Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/** @file
 * @brief DNS resolve API
 *
 * An API for applications to do DNS query.
 */

/*
 * Copyright (c) 2017 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#if defined(CONFIG_NET_DEBUG_DNS_RESOLVE)
#define SYS_LOG_DOMAIN "dns/resolve"
#define NET_LOG_ENABLED 1
#endif

#include <zephyr/types.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

#include <net/net_ip.h>
#include <net/net_pkt.h>
#include <net/dns_resolve.h>
#include "dns_pack.h"

static int dns_write(struct dns_resolve_context *ctx,
		     int server_idx,
		     int query_idx,
		     struct net_buf *dns_data,
		     struct net_buf *dns_qname);

#define DNS_BUF_TIMEOUT 500 /* ms */

/* RFC 1035, 3.1. Name space definitions
 * To simplify implementations, the total length of a domain name (i.e.,
 * label octets and label length octets) is restricted to 255 octets or
 * less.
 */
#define DNS_MAX_NAME_LEN	255

#define DNS_QUERY_MAX_SIZE	(DNS_MSG_HEADER_SIZE + DNS_MAX_NAME_LEN + \
				 DNS_QTYPE_LEN + DNS_QCLASS_LEN)

/* This value is recommended by RFC 1035 */
#define DNS_RESOLVER_MAX_BUF_SIZE	512
#define DNS_RESOLVER_MIN_BUF	1
#define DNS_RESOLVER_BUF_CTR	(DNS_RESOLVER_MIN_BUF + \
				 CONFIG_DNS_RESOLVER_ADDITIONAL_BUF_CTR)

/* Compressed RR uses a pointer to another RR. So, min size is 12 bytes without
 * considering RR payload.
 * See https://tools.ietf.org/html/rfc1035#section-4.1.4
 */
#define DNS_ANSWER_PTR_LEN	12

/* See dns_unpack_answer, and also see:
 * https://tools.ietf.org/html/rfc1035#section-4.1.2
 */
#define DNS_QUERY_POS		0x0c

#define DNS_IPV4_LEN		sizeof(struct in_addr)
#define DNS_IPV6_LEN		sizeof(struct in6_addr)

NET_BUF_POOL_DEFINE(dns_msg_pool, DNS_RESOLVER_BUF_CTR,
		    DNS_RESOLVER_MAX_BUF_SIZE, 0, NULL);

NET_BUF_POOL_DEFINE(dns_qname_pool, DNS_RESOLVER_BUF_CTR, DNS_MAX_NAME_LEN,
		    0, NULL);

static struct dns_resolve_context dns_default_ctx;

int dns_resolve_init(struct dns_resolve_context *ctx, const char *servers[])
{
#if defined(CONFIG_NET_IPV6)
	struct sockaddr_in6 local_addr6 = {
		.sin6_family = AF_INET6,
		.sin6_port = 0,
	};
#endif
#if defined(CONFIG_NET_IPV4)
	struct sockaddr_in local_addr4 = {
		.sin_family = AF_INET,
		.sin_port = 0,
	};
#endif
	struct sockaddr *local_addr = NULL;
	socklen_t addr_len = 0;
	int i = 0, idx = 0;
	int ret, count;

	if (!ctx) {
		return -ENOENT;
	}

	if (!servers || !*servers) {
		return -ENOENT;
	}

	if (ctx->is_used) {
		return -ENOTEMPTY;
	}

	memset(ctx, 0, sizeof(*ctx));

	for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS && servers[i]; i++) {
		struct sockaddr *addr = &ctx->servers[idx].dns_server;

		memset(addr, 0, sizeof(*addr));

		ret = net_ipaddr_parse(servers[i], strlen(servers[i]), addr);
		if (!ret) {
			continue;
		}

		if (addr->sa_family == AF_INET) {
			if (net_sin(addr)->sin_port == 0) {
				net_sin(addr)->sin_port = htons(53);
			}
		} else {
			if (net_sin6(addr)->sin6_port == 0) {
				net_sin6(addr)->sin6_port = htons(53);
			}
		}

