Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 | /* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_i2c.h" /******************************************************************************* * Definitions ******************************************************************************/ /*! @brief i2c transfer state. */ enum _i2c_transfer_states { kIdleState = 0x0U, /*!< I2C bus idle. */ kCheckAddressState = 0x1U, /*!< 7-bit address check state. */ kSendCommandState = 0x2U, /*!< Send command byte phase. */ kSendDataState = 0x3U, /*!< Send data transfer phase. */ kReceiveDataBeginState = 0x4U, /*!< Receive data transfer phase begin. */ kReceiveDataState = 0x5U, /*!< Receive data transfer phase. */ }; /*! @brief Common sets of flags used by the driver. */ enum _i2c_flag_constants { /*! All flags which are cleared by the driver upon starting a transfer. */ #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag | kI2C_StartDetectFlag | kI2C_StopDetectFlag, kIrqFlags = kI2C_GlobalInterruptEnable | kI2C_StartStopDetectInterruptEnable, #elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag | kI2C_StopDetectFlag, kIrqFlags = kI2C_GlobalInterruptEnable | kI2C_StopDetectInterruptEnable, #else kClearFlags = kI2C_ArbitrationLostFlag | kI2C_IntPendingFlag, kIrqFlags = kI2C_GlobalInterruptEnable, #endif }; /*! @brief Typedef for interrupt handler. */ typedef void (*i2c_isr_t)(I2C_Type *base, void *i2cHandle); /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get instance number for I2C module. * * @param base I2C peripheral base address. */ uint32_t I2C_GetInstance(I2C_Type *base); /*! * @brief Set SCL/SDA hold time, this API receives SCL stop hold time, calculate the * closest SCL divider and MULT value for the SDA hold time, SCL start and SCL stop * hold time. To reduce the ROM size, SDA/SCL hold value mapping table is not provided, * assume SCL divider = SCL stop hold value *2 to get the closest SCL divider value and MULT * value, then the related SDA hold time, SCL start and SCL stop hold time is used. * * @param base I2C peripheral base address. * @param sourceClock_Hz I2C functional clock frequency in Hertz. * @param sclStopHoldTime_ns SCL stop hold time in ns. */ static void I2C_SetHoldTime(I2C_Type *base, uint32_t sclStopHoldTime_ns, uint32_t sourceClock_Hz); /*! * @brief Set up master transfer, send slave address and decide the initial * transfer state. * * @param base I2C peripheral base address. * @param handle pointer to i2c_master_handle_t structure which stores the transfer state. * @param xfer pointer to i2c_master_transfer_t structure. */ static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer); /*! * @brief Check and clear status operation. * * @param base I2C peripheral base address. * @param status current i2c hardware status. * @retval kStatus_Success No error found. * @retval kStatus_I2C_ArbitrationLost Transfer error, arbitration lost. * @retval kStatus_I2C_Nak Received Nak error. */ static status_t I2C_CheckAndClearError(I2C_Type *base, uint32_t status); /*! * @brief Master run transfer state machine to perform a byte of transfer. * * @param base I2C peripheral base address. * @param handle pointer to i2c_master_handle_t structure which stores the transfer state * @param isDone input param to get whether the thing is done, true is done * @retval kStatus_Success No error found. * @retval kStatus_I2C_ArbitrationLost Transfer error, arbitration lost. * @retval kStatus_I2C_Nak Received Nak error. * @retval kStatus_I2C_Timeout Transfer error, wait signal timeout. */ static status_t I2C_MasterTransferRunStateMachine(I2C_Type *base, i2c_master_handle_t *handle, bool *isDone); /*! * @brief I2C common interrupt handler. * * @param base I2C peripheral base address. * @param handle pointer to i2c_master_handle_t structure which stores the transfer state */ static void I2C_TransferCommonIRQHandler(I2C_Type *base, void *handle); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to i2c handles for each instance. */ static void *s_i2cHandle[FSL_FEATURE_SOC_I2C_COUNT] = {NULL}; /*! @brief SCL clock divider used to calculate baudrate. */ static