Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*
 * Copyright (c) 1984-2008, 2011-2015 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief LoApicIntr.c - Intel Pentium[234] Local APIC/xAPIC driver
 *
 * This module is a driver for the local APIC/xAPIC (Advanced Programmable
 * Interrupt Controller) in P6 (PentiumPro, II, III) family processors
 * and P7 (Pentium4) family processors.  The local APIC/xAPIC is included
 * in selected P6 (PentiumPro, II, III) and P7 (Pentium4) family processors.
 * Beginning with the P6 family processors, the presence or absence of an
 * on-chip local APIC can be detected using the CPUID instruction.  When the
 * CPUID instruction is executed, bit 9 of the feature flags returned in the
 * EDX register indicates the presence (set) or absence (clear) of an on-chip
 * local APIC.
 *
 * The local APIC performs two main functions for the processor:
 *  - It processes local external interrupts that the processor receives at its
 *    interrupt pins and local internal interrupts that software generates.
 *  - It communicates with an external IO APIC
 *    chip.  The external IO APIC receives external interrupt events from
 *    peripheral and direct them to the local APIC.  The IO APIC is
 *    part of Intel's system chip set.
 * The local APIC controls the dispatching of interrupts (to its associated
 * processor) that it receives either locally or from the IO APIC.  It provides
 * facilities for queuing, nesting and masking of interrupts.  It handles the
 * interrupt delivery protocol with its local processor and accesses to APIC
 * registers.
 * A timer on the local APIC allows local generation of interrupts, and
 * local interrupt pins permit local reception of processor-specific interrupts.
 * The local APIC can be disabled and used in conjunction with a standard 8259A
 * style interrupt controller.  Disabling the local APIC can be done in hardware
 * for the Pentium processors or in software for the P6 and P7 (Pentium4) family
 * processors.
 *
 * The local APIC in the Pentium4 processors (called the xAPIC) is an extension
 * of the local APIC found in the P6 family processors.  The primary difference
 * between the APIC architecture and xAPIC architecture is that with Pentium4
 * processors, the local xAPICs and IO xAPIC communicate with one another
 * through the processors system bus; whereas, with the P6 family processors,
 * communication between the local APICs and the IO APIC is handled through a
 * dedicated 3-wire APIC bus.  Also, some of the architectural features of the
 * local APIC have been extended and/or modified in the local xAPIC.
 *
 * This driver contains three routines for use.  They are:
 * _loapic_init() initializes the Local APIC for the interrupt mode chosen.
 * _loapic_enable()/disable() enables / disables the Local APIC.
 *
 * Local APIC is used in the Virtual Wire Mode: delivery mode ExtINT.
 *
 * Virtual Wire Mode is one of three interrupt modes defined by the MP
 * specification.  In this mode, interrupts are generated by the 8259A
 * equivalent PICs (if present) and delivered to the Boot Strap Processor by
 * the local APIC that is programmed to act as a "virtual Wire"; that
 * is, the local APIC is logically indistinguishable from a hardware
 * connection.  This is a uniprocessor compatibility mode.
 *
 * The local and IO APICs support interrupts in the range of 32 to 255.
 * Interrupt priority is implied by its vector, according to the following
 * relationship:  "priority = vector / 16".
 * Here the quotient is rounded down to the nearest integer value to determine
 * the priority, with 1 being the lowest and 15 is the highest.  Because vectors
 * 0 through 31 are reserved for exclusive use by the processor, the priority of
 * user defined interrupts range from 2 to 15.  A value of 15 in the Interrupt
 * Class field of the Task Priority Register (TPR) will mask off all interrupts,
 * which require interrupt service.
 * The P6 family processor's local APIC includes an in-service entry and a
 * holding entry for each priority level.  To avoid losing interrupts, software
 * should allocate no more than 2 interrupt vectors per priority.  The Pentium4
 * processor expands this support of all acceptance of two interrupts per vector
 * rather than per priority level.
 *
 * INCLUDE FILES: loapic.h
 */

