Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* Intel x86 GCC specific public inline assembler functions and macros */

/*
 * Copyright (c) 2015, Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/* Either public functions or macros or invoked by public functions */

#ifndef _ASM_INLINE_GCC_PUBLIC_GCC_H
#define _ASM_INLINE_GCC_PUBLIC_GCC_H

/*
 * The file must not be included directly
 * Include kernel.h instead
 */

#include <sys_io.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifndef _ASMLANGUAGE
#include <zephyr/types.h>
#include <stddef.h>

/**
 *
 * @internal
 *
 * @brief Disable all interrupts on the CPU
 *
 * GCC assembly internals of irq_lock(). See irq_lock() for a complete
 * description.
 *
 * @return An architecture-dependent lock-out key representing the
 * "interrupt disable state" prior to the call.
 */

static ALWAYS_INLINE unsigned int _do_irq_lock(void)
{
	unsigned int key;

	__asm__ volatile (
		"pushfl;\n\t"
		"cli;\n\t"
		"popl %0;\n\t"
		: "=g" (key)
		:
		: "memory"
		);

	return key;
}


/**
 *
 * @internal
 *
 * @brief Enable all interrupts on the CPU (inline)
 *
 * GCC assembly internals of irq_lock_unlock(). See irq_lock_unlock() for a
 * complete description.
 *
 * @return N/A
 */

static ALWAYS_INLINE void _do_irq_unlock(void)
{
	__asm__ volatile (
		"sti;\n\t"
		: : : "memory"
		);
}


/**
 *
 * @brief find least significant bit set in a 32-bit word
 *
 * This routine finds the first bit set starting from the least significant bit
 * in the argument passed in and returns the index of that bit.  Bits are
 * numbered starting at 1 from the least significant bit.  A return value of
 * zero indicates that the value passed is zero.
 *
 * @return least significant bit set, 0 if @a op is 0
 *
 * @internal
 * For Intel64 (x86_64) architectures, the 'cmovzl' can be removed and leverage
 * the fact that the 'bsfl' doesn't modify the destination operand when the
 * source operand is zero.  The "bitpos" variable can be preloaded into the
 * destination register, and given the unconditional ++bitpos that is performed
 * after the 'cmovzl', the correct results are yielded.
 */

static ALWAYS_INLINE unsigned int find_lsb_set(u32_t op)
{
	unsigned int bitpos;

	__asm__ volatile (

#if defined(CONFIG_CMOV)

		"bsfl %1, %0;\n\t"
		"cmovzl %2, %0;\n\t"
		: "=r" (bitpos)
		: "rm" (op), "r" (-1)
		: "cc"

#else

		  "bsfl %1, %0;\n\t"
		  "jnz 1f;\n\t"
		  "movl $-1, %0;\n\t"
		  "1:\n\t"
		: "=r" (bitpos)
		: "rm" (op)
		: "cc"

#endif /* CONFIG_CMOV */
		);

	return (bitpos + 1);
}


/**
 *
 * @brief find most significant bit set in a 32-bit word
 *
 * This routine finds the first bit set starting from the most significant bit
 * in the argument passed in and returns the index of that bit.  Bits are
 * numbered starting at 1 from the least significant bit.  A return value of
 * zero indicates that the value passed is zero.
 *
 * @return most significant bit set, 0 if @a op is 0
 *
 * @internal
 * For Intel64 (x86_64) architectures, the 'cmovzl' can be removed and leverage
 * the fact that the 'bsfl' doesn't modify the destination operand when the
 * source operand is zero.  The "bitpos" variable can be preloaded into the
 * destination register, and given the unconditional ++bitpos that is performed
 * after the 'cmovzl', the correct results are yielded.
 */

static ALWAYS_INLINE unsigned int find_msb_set(u32_t op)
{
	unsigned int bitpos;

	__asm__ volatile (

#if defined(CONFIG_CMOV)

		"bsrl %1, %0;\n\t"
		"cmovzl %2, %0;\n\t"
		: "=r" (bitpos)
		: "rm" (op), "r" (-1)

#else

		  "bsrl %1, %0;\n\t"
		  "jnz 1f;\n\t"
		  "movl $-1, %0;\n\t"
		  "1:\n\t"
		: "=r" (bitpos)
		: "rm" (op)
		: "cc"

