Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * Copyright (c) 2016 Nordic Semiconductor ASA
 * Copyright (c) 2016 Vinayak Kariappa Chettimada
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>
#include <stddef.h>
#include <string.h>

#include <zephyr.h>
#include <soc.h>
#include <init.h>
#include <device.h>
#include <clock_control.h>
#include <atomic.h>

#include <misc/util.h>
#include <misc/stack.h>
#include <misc/byteorder.h>

#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <drivers/bluetooth/hci_driver.h>

#ifdef CONFIG_CLOCK_CONTROL_NRF5
#include <drivers/clock_control/nrf5_clock_control.h>
#endif

#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER)
#include "common/log.h"

#include "util/util.h"
#include "hal/ccm.h"
#include "hal/radio.h"
#include "ll_sw/pdu.h"
#include "ll_sw/ctrl.h"
#include "ll.h"
#include "hci_internal.h"

#include "hal/debug.h"

#define NODE_RX(_node) CONTAINER_OF(_node, struct radio_pdu_node_rx, \
				    hdr.onion.node)

static K_SEM_DEFINE(sem_prio_recv, 0, UINT_MAX);
static K_FIFO_DEFINE(recv_fifo);

struct k_thread prio_recv_thread_data;
static BT_STACK_NOINIT(prio_recv_thread_stack,
		       CONFIG_BT_CTLR_RX_PRIO_STACK_SIZE);
struct k_thread recv_thread_data;
static BT_STACK_NOINIT(recv_thread_stack, CONFIG_BT_RX_STACK_SIZE);

#if defined(CONFIG_INIT_STACKS)
static u32_t prio_ts;
static u32_t rx_ts;
#endif

#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
static struct k_poll_signal hbuf_signal =
		K_POLL_SIGNAL_INITIALIZER(hbuf_signal);
static sys_slist_t hbuf_pend;
static s32_t hbuf_count;
#endif

static void prio_recv_thread(void *p1, void *p2, void *p3)
{
	while (1) {
		struct radio_pdu_node_rx *node_rx;
		u8_t num_cmplt;
		u16_t handle;

		while ((num_cmplt = radio_rx_get(&node_rx, &handle))) {
#if defined(CONFIG_BT_CONN)
			struct net_buf *buf;

			buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
			hci_num_cmplt_encode(buf, handle, num_cmplt);
			BT_DBG("Num Complete: 0x%04x:%u", handle, num_cmplt);
			bt_recv_prio(buf);
			k_yield();
#endif
		}

		if (node_rx) {

			radio_rx_dequeue();

			BT_DBG("RX node enqueue");
			k_fifo_put(&recv_fifo, node_rx);

			continue;
		}

		BT_DBG("sem take...");
		k_sem_take(&sem_prio_recv, K_FOREVER);
		BT_DBG("sem taken");

#if defined(CONFIG_INIT_STACKS)
		if (k_uptime_get_32() - prio_ts > K_SECONDS(5)) {
			STACK_ANALYZE("prio recv thread stack",
				      prio_recv_thread_stack);
			prio_ts = k_uptime_get_32();
		}
#endif
	}
}

static inline struct net_buf *encode_node(struct radio_pdu_node_rx *node_rx,
					  s8_t class)
{
	struct net_buf *buf = NULL;

	/* Check if we need to generate an HCI event or ACL data */
	switch (class) {
	case HCI_CLASS_EVT_DISCARDABLE:
	case HCI_CLASS_EVT_REQUIRED:
	case HCI_CLASS_EVT_CONNECTION:
		if (class == HCI_CLASS_EVT_DISCARDABLE) {
			buf = bt_buf_get_rx(BT_BUF_EVT, K_NO_WAIT);
		} else {
			buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
		}
		if (buf) {
			hci_evt_encode(node_rx, buf);
		}
		break;
#if defined(CONFIG_BT_CONN)
	case HCI_CLASS_ACL_DATA:
		/* generate ACL data */
		buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER);
		hci_acl_encode(node_rx, buf);
		break;
#endif
	default:
		LL_ASSERT(0);
		break;
	}

	radio_rx_fc_set(node_rx->hdr.handle, 0);
	node_rx->hdr.onion.next = 0;
	radio_rx_mem_release(&node_rx);

	return buf;
}

static inline struct net_buf *process_node(struct radio_pdu_node_rx *node_rx)
{
	s8_t class = hci_get_class(node_rx);
	struct net_buf *buf = NULL;