#include <kernel.h>
#include <arch/cpu.h>
#include <zephyr/types.h>
#include <string.h>
#include <misc/__assert.h>

#include "board.h"
#include <toolchain.h>
#include <linker/sections.h>
#include <drivers/loapic.h> /* public API declarations */
#include <init.h>
#include <drivers/sysapic.h>

/* IA32_APIC_BASE MSR Bits */

#define LOAPIC_BASE_MASK 0xfffff000     /* LO APIC Base Addr mask */
#define LOAPIC_GLOBAL_ENABLE 0x00000800 /* LO APIC Global Enable */

/* Local APIC ID Register Bits */

#define LOAPIC_ID_MASK 0x0f000000 /* LO APIC ID mask */

/* Local APIC Version Register Bits */

#define LOAPIC_VERSION_MASK 0x000000ff /* LO APIC Version mask */
#define LOAPIC_MAXLVT_MASK 0x00ff0000  /* LO APIC Max LVT mask */
#define LOAPIC_PENTIUM4 0x00000014     /* LO APIC in Pentium4 */
#define LOAPIC_LVT_PENTIUM4 5	  /* LO APIC LVT - Pentium4 */
#define LOAPIC_LVT_P6 4		       /* LO APIC LVT - P6 */
#define LOAPIC_LVT_P5 3		       /* LO APIC LVT - P5 */

/* Local APIC Vector Table Bits */

#define LOAPIC_VECTOR 0x000000ff /* vectorNo */
#define LOAPIC_MODE 0x00000700   /* delivery mode */
#define LOAPIC_FIXED 0x00000000  /* delivery mode: FIXED */
#define LOAPIC_SMI 0x00000200    /* delivery mode: SMI */
#define LOAPIC_NMI 0x00000400    /* delivery mode: NMI */
#define LOAPIC_EXT 0x00000700    /* delivery mode: ExtINT */
#define LOAPIC_IDLE 0x00000000   /* delivery status: Idle */
#define LOAPIC_PEND 0x00001000   /* delivery status: Pend */
#define LOAPIC_HIGH 0x00000000   /* polarity: High */
#define LOAPIC_LOW 0x00002000    /* polarity: Low */
#define LOAPIC_REMOTE 0x00004000 /* remote IRR */
#define LOAPIC_EDGE 0x00000000   /* trigger mode: Edge */
#define LOAPIC_LEVEL 0x00008000  /* trigger mode: Level */

/* Local APIC Spurious-Interrupt Register Bits */

#define LOAPIC_ENABLE 0x100	/* APIC Enabled */
#define LOAPIC_FOCUS_DISABLE 0x200 /* Focus Processor Checking */

/* Local Vector's lock-unlock macro used in loApicIntLock/Unlock */

#define LOCKED_TIMER 0x01
#define LOCKED_PMC 0x02
#define LOCKED_LINT0 0x04
#define LOCKED_LINT1 0x08
#define LOCKED_ERROR 0x10
#define LOCKED_THERMAL 0x20

/* Interrupt Command Register: delivery mode and status */

#define MODE_FIXED 0x0     /* delivery mode: Fixed */
#define MODE_LOWEST 0x1    /* delivery mode: Lowest */
#define MODE_SMI 0x2       /* delivery mode: SMI */
#define MODE_NMI 0x4       /* delivery mode: NMI */
#define MODE_INIT 0x5      /* delivery mode: INIT */
#define MODE_STARTUP 0x6   /* delivery mode: StartUp */
#define STATUS_PEND 0x1000 /* delivery status: Pend */

/* MP Configuration Table Entries */

#define MP_ENTRY_CPU 0	 /* Entry Type: CPU */
#define MP_ENTRY_BUS 1	 /* Entry Type: BUS */
#define MP_ENTRY_IOAPIC 2      /* Entry Type: IO APIC */
#define MP_ENTRY_IOINTERRUPT 3 /* Entry Type: IO INT */
#define MP_ENTRY_LOINTERRUPT 4 /* Entry Type: LO INT */