		idx++;
	}

	for (i = 0, count = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS &&
		     ctx->servers[i].dns_server.sa_family; i++) {

		if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
#if defined(CONFIG_NET_IPV6)
			local_addr = (struct sockaddr *)&local_addr6;
			addr_len = sizeof(struct sockaddr_in6);
#else
			continue;
#endif
		}

		if (ctx->servers[i].dns_server.sa_family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
			local_addr = (struct sockaddr *)&local_addr4;
			addr_len = sizeof(struct sockaddr_in);
#else
			continue;
#endif
		}

		if (!local_addr) {
			NET_DBG("Local address not set");
			return -EAFNOSUPPORT;
		}

		ret = net_context_get(ctx->servers[i].dns_server.sa_family,
				      SOCK_DGRAM, IPPROTO_UDP,
				      &ctx->servers[i].net_ctx);
		if (ret < 0) {
			NET_DBG("Cannot get net_context (%d)", ret);
			return ret;
		}

		ret = net_context_bind(ctx->servers[i].net_ctx,
				       local_addr, addr_len);
		if (ret < 0) {
			NET_DBG("Cannot bind DNS context (%d)", ret);
			return ret;
		}

		count++;
	}

	if (count == 0) {
		/* No servers defined */
		NET_DBG("No DNS servers defined.");
		return -EINVAL;
	}

	ctx->is_used = true;
	ctx->buf_timeout = DNS_BUF_TIMEOUT;

	return 0;
}

static inline int get_cb_slot(struct dns_resolve_context *ctx)
{
	int i;

	for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
		if (!ctx->queries[i].cb) {
			return i;
		}
	}

	return -ENOENT;
}

static inline int get_slot_by_id(struct dns_resolve_context *ctx,
				 u16_t dns_id)
{
	int i;

	for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
		if (ctx->queries[i].cb && ctx->queries[i].id == dns_id) {
			return i;
		}
	}

	return -ENOENT;
}

static int dns_read(struct dns_resolve_context *ctx,
		    struct net_pkt *pkt,
		    struct net_buf *dns_data,
		    u16_t *dns_id,
		    struct net_buf *dns_cname,
		    struct dns_addrinfo *info)
{
	/* Helper struct to track the dns msg received from the server */
	struct dns_msg_t dns_msg;
	u32_t ttl; /* RR ttl, so far it is not passed to caller */
	u8_t *src, *addr;
	int address_size;
	/* index that points to the current answer being analyzed */
	int answer_ptr;
	int data_len;
	int offset;
	int items;
	int ret;
	int server_idx, query_idx;

	data_len = min(net_pkt_appdatalen(pkt), DNS_RESOLVER_MAX_BUF_SIZE);
	offset = net_pkt_get_len(pkt) - data_len;

	/* TODO: Instead of this temporary copy, just use the net_pkt directly.
	 */
	ret = net_frag_linear_copy(dns_data, pkt->frags, offset, data_len);
	if (ret < 0) {
		ret = DNS_EAI_MEMORY;
		goto quit;
	}

	dns_msg.msg = dns_data->data;
	dns_msg.msg_size = data_len;

	/* The dns_unpack_response_header() has design flaw as it expects
	 * dns id to be given instead of returning the id to the caller.
	 * In our case we would like to get it returned instead so that we
	 * can match the DNS query that we sent. When dns_read() is called,
	 * we do not know what the DNS id is yet.
	 */
	*dns_id = dns_unpack_header_id(dns_msg.msg);

	query_idx = get_slot_by_id(ctx, *dns_id);
	if (query_idx < 0) {
		ret = DNS_EAI_SYSTEM;
		goto quit;
	}

	if (dns_header_rcode(dns_msg.msg) == DNS_HEADER_REFUSED) {
		ret = DNS_EAI_FAIL;
		goto quit;
	}

	ret = dns_unpack_response_header(&dns_msg, *dns_id);
	if (ret < 0) {
		ret = DNS_EAI_FAIL;
		goto quit;
	}