const uint16_t s_i2cDividerTable[] = { 20, 22, 24, 26, 28, 30, 34, 40, 28, 32, 36, 40, 44, 48, 56, 68, 48, 56, 64, 72, 80, 88, 104, 128, 80, 96, 112, 128, 144, 160, 192, 240, 160, 192, 224, 256, 288, 320, 384, 480, 320, 384, 448, 512, 576, 640, 768, 960, 640, 768, 896, 1024, 1152, 1280, 1536, 1920, 1280, 1536, 1792, 2048, 2304, 2560, 3072, 3840}; /*! @brief Pointers to i2c bases for each instance. */ static I2C_Type *const s_i2cBases[] = I2C_BASE_PTRS; /*! @brief Pointers to i2c IRQ number for each instance. */ static const IRQn_Type s_i2cIrqs[] = I2C_IRQS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to i2c clocks for each instance. */ static const clock_ip_name_t s_i2cClocks[] = I2C_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /*! @brief Pointer to master IRQ handler for each instance. */ static i2c_isr_t s_i2cMasterIsr; /*! @brief Pointer to slave IRQ handler for each instance. */ static i2c_isr_t s_i2cSlaveIsr; /******************************************************************************* * Codes ******************************************************************************/ uint32_t I2C_GetInstance(I2C_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_i2cBases); instance++) { if (s_i2cBases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_i2cBases)); return instance; } static void I2C_SetHoldTime(I2C_Type *base, uint32_t sclStopHoldTime_ns, uint32_t sourceClock_Hz) { uint32_t multiplier; uint32_t computedSclHoldTime; uint32_t absError; uint32_t bestError = UINT32_MAX; uint32_t bestMult = 0u; uint32_t bestIcr = 0u; uint8_t mult; uint8_t i; /* Search for the settings with the lowest error. Mult is the MULT field of the I2C_F register, * and ranges from 0-2. It selects the multiplier factor for the divider. */ /* SDA hold time = bus period (s) * mul * SDA hold value. */ /* SCL start hold time = bus period (s) * mul * SCL start hold value. */ /* SCL stop hold time = bus period (s) * mul * SCL stop hold value. */ for (mult = 0u; (mult <= 2u) && (bestError != 0); ++mult) { multiplier = 1u << mult; /* Scan table to find best match. */ for (i = 0u; i < sizeof(s_i2cDividerTable) / sizeof(s_i2cDividerTable[0]); ++i) { /* Assume SCL hold(stop) value = s_i2cDividerTable[i]/2. */ computedSclHoldTime = ((multiplier * s_i2cDividerTable[i]) * 500000000U) / sourceClock_Hz; absError = sclStopHoldTime_ns > computedSclHoldTime ? (sclStopHoldTime_ns - computedSclHoldTime) : (computedSclHoldTime - sclStopHoldTime_ns); if (absError < bestError) { bestMult = mult; bestIcr = i; bestError = absError; /* If the error is 0, then we can stop searching because we won't find a better match. */ if (absError == 0) { break; } } } } /* Set frequency register based on best settings. */ base->F = I2C_F_MULT(bestMult) | I2C_F_ICR(bestIcr); } static status_t I2C_InitTransferStateMachine(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer) { status_t result = kStatus_Success; i2c_direction_t direction = xfer->direction; /* Initialize the handle transfer information. */ handle->transfer = *xfer; /* Save total transfer size. */ handle->transferSize = xfer->dataSize; /* Initial transfer state. */ if (handle->transfer.subaddressSize > 0) { if (xfer->direction == kI2C_Read) { direction = kI2C_Write; } } handle->state = kCheckAddressState; /* Clear all status before transfer. */ I2C_MasterClearStatusFlags(base, kClearFlags); /* If repeated start is requested, send repeated start. */ if (handle->transfer.flags & kI2C_TransferRepeatedStartFlag) { result = I2C_MasterRepeatedStart(base, handle->transfer.slaveAddress, direction); } else /* For normal transfer, send start. */ { result = I2C_MasterStart(base, handle->transfer.slaveAddress, direction); } return result; } static status_t I2C_CheckAndClearError(I2C_Type *base, uint32_t status) { status_t result = kStatus_Success; /* Check arbitration lost. */ if (status & kI2C_ArbitrationLostFlag) { /* Clear arbitration lost flag. */ base->S = kI2C_ArbitrationLostFlag; result = kStatus_I2C_ArbitrationLost; } /* Check NAK */ else if (status & kI2C_ReceiveNakFlag) { result = kStatus_I2C_Nak; } else { } return result; } static status_t