/* Extended MP Configuration Table Entries */

#define EXT_MP_ENTRY_SASM 128  /* Entry Type: System Address Space Map */
#define EXT_MP_ENTRY_BHD 129   /* Entry Type: Bus Hierarchy Descriptor */
#define EXT_MP_ENTRY_CBASM 130 /* Entry Type: Comp Address Space Modifier */

/* MP Configuration Table CPU Flags */

#define MP_CPU_FLAGS_BP 0x02

/* IMCR related bits */

#define IMCR_ADRS 0x22       /* IMCR addr reg */
#define IMCR_DATA 0x23       /* IMCR data reg */
#define IMCR_REG_SEL 0x70    /* IMCR reg select */
#define IMCR_IOAPIC_ON 0x01  /* IMCR IOAPIC route enable */
#define IMCR_IOAPIC_OFF 0x00 /* IMCR IOAPIC route disable */

#if CONFIG_LOAPIC_SPURIOUS_VECTOR_ID == -1
#define LOAPIC_SPURIOUS_VECTOR_ID (CONFIG_IDT_NUM_VECTORS - 1)
#else
#define LOAPIC_SPURIOUS_VECTOR_ID CONFIG_LOAPIC_SPURIOUS_VECTOR_ID
#endif

#define LOPIC_SSPND_BITS_PER_IRQ  1  /* Just the one for enable disable*/
#define LOPIC_SUSPEND_BITS_REQD (ROUND_UP((LOAPIC_IRQ_COUNT * LOPIC_SSPND_BITS_PER_IRQ), 32))
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
#include <power.h>
u32_t loapic_suspend_buf[LOPIC_SUSPEND_BITS_REQD / 32] = {0};
static u32_t loapic_device_power_state = DEVICE_PM_ACTIVE_STATE;
#endif


/**
 *
 * @brief Initialize the Local APIC or xAPIC
 *
 * This routine initializes Local APIC or xAPIC.
 *
 * @return N/A
 *
 */

static int _loapic_init(struct device *unused)
{
	ARG_UNUSED(unused);
	s32_t loApicMaxLvt; /* local APIC Max LVT */

	/* enable the Local APIC */
	sys_write32(sys_read32(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_SVR)
		    | LOAPIC_ENABLE, CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_SVR);

	loApicMaxLvt = (*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_VER) &
			LOAPIC_MAXLVT_MASK) >> 16;

	/* reset the DFR, TPR, TIMER_CONFIG, and TIMER_ICR */

	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_DFR) =
		(int)0xffffffff;
	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TPR) = (int)0x0;
	*(volatile int *) (CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER_CONFIG) =
		(int)0x0;
	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER_ICR) = (int)0x0;

	/* program Local Vector Table for the Virtual Wire Mode */

	/* set LINT0: extInt, high-polarity, edge-trigger, not-masked */

	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_LINT0) =
		(*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_LINT0) &
		 ~(LOAPIC_MODE | LOAPIC_LOW | LOAPIC_LEVEL | LOAPIC_LVT_MASKED)) |
		(LOAPIC_EXT | LOAPIC_HIGH | LOAPIC_EDGE);

	/* set LINT1: NMI, high-polarity, edge-trigger, not-masked */

	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_LINT1) =
		(*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_LINT1) &
		 ~(LOAPIC_MODE | LOAPIC_LOW | LOAPIC_LEVEL | LOAPIC_LVT_MASKED)) |
		(LOAPIC_NMI | LOAPIC_HIGH | LOAPIC_EDGE);

	/* lock the Local APIC interrupts */

	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER) =
		LOAPIC_LVT_MASKED;
	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_ERROR) =
		LOAPIC_LVT_MASKED;

	if (loApicMaxLvt >= LOAPIC_LVT_P6)
		*(volatile int *) (CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_PMC) =
			LOAPIC_LVT_MASKED;

	if (loApicMaxLvt >= LOAPIC_LVT_PENTIUM4)
		*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_THERMAL) =
			LOAPIC_LVT_MASKED;