#endif /* CONFIG_CMOV */
		);

	return (bitpos + 1);
}


/**
 *  @brief read timestamp register ensuring serialization
 */

static inline u64_t _tsc_read(void)
{
	union {
		struct  {
			u32_t lo;
			u32_t hi;
		};
		u64_t  value;
	}  rv;

	/* rdtsc & cpuid clobbers eax, ebx, ecx and edx registers */
	__asm__ volatile (/* serialize */
		"xorl %%eax,%%eax;\n\t"
		"cpuid;\n\t"
		:
		:
		: "%eax", "%ebx", "%ecx", "%edx"
		);
	/*
	 * We cannot use "=A", since this would use %rax on x86_64 and
	 * return only the lower 32bits of the TSC
	 */
	__asm__ volatile ("rdtsc" : "=a" (rv.lo), "=d" (rv.hi));


	return rv.value;
}


/**
 *
 * @brief Get a 32 bit CPU timestamp counter
 *
 * @return a 32-bit number
 */

static ALWAYS_INLINE
	u32_t _do_read_cpu_timestamp32(void)
{
	u32_t rv;

	__asm__ volatile("rdtsc" : "=a"(rv) :  : "%edx");

	return rv;
}


/* Implementation of sys_io.h's documented functions */

static ALWAYS_INLINE
void sys_out8(u8_t data, io_port_t port)
{
	__asm__ volatile("outb	%b0, %w1;\n\t"
			 :
			 : "a"(data), "Nd"(port));
}


static ALWAYS_INLINE
	u8_t sys_in8(io_port_t port)
{
	u8_t ret;

	__asm__ volatile("inb	%w1, %b0;\n\t"
			 : "=a"(ret)
			 : "Nd"(port));
	return ret;
}


static ALWAYS_INLINE
	void sys_out16(u16_t data, io_port_t port)
{
	__asm__ volatile("outw	%w0, %w1;\n\t"
			 :
			 : "a"(data), "Nd"(port));
}


static ALWAYS_INLINE
	u16_t sys_in16(io_port_t port)
{
	u16_t ret;

	__asm__ volatile("inw	%w1, %w0;\n\t"
			 : "=a"(ret)
			 : "Nd"(port));
	return ret;
}


static ALWAYS_INLINE
	void sys_out32(u32_t data, io_port_t port)
{
	__asm__ volatile("outl	%0, %w1;\n\t"
			 :
			 : "a"(data), "Nd"(port));
}


static ALWAYS_INLINE
	u32_t sys_in32(io_port_t port)
{
	u32_t ret;

	__asm__ volatile("inl	%w1, %0;\n\t"
			 : "=a"(ret)
			 : "Nd"(port));
	return ret;
}


static ALWAYS_INLINE
	void sys_io_set_bit(io_port_t port, unsigned int bit)
{
	u32_t reg = 0;

	__asm__ volatile("inl	%w1, %0;\n\t"
			 "btsl	%2, %0;\n\t"
			 "outl	%0, %w1;\n\t"
			 :
			 : "a" (reg), "Nd" (port), "Ir" (bit));
}

static ALWAYS_INLINE
	void sys_io_clear_bit(io_port_t port, unsigned int bit)
{
	u32_t reg = 0;

	__asm__ volatile("inl	%w1, %0;\n\t"
			 "btrl	%2, %0;\n\t"
			 "outl	%0, %w1;\n\t"
			 :
			 : "a" (reg), "Nd" (port), "Ir" (bit));
}

static ALWAYS_INLINE
	int sys_io_test_bit(io_port_t port, unsigned int bit)
{
	u32_t ret;