I2C_MasterTransferRunStateMachine(I2C_Type *base, i2c_master_handle_t *handle, bool *isDone) { status_t result = kStatus_Success; uint32_t statusFlags = base->S; *isDone = false; volatile uint8_t dummy = 0; bool ignoreNak = ((handle->state == kSendDataState) && (handle->transfer.dataSize == 0U)) || ((handle->state == kReceiveDataState) && (handle->transfer.dataSize == 1U)); /* Add this to avoid build warning. */ dummy++; /* Check & clear error flags. */ result = I2C_CheckAndClearError(base, statusFlags); /* Ignore Nak when it's appeared for last byte. */ if ((result == kStatus_I2C_Nak) && ignoreNak) { result = kStatus_Success; } /* Handle Check address state to check the slave address is Acked in slave probe application. */ if (handle->state == kCheckAddressState) { if (statusFlags & kI2C_ReceiveNakFlag) { result = kStatus_I2C_Addr_Nak; } else { if (handle->transfer.subaddressSize > 0) { handle->state = kSendCommandState; } else { if (handle->transfer.direction == kI2C_Write) { /* Next state, send data. */ handle->state = kSendDataState; } else { /* Next state, receive data begin. */ handle->state = kReceiveDataBeginState; } } } } if (result) { return result; } /* Run state machine. */ switch (handle->state) { /* Send I2C command. */ case kSendCommandState: if (handle->transfer.subaddressSize) { handle->transfer.subaddressSize--; base->D = ((handle->transfer.subaddress) >> (8 * handle->transfer.subaddressSize)); } else { if (handle->transfer.direction == kI2C_Write) { /* Next state, send data. */ handle->state = kSendDataState; /* Send first byte of data. */ if (handle->transfer.dataSize > 0) { base->D = *handle->transfer.data; handle->transfer.data++; handle->transfer.dataSize--; } } else { /* Send repeated start and slave address. */ result = I2C_MasterRepeatedStart(base, handle->transfer.slaveAddress, kI2C_Read); /* Next state, receive data begin. */ handle->state = kReceiveDataBeginState; } } break; /* Send I2C data. */ case kSendDataState: /* Send one byte of data. */ if (handle->transfer.dataSize > 0) { base->D = *handle->transfer.data; handle->transfer.data++; handle->transfer.dataSize--; } else { *isDone = true; } break; /* Start I2C data receive. */ case kReceiveDataBeginState: base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Send nak at the last receive byte. */ if (handle->transfer.dataSize == 1) { base->C1 |= I2C_C1_TXAK_MASK; } /* Read dummy to release the bus. */ dummy = base->D; /* Next state, receive data. */ handle->state = kReceiveDataState; break; /* Receive I2C data. */ case kReceiveDataState: /* Receive one byte of data. */ if (handle->transfer.dataSize--) { if (handle->transfer.dataSize == 0) { *isDone = true; /* Send stop if kI2C_TransferNoStop is not asserted. */ if (!(handle->transfer.flags & kI2C_TransferNoStopFlag)) { result = I2C_MasterStop(base); } else { base->C1 |= I2C_C1_TX_MASK; } } /* Send NAK at the last receive byte. */ if (handle->transfer.dataSize == 1) { base->C1 |= I2C_C1_TXAK_MASK; } /* Read the data byte into the transfer buffer. */ *handle->transfer.data = base->D; handle->transfer.data++; } break; default: break; } return result; } static void I2C_TransferCommonIRQHandler(I2C_Type *base, void *handle) { /* Check if master interrupt. */ if ((base->S & kI2C_ArbitrationLostFlag) || (base->C1 & I2C_C1_MST_MASK)) { s_i2cMasterIsr(base, handle); } else { s_i2cSlaveIsr(base, handle); } __DSB(); } void I2C_MasterInit(I2C_Type *base, const i2c_master_config_t *masterConfig, uint32_t srcClock_Hz) { assert(masterConfig && srcClock_Hz); /* Temporary register for filter read. */ uint8_t fltReg; #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE uint8_t s2Reg; #endif #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable I2C clock. */ CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset the module. */ base->A1 = 0; base->F = 0; base->C1 = 0; base->S = 0xFFU; base->C2 = 0; #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT base->FLT = 0x50U; #elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT base->FLT = 0x40U; #endif base->RA = 0; /* Disable I2C prior to configuring it. */ base->C1 &= ~(I2C_C1_IICEN_MASK); /* Clear