record_rtc = 0; } if (event_id >= SOCW_EVENT_MAX) { SOC_WATCH_TRACE("Unknown event id: 0x%x\n", event_id); MLOG('?'); soc_watch_irq_unlock(irq_flag); return; } cp = ev_strs[event_id]; /* Look up event string */ SOC_WATCH_TRACE("%c", *cp); MLOG(*cp); eb_write_char(*cp); /* Write event code */ while (*++cp) { switch (*cp) { case 'T': tsc = get_ticks(); eb_write_uint32((uint32_t *)(&tsc)); /* Hi-res Timestamp */ break; case 't': eb_write_uint32( (uint32_t *)(&rtc_val)); /* Lo-res Timestamp */ break; case 'L': record_rtc = 1; break; case 'R': /* Register data value */ eb_write_uint32( (uint32_t *)platform_regs[ev_data]); break; case '4': /* 32-bit data value */ eb_write_uint32((uint32_t *)&ev_data); break; case '1': /* Register ID */ eb_write_char(((uint32_t)ev_data) & 0xff); break; case 's': /* Event subtype */ eb_write_char(((uint32_t)ev_subtype) & 0xff); break; case 'f': eb_write_uint32( (uint32_t *)platform_regs[SW_OSC0_CFG1]); eb_write_uint32( (uint32_t *)platform_regs[SW_SYS_CLK_CTL]); break; default: SOC_WATCH_TRACE( "Unknown string char: 0x%x on string " "0x%x\n", *cp, event_id); break; } } } /* * If this is an interrupt which roused the CPU out of a sleep state, * don't flush the buffer. (Due to a bug in OpenOCD, doing so will * clear the HW watchpoint, ensuring no further flushes are seen by * OpenOCD.) */ if ((soc_watch_buffer_full()) && (event_id != SOCW_EVENT_INTERRUPT)) { SOC_WATCH_TRACE("\n --- FLUSH: idx= %d ---\n", soc_watch_event_buffer.eb_idx); soc_watch_event_buffer_flush(); } MLOG(':'); MLOG_BYTE(soc_watch_event_buffer.eb_idx); soc_watch_irq_unlock(irq_flag); MLOG(']'); } /* * Trigger the Watchpoint to flush the data. * Application can use this API to trigger the transfer of * profiler information to the host whenever it requires. * The static function soc_watch_event_buffer_flush() is also used internally * when the soc_watch_buffer_full flag is set and is not exposed to the * application. */ void soc_watch_trigger_flush() { soc_watch_event_buffer_flush(); } #endif /* !(defined(SOC_WATCH) && (!QM_SENSOR)) */ |