	if (dns_header_qdcount(dns_msg.msg) != 1) {
		ret = DNS_EAI_FAIL;
		goto quit;
	}

	ret = dns_unpack_response_query(&dns_msg);
	if (ret < 0) {
		ret = DNS_EAI_FAIL;
		goto quit;
	}

	if (ctx->queries[query_idx].query_type == DNS_QUERY_TYPE_A) {
		address_size = DNS_IPV4_LEN;
		addr = (u8_t *)&net_sin(&info->ai_addr)->sin_addr;
		info->ai_family = AF_INET;
		info->ai_addr.sa_family = AF_INET;
		info->ai_addrlen = sizeof(struct sockaddr_in);
	} else if (ctx->queries[query_idx].query_type == DNS_QUERY_TYPE_AAAA) {
		address_size = DNS_IPV6_LEN;
		addr = (u8_t *)&net_sin6(&info->ai_addr)->sin6_addr;
		info->ai_family = AF_INET6;
		info->ai_addr.sa_family = AF_INET6;
		info->ai_addrlen = sizeof(struct sockaddr_in6);
	} else {
		ret = DNS_EAI_FAMILY;
		goto quit;
	}

	/* while loop to traverse the response */
	answer_ptr = DNS_QUERY_POS;
	items = 0;
	server_idx = 0;
	while (server_idx < dns_header_ancount(dns_msg.msg)) {
		ret = dns_unpack_answer(&dns_msg, answer_ptr, &ttl);
		if (ret < 0) {
			ret = DNS_EAI_FAIL;
			goto quit;
		}

		switch (dns_msg.response_type) {
		case DNS_RESPONSE_IP:
			if (dns_msg.response_length < address_size) {
				/* it seems this is a malformed message */
				ret = DNS_EAI_FAIL;
				goto quit;
			}

			src = dns_msg.msg + dns_msg.response_position;

			memcpy(addr, src, address_size);

			ctx->queries[query_idx].cb(DNS_EAI_INPROGRESS, info,
					ctx->queries[query_idx].user_data);
			items++;
			break;

		case DNS_RESPONSE_CNAME_NO_IP:
			/* Instead of using the QNAME at DNS_QUERY_POS,
			 * we will use this CNAME
			 */
			answer_ptr = dns_msg.response_position;
			break;

		default:
			ret = DNS_EAI_FAIL;
			goto quit;
		}

		/* Update the answer offset to point to the next RR (answer) */
		dns_msg.answer_offset += DNS_ANSWER_PTR_LEN;
		dns_msg.answer_offset += dns_msg.response_length;

		server_idx++;
	}

	/* No IP addresses were found, so we take the last CNAME to generate
	 * another query. Number of additional queries is controlled via Kconfig
	 */
	if (items == 0) {
		if (dns_msg.response_type == DNS_RESPONSE_CNAME_NO_IP) {
			u16_t pos = dns_msg.response_position;

			ret = dns_copy_qname(dns_cname->data, &dns_cname->len,
					     dns_cname->size, &dns_msg, pos);
			if (ret < 0) {
				ret = DNS_EAI_SYSTEM;
				goto quit;
			}

			ret = DNS_EAI_AGAIN;
			goto finished;
		}
	}

	if (items == 0) {
		ret = DNS_EAI_NODATA;
	} else {
		ret = DNS_EAI_ALLDONE;
	}

	/* Marks the end of the results */
	ctx->queries[query_idx].cb(ret, NULL,
				   ctx->queries[query_idx].user_data);

	if (k_delayed_work_remaining_get(&ctx->queries[query_idx].timer) > 0) {
		k_delayed_work_cancel(&ctx->queries[query_idx].timer);
	}

	ctx->queries[query_idx].cb = NULL;

	net_pkt_unref(pkt);

	return 0;

finished:
	dns_resolve_cancel(ctx, *dns_id);

quit:
	net_pkt_unref(pkt);

	return ret;
}

static void cb_recv(struct net_context *net_ctx,
		    struct net_pkt *pkt,
		    int status,
		    void *user_data)
{
	struct dns_resolve_context *ctx = user_data;
	struct dns_addrinfo info = { 0 };
	struct net_buf *dns_cname = NULL;
	struct net_buf *dns_data = NULL;
	u16_t dns_id = 0;
	int ret, i;