all flags. */ I2C_MasterClearStatusFlags(base, kClearFlags); /* Configure baud rate. */ I2C_MasterSetBaudRate(base, masterConfig->baudRate_Bps, srcClock_Hz); /* Read out the FLT register. */ fltReg = base->FLT; #if defined(FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF) && FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF /* Configure the stop / hold enable. */ fltReg &= ~(I2C_FLT_SHEN_MASK); fltReg |= I2C_FLT_SHEN(masterConfig->enableStopHold); #endif /* Configure the glitch filter value. */ fltReg &= ~(I2C_FLT_FLT_MASK); fltReg |= I2C_FLT_FLT(masterConfig->glitchFilterWidth); /* Write the register value back to the filter register. */ base->FLT = fltReg; /* Enable/Disable double buffering. */ #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE s2Reg = base->S2 & (~I2C_S2_DFEN_MASK); base->S2 = s2Reg | I2C_S2_DFEN(masterConfig->enableDoubleBuffering); #endif /* Enable the I2C peripheral based on the configuration. */ base->C1 = I2C_C1_IICEN(masterConfig->enableMaster); } void I2C_MasterDeinit(I2C_Type *base) { /* Disable I2C module. */ I2C_Enable(base, false); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disable I2C clock. */ CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void I2C_MasterGetDefaultConfig(i2c_master_config_t *masterConfig) { assert(masterConfig); /* Default baud rate at 100kbps. */ masterConfig->baudRate_Bps = 100000U; /* Default stop hold enable is disabled. */ #if defined(FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF) && FSL_FEATURE_I2C_HAS_STOP_HOLD_OFF masterConfig->enableStopHold = false; #endif /* Default glitch filter value is no filter. */ masterConfig->glitchFilterWidth = 0U; /* Default enable double buffering. */ #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE masterConfig->enableDoubleBuffering = true; #endif /* Enable the I2C peripheral. */ masterConfig->enableMaster = true; } void I2C_EnableInterrupts(I2C_Type *base, uint32_t mask) { #ifdef I2C_HAS_STOP_DETECT uint8_t fltReg; #endif if (mask & kI2C_GlobalInterruptEnable) { base->C1 |= I2C_C1_IICIE_MASK; } #if defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT if (mask & kI2C_StopDetectInterruptEnable) { fltReg = base->FLT; /* Keep STOPF flag. */ fltReg &= ~I2C_FLT_STOPF_MASK; /* Stop detect enable. */ fltReg |= I2C_FLT_STOPIE_MASK; base->FLT = fltReg; } #endif /* FSL_FEATURE_I2C_HAS_STOP_DETECT */ #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT if (mask & kI2C_StartStopDetectInterruptEnable) { fltReg = base->FLT; /* Keep STARTF and STOPF flags. */ fltReg &= ~(I2C_FLT_STOPF_MASK | I2C_FLT_STARTF_MASK); /* Start and stop detect enable. */ fltReg |= I2C_FLT_SSIE_MASK; base->FLT = fltReg; } #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ } void I2C_DisableInterrupts(I2C_Type *base, uint32_t mask) { if (mask & kI2C_GlobalInterruptEnable) { base->C1 &= ~I2C_C1_IICIE_MASK; } #if defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT if (mask & kI2C_StopDetectInterruptEnable) { base->FLT &= ~(I2C_FLT_STOPIE_MASK | I2C_FLT_STOPF_MASK); } #endif /* FSL_FEATURE_I2C_HAS_STOP_DETECT */ #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT if (mask & kI2C_StartStopDetectInterruptEnable) { base->FLT &= ~(I2C_FLT_SSIE_MASK | I2C_FLT_STOPF_MASK | I2C_FLT_STARTF_MASK); } #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ } void I2C_MasterSetBaudRate(I2C_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz) { uint32_t multiplier; uint32_t computedRate; uint32_t absError; uint32_t bestError = UINT32_MAX; uint32_t bestMult = 0u; uint32_t bestIcr = 0u; uint8_t mult; uint8_t i; /* Search for the settings with the lowest error. Mult is the MULT field of the I2C_F register, * and ranges from 0-2. It selects the multiplier factor for the divider. */ for (mult = 0u; (mult <= 2u) && (bestError != 0); ++mult) { multiplier = 1u << mult; /* Scan table to find best match. */ for (i = 0u; i < sizeof(s_i2cDividerTable) / sizeof(uint16_t); ++i) { computedRate = srcClock_Hz / (multiplier * s_i2cDividerTable[i]); absError = baudRate_Bps > computedRate ? (baudRate_Bps - computedRate) : (computedRate - baudRate_Bps); if (absError < bestError) { bestMult = mult; bestIcr = i; bestError = absError; /* If the error is 0, then we can stop searching because we won't find a better match. */ if (absError == 0) { break; } } } } /* Set frequency register based on best settings. */ base->F = I2C_F_MULT(bestMult) | I2C_F_ICR(bestIcr); } status_t I2C_MasterStart(I2C_Type *base, uint8_t address, i2c_direction_t direction) { status_t result = kStatus_Success; uint32_t statusFlags = I2C_MasterGetStatusFlags(base); /* Return an error if the bus is already in use. */ if (statusFlags & kI2C_BusBusyFlag) { result = kStatus_I2C_Busy; } else { /* Send the START signal. */ base->C1 |= I2C_C1_MST_MASK | I2C_C1_TX_MASK; #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING while (!(base->S2 & I2C_S2_EMPTY_MASK)) { } #endif /* FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING */ base->D = (((uint32_t)address) << 1U | ((direction == kI2C_Read) ? 1U : 0U)); } return result; } status_t I2C_MasterRepeatedStart(I2C_Type *base, uint8_t address, i2c_direction_t direction) { status_t result = kStatus_Success; uint8_t savedMult; uint32_t statusFlags = I2C_MasterGetStatusFlags(base); uint8_t timeDelay = 6; /* Return an error if the bus is already in use, but not by us. */ if ((statusFlags & kI2C_BusBusyFlag) && ((base->C1 & I2C_C1_MST_MASK) == 0)) { result = kStatus_I2C_Busy; } else { savedMult = base->F; base->F = savedMult & (~I2C_F_MULT_MASK); /* We are already in a transfer, so send a repeated start. */ base->C1 |= I2C_C1_RSTA_MASK | I2C_C1_TX_MASK; /* Restore the multiplier factor. */ base->F = savedMult; /* Add some delay to wait the Re-Start signal. */ while (timeDelay--) { __NOP(); } #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING while (!(base->S2 & I2C_S2_EMPTY_MASK)) { } #endif /* FSL_FEATURE_I2C_HAS_DOUBLE_BUFFERING */ base->D = (((uint32_t)address) << 1U | ((direction == kI2C_Read) ? 1U : 0U)); } return result; } status_t I2C_MasterStop(I2C_Type *base) { status_t result = kStatus_Success; uint16_t timeout = UINT16_MAX; /* Issue the STOP command on the bus. */ base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Wait until data transfer complete. */ while ((base->S & kI2C_BusBusyFlag) && (--timeout)) { } if (timeout == 0) { result = kStatus_I2C_Timeout; } return result; } uint32_t I2C_MasterGetStatusFlags(I2C_Type *base) { uint32_t statusFlags = base->S; #ifdef I2C_HAS_STOP_DETECT /* Look up the STOPF bit from the filter register. */ if (base->FLT & I2C_FLT_STOPF_MASK) { statusFlags |= kI2C_StopDetectFlag; } #endif #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT /* Look up the STARTF bit from the filter register. */ if (base->FLT & I2C_FLT_STARTF_MASK) { statusFlags |= kI2C_StartDetectFlag; } #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ return statusFlags; } status_t I2C_MasterWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize, uint32_t flags) { status_t result = kStatus_Success; uint8_t statusFlags = 0; /* Wait until the data register is ready for transmit. */ while (!(base->S & kI2C_TransferCompleteFlag)) { } /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Setup the I2C peripheral to transmit data. */ base->C1 |= I2C_C1_TX_MASK; while (txSize--) { /* Send a byte of data. */ base->D = *txBuff++; /* Wait until data transfer complete. */ while (!(base->S & kI2C_IntPendingFlag)) { } statusFlags = base->S; /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Check if arbitration lost or no acknowledgement (NAK), return failure status. */ if (statusFlags & kI2C_ArbitrationLostFlag) { base->S = kI2C_ArbitrationLostFlag; result = kStatus_I2C_ArbitrationLost; } if ((statusFlags & kI2C_ReceiveNakFlag) && txSize) { base->S = kI2C_ReceiveNakFlag; result = kStatus_I2C_Nak; } if (result != kStatus_Success) { /* Breaking out of the send loop. */ break; } } if (((result == kStatus_Success) && (!(flags & kI2C_TransferNoStopFlag))) || (result == kStatus_I2C_Nak)) { /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Send stop. */ result = I2C_MasterStop(base); } return result; } status_t I2C_MasterReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize, uint32_t flags) { status_t result = kStatus_Success; volatile uint8_t dummy = 0; /* Add this to avoid build warning. */ dummy++; /* Wait until the data register is ready for transmit. */ while (!