	__asm__ volatile("inl	%w1, %0\n\t"
			 "btl	%2, %0\n\t"
			 : "=a" (ret)
			 : "Nd" (port), "Ir" (bit));

	return (ret & 1);
}

static ALWAYS_INLINE
	int sys_io_test_and_set_bit(io_port_t port, unsigned int bit)
{
	int ret;

	ret = sys_io_test_bit(port, bit);
	sys_io_set_bit(port, bit);

	return ret;
}

static ALWAYS_INLINE
	int sys_io_test_and_clear_bit(io_port_t port, unsigned int bit)
{
	int ret;

	ret = sys_io_test_bit(port, bit);
	sys_io_clear_bit(port, bit);

	return ret;
}

static ALWAYS_INLINE
	void sys_write8(u8_t data, mm_reg_t addr)
{
	__asm__ volatile("movb	%0, %1;\n\t"
			 :
			 : "q"(data), "m" (*(volatile u8_t *) addr)
			 : "memory");
}

static ALWAYS_INLINE
	u8_t sys_read8(mm_reg_t addr)
{
	u8_t ret;

	__asm__ volatile("movb	%1, %0;\n\t"
			 : "=q"(ret)
			 : "m" (*(volatile u8_t *) addr)
			 : "memory");

	return ret;
}

static ALWAYS_INLINE
	void sys_write16(u16_t data, mm_reg_t addr)
{
	__asm__ volatile("movw	%0, %1;\n\t"
			 :
			 : "r"(data), "m" (*(volatile u16_t *) addr)
			 : "memory");
}

static ALWAYS_INLINE
	u16_t sys_read16(mm_reg_t addr)
{
	u16_t ret;

	__asm__ volatile("movw	%1, %0;\n\t"
			 : "=r"(ret)
			 : "m" (*(volatile u16_t *) addr)
			 : "memory");

	return ret;
}

static ALWAYS_INLINE
	void sys_write32(u32_t data, mm_reg_t addr)
{
	__asm__ volatile("movl	%0, %1;\n\t"
			 :
			 : "r"(data), "m" (*(volatile u32_t *) addr)
			 : "memory");
}

static ALWAYS_INLINE
	u32_t sys_read32(mm_reg_t addr)
{
	u32_t ret;

	__asm__ volatile("movl	%1, %0;\n\t"
			 : "=r"(ret)
			 : "m" (*(volatile u32_t *) addr)
			 : "memory");

	return ret;
}


static ALWAYS_INLINE
	void sys_set_bit(mem_addr_t addr, unsigned int bit)
{
	__asm__ volatile("btsl	%1, %0;\n\t"
			 : "+m" (*(volatile u32_t *) (addr))
			 : "Ir" (bit)
			 : "memory");
}

static ALWAYS_INLINE
	void sys_clear_bit(mem_addr_t addr, unsigned int bit)
{
	__asm__ volatile("btrl	%1, %0;\n\t"
			 : "+m" (*(volatile u32_t *) (addr))
			 : "Ir" (bit));
}

static ALWAYS_INLINE
	int sys_test_bit(mem_addr_t addr, unsigned int bit)
{
	int ret;

	__asm__ volatile("btl	%2, %1;\n\t"
			 "sbb	%0, %0\n\t"
			 : "=r" (ret), "+m" (*(volatile u32_t *) (addr))
			 : "Ir" (bit));

	return ret;
}

static ALWAYS_INLINE
	int sys_test_and_set_bit(mem_addr_t addr, unsigned int bit)
{
	int ret;

	__asm__ volatile("btsl	%2, %1;\n\t"
			 "sbb	%0, %0\n\t"
			 : "=r" (ret), "+m" (*(volatile u32_t *) (addr))
			 : "Ir" (bit));

	return ret;
}

static ALWAYS_INLINE
	int sys_test_and_clear_bit(mem_addr_t addr, unsigned int bit)
{
	int ret;

	__asm__ volatile("btrl	%2, %1;\n\t"
			 "sbb	%0, %0\n\t"
			 : "=r" (ret), "+m" (*(volatile u32_t *) (addr))
			 : "Ir" (bit));

	return ret;
}

#define sys_bitfield_set_bit sys_set_bit
#define sys_bitfield_clear_bit sys_clear_bit
#define sys_bitfield_test_bit sys_test_bit
#define sys_bitfield_test_and_set_bit sys_test_and_set_bit
#define sys_bitfield_test_and_clear_bit sys_test_and_clear_bit

#endif /* _ASMLANGUAGE */

#ifdef __cplusplus
}
#endif

#endif /* _ASM_INLINE_GCC_PUBLIC_GCC_H */