	ARG_UNUSED(net_ctx);

	if (status) {
		ret = DNS_EAI_SYSTEM;
		goto quit;
	}

	dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
	if (!dns_data) {
		ret = DNS_EAI_MEMORY;
		goto quit;
	}

	dns_cname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
	if (!dns_cname) {
		ret = DNS_EAI_MEMORY;
		goto quit;
	}

	ret = dns_read(ctx, pkt, dns_data, &dns_id, dns_cname, &info);
	if (!ret) {
		/* We called the callback already in dns_read() if there
		 * was no errors.
		 */
		goto free_buf;
	}

	/* Query again if we got CNAME */
	if (ret == DNS_EAI_AGAIN) {
		int failure = 0;
		int j;

		i = get_slot_by_id(ctx, dns_id);
		if (i < 0) {
			goto free_buf;
		}

		for (j = 0; j < CONFIG_DNS_RESOLVER_MAX_SERVERS; j++) {
			if (!ctx->servers[j].net_ctx) {
				continue;
			}

			ret = dns_write(ctx, j, i, dns_data, dns_cname);
			if (ret < 0) {
				failure++;
			}
		}

		if (failure) {
			NET_DBG("DNS cname query failed %d times", failure);

			if (failure == j) {
				ret = DNS_EAI_SYSTEM;
				goto quit;
			}
		}

		goto free_buf;
	}

quit:
	i = get_slot_by_id(ctx, dns_id);
	if (i < 0) {
		goto free_buf;
	}

	if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
		k_delayed_work_cancel(&ctx->queries[i].timer);
	}

	ctx->queries[i].cb(ret, &info, ctx->queries[i].user_data);
	ctx->queries[i].cb = NULL;

free_buf:
	if (dns_data) {
		net_buf_unref(dns_data);
	}

	if (dns_cname) {
		net_buf_unref(dns_cname);
	}
}

static int dns_write(struct dns_resolve_context *ctx,
		     int server_idx,
		     int query_idx,
		     struct net_buf *dns_data,
		     struct net_buf *dns_qname)
{
	enum dns_query_type query_type;
	struct net_context *net_ctx;
	struct sockaddr *server;
	struct net_pkt *pkt;
	int server_addr_len;
	u16_t dns_id;
	int ret;

	net_ctx = ctx->servers[server_idx].net_ctx;
	server = &ctx->servers[server_idx].dns_server;
	dns_id = ctx->queries[query_idx].id;
	query_type = ctx->queries[query_idx].query_type;

	ret = dns_msg_pack_query(dns_data->data, &dns_data->len, dns_data->size,
				 dns_qname->data, dns_qname->len, dns_id,
				 (enum dns_rr_type)query_type);
	if (ret < 0) {
		ret = -EINVAL;
		goto quit;
	}

	pkt = net_pkt_get_tx(net_ctx, ctx->buf_timeout);
	if (!pkt) {
		ret = -ENOMEM;
		goto quit;
	}

	ret = net_pkt_append_all(pkt, dns_data->len, dns_data->data,
			      ctx->buf_timeout);
	if (ret < 0) {
		ret = -ENOMEM;
		goto quit;
	}

	ret = net_context_recv(net_ctx, cb_recv, K_NO_WAIT, ctx);
	if (ret < 0) {
		NET_DBG("Couldn't receive from socket (%d)", ret);
		net_pkt_unref(pkt);
		goto quit;
	}

	if (server->sa_family == AF_INET) {
		server_addr_len = sizeof(struct sockaddr_in);
	} else {
		server_addr_len = sizeof(struct sockaddr_in6);
	}

	ret = net_context_sendto(pkt, server, server_addr_len, NULL,
				 K_NO_WAIT, NULL, NULL);
	if (ret < 0) {
		NET_DBG("Cannot send query (%d)", ret);
		net_pkt_unref(pkt);
		goto quit;
	}