#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
	if (hbuf_count != -1) {
		bool pend = !sys_slist_is_empty(&hbuf_pend);

		/* controller to host flow control enabled */
		switch (class) {
		case HCI_CLASS_EVT_DISCARDABLE:
		case HCI_CLASS_EVT_REQUIRED:
			break;
		case HCI_CLASS_EVT_CONNECTION:
			/* for conn-related events, only pend is relevant */
			hbuf_count = 1;
			/* fallthrough */
		case HCI_CLASS_ACL_DATA:
			if (pend || !hbuf_count) {
				sys_slist_append(&hbuf_pend,
						 &node_rx->hdr.onion.node);
				BT_DBG("FC: Queuing item: %d", class);
				return NULL;
			}
			break;
		default:
			LL_ASSERT(0);
			break;
		}
	}
#endif

	/* process regular node from radio */
	buf = encode_node(node_rx, class);

	return buf;
}

#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
static inline struct net_buf *process_hbuf(void)
{
	/* shadow total count in case of preemption */
	s32_t hbuf_total = hci_hbuf_total;
	struct net_buf *buf = NULL;
	int reset;

	reset = atomic_test_and_clear_bit(&hci_state_mask, HCI_STATE_BIT_RESET);
	if (reset) {
		/* flush queue, no need to free, the LL has already done it */
		sys_slist_init(&hbuf_pend);
	}

	if (hbuf_total > 0) {
		struct radio_pdu_node_rx *node_rx = NULL;
		s8_t class, next_class = -1;
		sys_snode_t *node = NULL;

		/* available host buffers */
		hbuf_count = hbuf_total - (hci_hbuf_sent - hci_hbuf_acked);

		/* host acked ACL packets, try to dequeue from hbuf */
		node = sys_slist_peek_head(&hbuf_pend);
		if (node) {
			node_rx = NODE_RX(node);
			class = hci_get_class(node_rx);
			switch (class) {
			case HCI_CLASS_EVT_CONNECTION:
				BT_DBG("FC: dequeueing event");
				node = sys_slist_get(&hbuf_pend);
				break;
			case HCI_CLASS_ACL_DATA:
				if (hbuf_count) {
					BT_DBG("FC: dequeueing ACL data");
					node = sys_slist_get(&hbuf_pend);
					hbuf_count--;
				} else {
					/* no buffers, HCI will signal */
					node = NULL;
				}
				break;
			case HCI_CLASS_EVT_DISCARDABLE:
			case HCI_CLASS_EVT_REQUIRED:
			default:
				LL_ASSERT(0);
				break;
			}

			if (node) {
				struct radio_pdu_node_rx *next;
				bool empty = true;

				node_rx = NODE_RX(node);
				node = sys_slist_peek_head(&hbuf_pend);
				if (node) {
					next = NODE_RX(node);
					next_class = hci_get_class(next);
				}
				empty = sys_slist_is_empty(&hbuf_pend);

				buf = encode_node(node_rx, class);
				if (!empty && (class == HCI_CLASS_EVT_CONNECTION ||
					       (class == HCI_CLASS_ACL_DATA &&
						hbuf_count))) {
					/* more to process, schedule an
					 * iteration
					 */
					BT_DBG("FC: signalling");
					k_poll_signal(&hbuf_signal, 0x0);
				}
			}
		}
	} else {
		hbuf_count = -1;
	}

	return buf;
}
#endif

static void recv_thread(void *p1, void *p2, void *p3)
{
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
	/* @todo: check if the events structure really needs to be static */
	static struct k_poll_event events[2] = {
		K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SIGNAL,
						K_POLL_MODE_NOTIFY_ONLY,
						&hbuf_signal, 0),
		K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
						K_POLL_MODE_NOTIFY_ONLY,
						&recv_fifo, 0),
	};
#endif

	while (1) {
		struct radio_pdu_node_rx *node_rx = NULL;
		struct net_buf *buf = NULL;