#if CONFIG_LOAPIC_SPURIOUS_VECTOR
	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_SVR) =
		(*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_SVR)
		 & 0xFFFFFF00)
		| (LOAPIC_SPURIOUS_VECTOR_ID & 0xFF);
#endif

	/* discard a pending interrupt if any */
#if CONFIG_EOI_FORWARDING_BUG
	_lakemont_eoi();
#else
	*(volatile int *)(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_EOI) = 0;
#endif

	return 0;
}

/**
 *
 * @brief Set the vector field in the specified RTE
 *
 * This associates an IRQ with the desired vector in the IDT.
 *
 * @return N/A
 */

void _loapic_int_vec_set(unsigned int irq, /* IRQ number of the interrupt */
				  unsigned int vector /* vector to copy into the LVT */
				  )
{
	volatile int *pLvt; /* pointer to local vector table */
	s32_t oldLevel;   /* previous interrupt lock level */

	/*
	 * The following mappings are used:
	 *
	 *   IRQ0 -> LOAPIC_TIMER
	 *   IRQ1 -> LOAPIC_THERMAL
	 *   IRQ2 -> LOAPIC_PMC
	 *   IRQ3 -> LOAPIC_LINT0
	 *   IRQ4 -> LOAPIC_LINT1
	 *   IRQ5 -> LOAPIC_ERROR
	 *
	 * It's assumed that LVTs are spaced by 0x10 bytes
	 */

	pLvt = (volatile int *)
			(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER + (irq * 0x10));

	/* update the 'vector' bits in the LVT */

	oldLevel = irq_lock();
	*pLvt = (*pLvt & ~LOAPIC_VECTOR) | vector;
	irq_unlock(oldLevel);
}

/**
 *
 * @brief Enable an individual LOAPIC interrupt (IRQ)
 *
 * @param irq the IRQ number of the interrupt
 *
 * This routine clears the interrupt mask bit in the LVT for the specified IRQ
 *
 * @return N/A
 */

void _loapic_irq_enable(unsigned int irq)
{
	volatile int *pLvt; /* pointer to local vector table */
	s32_t oldLevel;   /* previous interrupt lock level */

	/*
	 * See the comments in _LoApicLvtVecSet() regarding IRQ to LVT mappings
	 * and ths assumption concerning LVT spacing.
	 */

	pLvt = (volatile int *)
		(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER + (irq * 0x10));

	/* clear the mask bit in the LVT */

	oldLevel = irq_lock();
	*pLvt = *pLvt & ~LOAPIC_LVT_MASKED;
	irq_unlock(oldLevel);
}

/**
 *
 * @brief Disable an individual LOAPIC interrupt (IRQ)
 *
 * @param irq the IRQ number of the interrupt
 *
 * This routine clears the interrupt mask bit in the LVT for the specified IRQ
 *
 * @return N/A
 */

void _loapic_irq_disable(unsigned int irq)
{
	volatile int *pLvt; /* pointer to local vector table */
	s32_t oldLevel;   /* previous interrupt lock level */

	/*
	 * See the comments in _LoApicLvtVecSet() regarding IRQ to LVT mappings
	 * and ths assumption concerning LVT spacing.
	 */

	pLvt = (volatile int *)
		(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER + (irq * 0x10));

	/* set the mask bit in the LVT */

	oldLevel = irq_lock();
	*pLvt = *pLvt | LOAPIC_LVT_MASKED;
	irq_unlock(oldLevel);
}


