Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @addtogroup t_workq * @{ * @defgroup t_workq_api test_workq_api * @brief TestPurpose: verify work queue API functionalities * - API coverage * -# k_work_init * -# k_delayed_work_init * -# k_work_q_start * -# k_work_submit_to_queue * -# k_work_submit * -# k_delayed_work_submit_to_queue * -# k_delayed_work_submit * -# k_delayed_work_cancel * -# k_delayed_work_remaining_get * -# k_work_pending * -# * @} */ #include <ztest.h> #include <irq_offload.h> #define TIMEOUT 100 #define STACK_SIZE 512 #define NUM_OF_WORK 2 static K_THREAD_STACK_DEFINE(tstack, STACK_SIZE); static struct k_work_q workq; static struct k_work work[NUM_OF_WORK]; static struct k_delayed_work delayed_work[NUM_OF_WORK], delayed_work_sleepy; static struct k_sem sync_sema; static void work_sleepy(struct k_work *w) { k_sleep(TIMEOUT); k_sem_give(&sync_sema); } static void work_handler(struct k_work *w) { k_sem_give(&sync_sema); } static void twork_submit(void *data) { struct k_work_q *work_q = (struct k_work_q *)data; for (int i = 0; i < NUM_OF_WORK; i++) { /**TESTPOINT: init via k_work_init*/ k_work_init(&work[i], work_handler); /**TESTPOINT: check pending after work init*/ zassert_false(k_work_pending(&work[i]), NULL); if (work_q) { /**TESTPOINT: work submit to queue*/ k_work_submit_to_queue(work_q, &work[i]); } else { /**TESTPOINT: work submit to system queue*/ k_work_submit(&work[i]); } } } static void tdelayed_work_submit(void *data) { struct k_work_q *work_q = (struct k_work_q *)data; for (int i = 0; i < NUM_OF_WORK; i++) { /**TESTPOINT: init via k_delayed_work_init*/ k_delayed_work_init(&delayed_work[i], work_handler); /**TESTPOINT: check pending after delayed work init*/ zassert_false(k_work_pending((struct k_work *)&delayed_work[i]), NULL); /**TESTPOINT: check remaining timeout before submit*/ zassert_equal(k_delayed_work_remaining_get(&delayed_work[i]), 0, NULL); if (work_q) { /**TESTPOINT: delayed work submit to queue*/ zassert_true(k_delayed_work_submit_to_queue(work_q, &delayed_work[i], TIMEOUT) == 0, NULL); } else { /**TESTPOINT: delayed work submit to system queue*/ zassert_true(k_delayed_work_submit(&delayed_work[i], TIMEOUT) == 0, NULL); } /**TESTPOINT: check remaining timeout after submit*/ zassert_true(k_delayed_work_remaining_get(&delayed_work[i]) >= TIMEOUT, NULL); /**TESTPOINT: check pending after delayed work submit*/ zassert_true(k_work_pending((struct k_work *)&delayed_work[i]) == 0, NULL); } } static void tdelayed_work_cancel(void *data) { struct k_work_q *work_q = (struct k_work_q *)data; int ret; k_delayed_work_init(&delayed_work_sleepy, work_sleepy); k_delayed_work_init(&delayed_work[0], work_handler); k_delayed_work_init(&delayed_work[1], work_handler); if (work_q) { ret = k_delayed_work_submit_to_queue(work_q, &delayed_work_sleepy, TIMEOUT); ret |= k_delayed_work_submit_to_queue(work_q, &delayed_work[0], TIMEOUT); ret |= k_delayed_work_submit_to_queue(work_q, &delayed_work[1], TIMEOUT); } else { ret = k_delayed_work_submit(&delayed_work_sleepy, TIMEOUT); ret |= k_delayed_work_submit(&delayed_work[0], TIMEOUT); ret |= k_delayed_work_submit(&delayed_work[1], TIMEOUT); } /* * t0: delayed submit three work items, all with delay=TIMEOUT * >t0: cancel delayed_work[0], expected cancellation success * >t0+TIMEOUT: handling delayed_work_sleepy, which do k_sleep TIMEOUT * pending delayed_work[1], check pending flag, expected 1 * cancel delayed_work[1], expected 0 * >t0+2*TIMEOUT: delayed_work_sleepy completed * delayed_work[1] completed * cancel delayed_work_sleepy, expected 0 */ zassert_true(ret == 0, NULL); /**TESTPOINT: delayed work cancel when countdown*/ ret = k_delayed_work_cancel(&delayed_work[0]); zassert_true(ret == 0, NULL); /**TESTPOINT: check pending after delayed work cancel*/ zassert_false(k_work_pending((struct k_work *)&delayed_work[0]), NULL); if (!k_is_in_isr()) { /*wait for handling work_sleepy*/ k_sleep(TIMEOUT); /**TESTPOINT: check pending when work pending*/ zassert_true(k_work_pending((struct k_work *)&delayed_work[1]), NULL); /**TESTPOINT: delayed work cancel when pending*/ ret = k_delayed_work_cancel(&delayed_work[1]); zassert_equal(ret, 0, NULL); k_sem_give(&sync_sema); /*wait for completed work_sleepy and delayed_work[1]*/ k_sleep(TIMEOUT); /**TESTPOINT: check pending when work completed*/ zassert_false(k_work_pending( (struct k_work *)&delayed_work_sleepy), NULL); /**TESTPOINT: delayed work cancel when completed*/ ret = k_delayed_work_cancel(&delayed_work_sleepy); zassert_equal(ret, 0, NULL); } /*work items not cancelled: delayed_work[1], delayed_work_sleepy*/ } /*test cases*/ void test_workq_start_before_submit(void) { k_sem_init(&sync_sema, 0, NUM_OF_WORK); k_work_q_start(&workq, tstack, STACK_SIZE, CONFIG_MAIN_THREAD_PRIORITY); } void test_work_submit_to_queue_thread(void) { k_sem_reset(&sync_sema); twork_submit(&workq); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_work_submit_to_queue_isr(void) { k_sem_reset(&sync_sema); irq_offload(twork_submit, (void *)&workq); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_work_submit_thread(void) { k_sem_reset(&sync_sema); twork_submit(NULL); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_work_submit_isr(void) { k_sem_reset(&sync_sema); irq_offload(twork_submit, NULL); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_submit_to_queue_thread(void) { k_sem_reset(&sync_sema); tdelayed_work_submit(&workq); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_submit_to_queue_isr(void) { k_sem_reset(&sync_sema); irq_offload(tdelayed_work_submit, (void *)&workq); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_submit_thread(void) { k_sem_reset(&sync_sema); tdelayed_work_submit(NULL); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_submit_isr(void) { k_sem_reset(&sync_sema); irq_offload(tdelayed_work_submit, NULL); for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_cancel_from_queue_thread(void) { k_sem_reset(&sync_sema); tdelayed_work_cancel(&workq); /*wait for work items that could not be cancelled*/ for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_cancel_from_queue_isr(void) { k_sem_reset(&sync_sema); irq_offload(tdelayed_work_cancel, &workq); /*wait for work items that could not be cancelled*/ for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_cancel_thread(void) { k_sem_reset(&sync_sema); tdelayed_work_cancel(NULL); /*wait for work items that could not be cancelled*/ for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } void test_delayed_work_cancel_isr(void) { k_sem_reset(&sync_sema); irq_offload(tdelayed_work_cancel, NULL); /*wait for work items that could not be cancelled*/ for (int i = 0; i < NUM_OF_WORK; i++) { k_sem_take(&sync_sema, K_FOREVER); } } |