		BT_DBG("blocking");
#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
		int err;

		err = k_poll(events, 2, K_FOREVER);
		LL_ASSERT(err == 0);
		if (events[0].state == K_POLL_STATE_SIGNALED) {
			events[0].signal->signaled = 0;
		} else if (events[1].state ==
			   K_POLL_STATE_FIFO_DATA_AVAILABLE) {
			node_rx = k_fifo_get(events[1].fifo, 0);
		}

		events[0].state = K_POLL_STATE_NOT_READY;
		events[1].state = K_POLL_STATE_NOT_READY;

		/* process host buffers first if any */
		buf = process_hbuf();

#else
		node_rx = k_fifo_get(&recv_fifo, K_FOREVER);
#endif
		BT_DBG("unblocked");

		if (node_rx && !buf) {
			/* process regular node from radio */
			buf = process_node(node_rx);
		}

		if (buf) {
			if (buf->len) {
				BT_DBG("Packet in: type:%u len:%u",
					bt_buf_get_type(buf), buf->len);
				bt_recv(buf);
			} else {
				net_buf_unref(buf);
			}
		}

		k_yield();

#if defined(CONFIG_INIT_STACKS)
		if (k_uptime_get_32() - rx_ts > K_SECONDS(5)) {
			STACK_ANALYZE("recv thread stack", recv_thread_stack);
			rx_ts = k_uptime_get_32();
		}
#endif
	}
}

static int cmd_handle(struct net_buf *buf)
{
	struct net_buf *evt;

	evt = hci_cmd_handle(buf);
	if (evt) {
		BT_DBG("Replying with event of %u bytes", evt->len);
		bt_recv_prio(evt);
	}

	return 0;
}

static int hci_driver_send(struct net_buf *buf)
{
	u8_t type;
	int err;

	BT_DBG("enter");

	if (!buf->len) {
		BT_ERR("Empty HCI packet");
		return -EINVAL;
	}

	type = bt_buf_get_type(buf);
	switch (type) {
#if defined(CONFIG_BT_CONN)
	case BT_BUF_ACL_OUT:
		err = hci_acl_handle(buf);
		break;
#endif
	case BT_BUF_CMD:
		err = cmd_handle(buf);
		break;
	default:
		BT_ERR("Unknown HCI type %u", type);
		return -EINVAL;
	}

	if (!err) {
		net_buf_unref(buf);
	}

	BT_DBG("exit: %d", err);

	return err;
}

static int hci_driver_open(void)
{
	u32_t err;

	DEBUG_INIT();

	err = ll_init(&sem_prio_recv);
	if (err) {
		BT_ERR("LL initialization failed: %u", err);
		return err;
	}

#if defined(CONFIG_BT_HCI_ACL_FLOW_CONTROL)
	hci_init(&hbuf_signal);
#else
	hci_init(NULL);
#endif

	k_thread_create(&prio_recv_thread_data, prio_recv_thread_stack,
			K_THREAD_STACK_SIZEOF(prio_recv_thread_stack),
			prio_recv_thread, NULL, NULL, NULL,
			K_PRIO_COOP(CONFIG_BT_CTLR_RX_PRIO), 0, K_NO_WAIT);

	k_thread_create(&recv_thread_data, recv_thread_stack,
			K_THREAD_STACK_SIZEOF(recv_thread_stack),
			recv_thread, NULL, NULL, NULL,
			K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT);

	BT_DBG("Success.");

	return 0;
}

static const struct bt_hci_driver drv = {
	.name	= "Controller",
	.bus	= BT_HCI_DRIVER_BUS_VIRTUAL,
	.open	= hci_driver_open,
	.send	= hci_driver_send,
};

static int _hci_driver_init(struct device *unused)
{
	ARG_UNUSED(unused);

	bt_hci_driver_register(&drv);

	return 0;
}

SYS_INIT(_hci_driver_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);