(base->S & kI2C_TransferCompleteFlag)) { } /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Setup the I2C peripheral to receive data. */ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* If rxSize equals 1, configure to send NAK. */ if (rxSize == 1) { /* Issue NACK on read. */ base->C1 |= I2C_C1_TXAK_MASK; } /* Do dummy read. */ dummy = base->D; while ((rxSize--)) { /* Wait until data transfer complete. */ while (!(base->S & kI2C_IntPendingFlag)) { } /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Single byte use case. */ if (rxSize == 0) { if (!(flags & kI2C_TransferNoStopFlag)) { /* Issue STOP command before reading last byte. */ result = I2C_MasterStop(base); } else { /* Change direction to Tx to avoid extra clocks. */ base->C1 |= I2C_C1_TX_MASK; } } if (rxSize == 1) { /* Issue NACK on read. */ base->C1 |= I2C_C1_TXAK_MASK; } /* Read from the data register. */ *rxBuff++ = base->D; } return result; } status_t I2C_MasterTransferBlocking(I2C_Type *base, i2c_master_transfer_t *xfer) { assert(xfer); i2c_direction_t direction = xfer->direction; status_t result = kStatus_Success; /* Clear all status before transfer. */ I2C_MasterClearStatusFlags(base, kClearFlags); /* Wait until ready to complete. */ while (!(base->S & kI2C_TransferCompleteFlag)) { } /* Change to send write address when it's a read operation with command. */ if ((xfer->subaddressSize > 0) && (xfer->direction == kI2C_Read)) { direction = kI2C_Write; } /* If repeated start is requested, send repeated start. */ if (xfer->flags & kI2C_TransferRepeatedStartFlag) { result = I2C_MasterRepeatedStart(base, xfer->slaveAddress, direction); } else /* For normal transfer, send start. */ { result = I2C_MasterStart(base, xfer->slaveAddress, direction); } /* Return if error. */ if (result) { return result; } while (!(base->S & kI2C_IntPendingFlag)) { } /* Check if there's transfer error. */ result = I2C_CheckAndClearError(base, base->S); /* Return if error. */ if (result) { if (result == kStatus_I2C_Nak) { result = kStatus_I2C_Addr_Nak; I2C_MasterStop(base); } return result; } /* Send subaddress. */ if (xfer->subaddressSize) { do { /* Clear interrupt pending flag. */ base->S = kI2C_IntPendingFlag; xfer->subaddressSize--; base->D = ((xfer->subaddress) >> (8 * xfer->subaddressSize)); /* Wait until data transfer complete. */ while (!(base->S & kI2C_IntPendingFlag)) { } /* Check if there's transfer error. */ result = I2C_CheckAndClearError(base, base->S); if (result) { if (result == kStatus_I2C_Nak) { I2C_MasterStop(base); } return result; } } while ((xfer->subaddressSize > 0) && (result == kStatus_Success)); if (xfer->direction == kI2C_Read) { /* Clear pending flag. */ base->S = kI2C_IntPendingFlag; /* Send repeated start and slave address. */ result = I2C_MasterRepeatedStart(base, xfer->slaveAddress, kI2C_Read); /* Return if error. */ if (result) { return result; } /* Wait until data transfer complete. */ while (!(base->S & kI2C_IntPendingFlag)) { } /* Check if there's transfer error. */ result = I2C_CheckAndClearError(base, base->S); if (result) { if (result == kStatus_I2C_Nak) { result = kStatus_I2C_Addr_Nak; I2C_MasterStop(base); } return result; } } } /* Transmit data. */ if ((xfer->direction == kI2C_Write) && (xfer->dataSize > 0)) { /* Send Data. */ result = I2C_MasterWriteBlocking(base, xfer->data, xfer->dataSize, xfer->flags); } /* Receive Data. */ if ((xfer->direction == kI2C_Read) && (xfer->dataSize > 0)) { result = I2C_MasterReadBlocking(base, xfer->data, xfer->dataSize, xfer->flags); } return result; } void I2C_MasterTransferCreateHandle(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_callback_t callback, void *userData) { assert(handle); uint32_t instance = I2C_GetInstance(base); /* Zero handle. */ memset(handle, 0, sizeof(*handle)); /* Set callback and userData. */ handle->completionCallback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ s_i2cHandle[instance] = handle; /* Save master