	ret = k_delayed_work_submit(&ctx->queries[query_idx].timer,
				    ctx->queries[query_idx].timeout);
	if (ret < 0) {
		NET_DBG("[%u] cannot submit work to server idx %d for id %u "
			"timeout %u ret %d",
			query_idx, server_idx, dns_id,
			ctx->queries[query_idx].timeout, ret);
		goto quit;
	} else {
		NET_DBG("[%u] submitting work to server idx %d for id %u "
			"timeout %u",
			query_idx, server_idx, dns_id,
			ctx->queries[query_idx].timeout);
	}

	ret = 0;

quit:
	return ret;
}

int dns_resolve_cancel(struct dns_resolve_context *ctx, u16_t dns_id)
{
	int i;

	i = get_slot_by_id(ctx, dns_id);
	if (i < 0) {
		return -ENOENT;
	}

	NET_DBG("Cancelling DNS req %u", dns_id);

	if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
		k_delayed_work_cancel(&ctx->queries[i].timer);
	}

	ctx->queries[i].cb(DNS_EAI_CANCELED, NULL, ctx->queries[i].user_data);
	ctx->queries[i].cb = NULL;

	return 0;
}

static void query_timeout(struct k_work *work)
{
	struct dns_pending_query *pending_query =
		CONTAINER_OF(work, struct dns_pending_query, timer);

	NET_DBG("Query timeout DNS req %u", pending_query->id);

	dns_resolve_cancel(pending_query->ctx, pending_query->id);
}

int dns_resolve_name(struct dns_resolve_context *ctx,
		     const char *query,
		     enum dns_query_type type,
		     u16_t *dns_id,
		     dns_resolve_cb_t cb,
		     void *user_data,
		     s32_t timeout)
{
	struct net_buf *dns_data;
	struct net_buf *dns_qname = NULL;
	struct sockaddr addr;
	int ret, i, j = 0;
	int failure = 0;

	if (!ctx || !ctx->is_used || !query || !cb) {
		return -EINVAL;
	}

	/* Timeout cannot be 0 as we cannot resolve name that fast.
	 */
	if (timeout == K_NO_WAIT) {
		return -EINVAL;
	}

	ret = net_ipaddr_parse(query, strlen(query), &addr);
	if (ret) {
		/* The query name was already in numeric form, no
		 * need to continue further.
		 */
		struct dns_addrinfo info = { 0 };

		if (type == DNS_QUERY_TYPE_A) {
			memcpy(net_sin(&info.ai_addr), net_sin(&addr),
			       sizeof(struct sockaddr_in));
			info.ai_family = AF_INET;
			info.ai_addr.sa_family = AF_INET;
			info.ai_addrlen = sizeof(struct sockaddr_in);
		} else if (type == DNS_QUERY_TYPE_AAAA) {
			memcpy(net_sin6(&info.ai_addr), net_sin6(&addr),
			       sizeof(struct sockaddr_in6));
			info.ai_family = AF_INET6;
			info.ai_addr.sa_family = AF_INET6;
			info.ai_addrlen = sizeof(struct sockaddr_in6);
		} else {
			goto try_resolve;
		}

		cb(DNS_EAI_INPROGRESS, &info, user_data);
		cb(DNS_EAI_ALLDONE, NULL, user_data);

		return 0;
	}

try_resolve:
	i = get_cb_slot(ctx);
	if (i < 0) {
		return -EAGAIN;
	}

	ctx->queries[i].cb = cb;
	ctx->queries[i].timeout = timeout;
	ctx->queries[i].query = query;
	ctx->queries[i].query_type = type;
	ctx->queries[i].user_data = user_data;
	ctx->queries[i].ctx = ctx;

	k_delayed_work_init(&ctx->queries[i].timer, query_timeout);

	dns_data = net_buf_alloc(&dns_msg_pool, ctx->buf_timeout);
	if (!dns_data) {
		ret = -ENOMEM;
		goto quit;
	}

	dns_qname = net_buf_alloc(&dns_qname_pool, ctx->buf_timeout);
	if (!dns_qname) {
		ret = -ENOMEM;
		goto quit;
	}

	ret = dns_msg_pack_qname(&dns_qname->len, dns_qname->data,
				DNS_MAX_NAME_LEN, ctx->queries[i].query);
	if (ret < 0) {
		goto quit;
	}

	ctx->queries[i].id = sys_rand32_get();