/**
 * @brief Find the currently executing interrupt vector, if any
 *
 * This routine finds the vector of the interrupt that is being processed.
 * The ISR (In-Service Register) register contain the vectors of the interrupts
 * in service. And the higher vector is the identification of the interrupt
 * being currently processed.
 *
 * This function must be called with interrupts locked in interrupt context.
 *
 * ISR registers' offsets:
 * --------------------
 * | Offset | bits    |
 * --------------------
 * | 0100H  |   0:31  |
 * | 0110H  |  32:63  |
 * | 0120H  |  64:95  |
 * | 0130H  |  96:127 |
 * | 0140H  | 128:159 |
 * | 0150H  | 160:191 |
 * | 0160H  | 192:223 |
 * | 0170H  | 224:255 |
 * --------------------
 *
 * @return The vector of the interrupt that is currently being processed, or -1
 * if no IRQ is being serviced.
 */
int __irq_controller_isr_vector_get(void)
{
	int pReg, block;

	/* Block 0 bits never lit up as these are all exception or reserved
	 * vectors
	 */
	for (block = 7; likely(block > 0); block--) {
		pReg = sys_read32(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_ISR +
				  (block * 0x10));
		if (pReg) {
			return (block * 32) + (find_msb_set(pReg) - 1);
		}

	}
	return -1;
}

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static int loapic_suspend(struct device *port)
{
	volatile int *pLvt; /* pointer to local vector table */
	int loapic_irq;

	ARG_UNUSED(port);

	memset(loapic_suspend_buf, 0, (LOPIC_SUSPEND_BITS_REQD >> 3));

	for (loapic_irq = 0; loapic_irq < LOAPIC_IRQ_COUNT; loapic_irq++) {

		if (_irq_to_interrupt_vector[LOAPIC_IRQ_BASE + loapic_irq]) {

			/* Since vector numbers are already present in RAM/ROM,
			 * We save only the mask bits here.
			 */
			pLvt = (volatile int *)
				(CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_TIMER +
				(loapic_irq * 0x10));

			if ((*pLvt & LOAPIC_LVT_MASKED) == 0) {
				sys_bitfield_set_bit((mem_addr_t)loapic_suspend_buf,
					loapic_irq);
			}
		}
	}
	loapic_device_power_state = DEVICE_PM_SUSPEND_STATE;
	return 0;
}

int loapic_resume(struct device *port)
{
	int loapic_irq;

	ARG_UNUSED(port);

	/* Assuming all loapic device registers lose their state, the call to
	 * _loapic_init(), should bring all the registers to a sane state.
	 */
	_loapic_init(NULL);

	for (loapic_irq = 0; loapic_irq < LOAPIC_IRQ_COUNT; loapic_irq++) {

		if (_irq_to_interrupt_vector[LOAPIC_IRQ_BASE + loapic_irq]) {
			/* Configure vector and enable the required ones*/
			_loapic_int_vec_set(loapic_irq,
				_irq_to_interrupt_vector[LOAPIC_IRQ_BASE + loapic_irq]);

			if (sys_bitfield_test_bit((mem_addr_t) loapic_suspend_buf,
							loapic_irq)) {
				_loapic_irq_enable(loapic_irq);
			}
		}
	}
	loapic_device_power_state = DEVICE_PM_ACTIVE_STATE;

	return 0;
}

/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
static int loapic_device_ctrl(struct device *port, u32_t ctrl_command,
			      void *context)
{
	if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
		if (*((u32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
			return loapic_suspend(port);
		} else if (*((u32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
			return loapic_resume(port);
		}
	} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
		*((u32_t *)context) = loapic_device_power_state;
		return 0;
	}

	return 0;
}

SYS_DEVICE_DEFINE("loapic", _loapic_init, loapic_device_ctrl, PRE_KERNEL_1,
		  CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#else
SYS_INIT(_loapic_init, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif   /* CONFIG_DEVICE_POWER_MANAGEMENT */


#if CONFIG_LOAPIC_SPURIOUS_VECTOR
extern void _loapic_spurious_handler(void);

NANO_CPU_INT_REGISTER(_loapic_spurious_handler, NANO_SOFT_IRQ,
		      LOAPIC_SPURIOUS_VECTOR_ID >> 4,
		      LOAPIC_SPURIOUS_VECTOR_ID, 0);
#endif