	/* Do this immediately after calculating the Id so that the unit
	 * test will work properly.
	 */
	if (dns_id) {
		*dns_id = ctx->queries[i].id;

		NET_DBG("DNS id will be %u", *dns_id);
	}


	for (j = 0; j < CONFIG_DNS_RESOLVER_MAX_SERVERS; j++) {
		if (!ctx->servers[j].net_ctx) {
			continue;
		}

		ret = dns_write(ctx, j, i, dns_data, dns_qname);
		if (ret < 0) {
			failure++;
			continue;
		}

		/* Do one concurrent query only for each name resolve.
		 * TODO: Change the i (query index) to do multiple concurrent
		 *       to each server.
		 */
		break;
	}

	if (failure) {
		NET_DBG("DNS query failed %d times", failure);

		if (failure == j) {
			ret = -ENOENT;
			goto quit;
		}
	}

	ret = 0;

quit:
	if (ret < 0) {
		if (k_delayed_work_remaining_get(&ctx->queries[i].timer) > 0) {
			k_delayed_work_cancel(&ctx->queries[i].timer);
		}

		ctx->queries[i].cb = NULL;

		if (dns_id) {
			*dns_id = 0;
		}
	}

	if (dns_data) {
		net_buf_unref(dns_data);
	}

	if (dns_qname) {
		net_buf_unref(dns_qname);
	}

	return ret;
}

int dns_resolve_close(struct dns_resolve_context *ctx)
{
	int i;

	if (!ctx->is_used) {
		return -ENOENT;
	}

	for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS; i++) {
		if (ctx->servers[i].net_ctx) {
			net_context_put(ctx->servers[i].net_ctx);
		}
	}

	return 0;
}

struct dns_resolve_context *dns_resolve_get_default(void)
{
	return &dns_default_ctx;
}

void dns_init_resolver(void)
{
#if defined(CONFIG_DNS_SERVER_IP_ADDRESSES)
	static const char *dns_servers[CONFIG_DNS_RESOLVER_MAX_SERVERS + 1];
	int count = CONFIG_DNS_RESOLVER_MAX_SERVERS;
	int ret;

	if (count > 5) {
		count = 5;
	}

	switch (count) {
#if CONFIG_DNS_RESOLVER_MAX_SERVERS > 4
	case 5:
		dns_servers[4] = CONFIG_DNS_SERVER5;
		/* fallthrough */
#endif
#if CONFIG_DNS_RESOLVER_MAX_SERVERS > 3
	case 4:
		dns_servers[3] = CONFIG_DNS_SERVER4;
		/* fallthrough */
#endif
#if CONFIG_DNS_RESOLVER_MAX_SERVERS > 2
	case 3:
		dns_servers[2] = CONFIG_DNS_SERVER3;
		/* fallthrough */
#endif
#if CONFIG_DNS_RESOLVER_MAX_SERVERS > 1
	case 2:
		dns_servers[1] = CONFIG_DNS_SERVER2;
		/* fallthrough */
#endif
#if CONFIG_DNS_RESOLVER_MAX_SERVERS > 0
	case 1:
		dns_servers[0] = CONFIG_DNS_SERVER1;
		/* fallthrough */
#endif
	case 0:
		break;
	}

	dns_servers[CONFIG_DNS_RESOLVER_MAX_SERVERS] = NULL;

	ret = dns_resolve_init(dns_resolve_get_default(), dns_servers);
	if (ret < 0) {
		NET_WARN("Cannot initialize DNS resolver (%d)", ret);
	}
#endif
}