interrupt handler. */ s_i2cMasterIsr = I2C_MasterTransferHandleIRQ; /* Enable NVIC interrupt. */ EnableIRQ(s_i2cIrqs[instance]); } status_t I2C_MasterTransferNonBlocking(I2C_Type *base, i2c_master_handle_t *handle, i2c_master_transfer_t *xfer) { assert(handle); assert(xfer); status_t result = kStatus_Success; /* Check if the I2C bus is idle - if not return busy status. */ if (handle->state != kIdleState) { result = kStatus_I2C_Busy; } else { /* Start up the master transfer state machine. */ result = I2C_InitTransferStateMachine(base, handle, xfer); if (result == kStatus_Success) { /* Enable the I2C interrupts. */ I2C_EnableInterrupts(base, kI2C_GlobalInterruptEnable); } } return result; } void I2C_MasterTransferAbort(I2C_Type *base, i2c_master_handle_t *handle) { assert(handle); volatile uint8_t dummy = 0; /* Add this to avoid build warning. */ dummy++; /* Disable interrupt. */ I2C_DisableInterrupts(base, kI2C_GlobalInterruptEnable); /* Reset the state to idle. */ handle->state = kIdleState; /* Send STOP signal. */ if (handle->transfer.direction == kI2C_Read) { base->C1 |= I2C_C1_TXAK_MASK; while (!(base->S & kI2C_IntPendingFlag)) { } base->S = kI2C_IntPendingFlag; base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); dummy = base->D; } else { while (!(base->S & kI2C_IntPendingFlag)) { } base->S = kI2C_IntPendingFlag; base->C1 &= ~(I2C_C1_MST_MASK | I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); } } status_t I2C_MasterTransferGetCount(I2C_Type *base, i2c_master_handle_t *handle, size_t *count) { assert(handle); if (!count) { return kStatus_InvalidArgument; } *count = handle->transferSize - handle->transfer.dataSize; return kStatus_Success; } void I2C_MasterTransferHandleIRQ(I2C_Type *base, void *i2cHandle) { assert(i2cHandle); i2c_master_handle_t *handle = (i2c_master_handle_t *)i2cHandle; status_t result = kStatus_Success; bool isDone; /* Clear the interrupt flag. */ base->S = kI2C_IntPendingFlag; /* Check transfer complete flag. */ result = I2C_MasterTransferRunStateMachine(base, handle, &isDone); if (isDone || result) { /* Send stop command if transfer done or received Nak. */ if ((!(handle->transfer.flags & kI2C_TransferNoStopFlag)) || (result == kStatus_I2C_Nak) || (result == kStatus_I2C_Addr_Nak)) { /* Ensure stop command is a need. */ if ((base->C1 & I2C_C1_MST_MASK)) { if (I2C_MasterStop(base) != kStatus_Success) { result = kStatus_I2C_Timeout; } } } /* Restore handle to idle state. */ handle->state = kIdleState; /* Disable interrupt. */ I2C_DisableInterrupts(base, kI2C_GlobalInterruptEnable); /* Call the callback function after the function has completed. */ if (handle->completionCallback) { handle->completionCallback(base, handle, result, handle->userData); } } } void I2C_SlaveInit(I2C_Type *base, const i2c_slave_config_t *slaveConfig, uint32_t srcClock_Hz) { assert(slaveConfig); uint8_t tmpReg; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_EnableClock(s_i2cClocks[I2C_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset the module. */ base->A1 = 0; base->F = 0; base->C1 = 0; base->S = 0xFFU; base->C2 = 0; #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT base->FLT = 0x50U; #elif defined(FSL_FEATURE_I2C_HAS_STOP_DETECT) && FSL_FEATURE_I2C_HAS_STOP_DETECT base->FLT = 0x40U; #endif base->RA = 0; /* Configure addressing mode. */ switch (slaveConfig->addressingMode) { case kI2C_Address7bit: base->A1 = ((uint32_t)(slaveConfig->slaveAddress)) << 1U; break; case kI2C_RangeMatch: assert(slaveConfig->slaveAddress < slaveConfig->upperAddress); base->A1 = ((uint32_t)(slaveConfig->slaveAddress)) << 1U; base->RA = ((uint32_t)(slaveConfig->upperAddress)) << 1U; base->C2 |= I2C_C2_RMEN_MASK; break; default: break; } /* Configure low power wake up feature. */ tmpReg = base->C1; tmpReg &= ~I2C_C1_WUEN_MASK; base->C1 = tmpReg | I2C_C1_WUEN(slaveConfig->enableWakeUp) | I2C_C1_IICEN(slaveConfig->enableSlave); /* Configure general call & baud rate control. */ tmpReg = base->C2; tmpReg &= ~(I2C_C2_SBRC_MASK | I2C_C2_GCAEN_MASK); tmpReg |= I2C_C2_SBRC(slaveConfig->enableBaudRateCtl) | I2C_C2_GCAEN(slaveConfig->enableGeneralCall); base->C2 = tmpReg; /* Enable/Disable double buffering. */ #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE tmpReg = base->S2 & (~I2C_S2_DFEN_MASK); base->S2 = tmpReg | I2C_S2_DFEN(slaveConfig->enableDoubleBuffering); #endif /* Set hold time. */ I2C_SetHoldTime(base, slaveConfig->sclStopHoldTime_ns, srcClock_Hz); } void I2C_SlaveDeinit(I2C_Type *base) { /* Disable I2C module. */ I2C_Enable(base, false); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disable I2C clock. */ CLOCK_DisableClock(s_i2cClocks[I2C_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void I2C_SlaveGetDefaultConfig(i2c_slave_config_t *slaveConfig) { assert(slaveConfig); /* By default slave is addressed with 7-bit address. */ slaveConfig->addressingMode = kI2C_Address7bit; /* General call mode is disabled by default. */ slaveConfig->enableGeneralCall = false; /* Slave address match waking up MCU from low power mode is disabled. */ slaveConfig->enableWakeUp = false; /* Independent slave mode baud rate at maximum frequency is disabled. */ slaveConfig->enableBaudRateCtl = false; /* Default enable double buffering. */ #if defined(FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE) && FSL_FEATURE_I2C_HAS_DOUBLE_BUFFER_ENABLE slaveConfig->enableDoubleBuffering = true; #endif /* Set default SCL stop hold time to 4us which is minimum requirement in I2C spec. */ slaveConfig->sclStopHoldTime_ns = 4000; /* Enable the I2C peripheral. */ slaveConfig->enableSlave = true; } status_t I2C_SlaveWriteBlocking(I2C_Type *base, const uint8_t *txBuff, size_t txSize) { status_t result = kStatus_Success; volatile uint8_t dummy = 0; /* Add this to avoid build warning. */ dummy++; #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT /* Check start flag. */ while (!(base->FLT & I2C_FLT_STARTF_MASK)) { } /* Clear STARTF flag. */ base->FLT |= I2C_FLT_STARTF_MASK; /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ /* Wait for address match flag. */ while (!(base->S & kI2C_AddressMatchFlag)) { } /* Read dummy to release bus. */ dummy = base->D; result = I2C_MasterWriteBlocking(base, txBuff, txSize, kI2C_TransferDefaultFlag); /* Switch to receive mode. */ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Read dummy to release bus. */ dummy = base->D; return result; } void I2C_SlaveReadBlocking(I2C_Type *base, uint8_t *rxBuff, size_t rxSize) { volatile uint8_t dummy = 0; /* Add this to avoid build warning. */ dummy++; /* Wait until address match. */ #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT /* Check start flag. */ while (!(base->FLT & I2C_FLT_STARTF_MASK)) { } /* Clear STARTF flag. */ base->FLT |= I2C_FLT_STARTF_MASK; /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ /* Wait for address match and int pending flag. */ while (!(base->S & kI2C_AddressMatchFlag)) { } while (!(base->S & kI2C_IntPendingFlag)) { } /* Read dummy to release bus. */ dummy = base->D; /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Setup the I2C peripheral to receive data. */ base->C1 &= ~(I2C_C1_TX_MASK); while (rxSize--) { /* Wait until data transfer complete. */ while (!(base->S & kI2C_IntPendingFlag)) { } /* Clear the IICIF flag. */ base->S = kI2C_IntPendingFlag; /* Read from the data register. */ *rxBuff++ = base->D; } } void I2C_SlaveTransferCreateHandle(I2C_Type *base, i2c_slave_handle_t *handle, i2c_slave_transfer_callback_t callback, void *userData) { assert(handle); uint32_t instance = I2C_GetInstance(base); /* Zero handle. */ memset(handle, 0, sizeof(*handle)); /* Set callback and userData. */ handle->callback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ s_i2cHandle[instance] = handle; /* Save slave interrupt handler. */ s_i2cSlaveIsr = I2C_SlaveTransferHandleIRQ; /* Enable NVIC interrupt. */ EnableIRQ(s_i2cIrqs[instance]); } status_t I2C_SlaveTransferNonBlocking(I2C_Type *base, i2c_slave_handle_t *handle, uint32_t eventMask) { assert(handle); /* Check if the I2C bus is idle - if not return busy status. */ if (handle->isBusy) { return kStatus_I2C_Busy; } else { /* Disable LPI2C IRQ sources while we configure stuff. */ I2C_DisableInterrupts(base, kIrqFlags); /* Clear transfer in handle. */ memset(&handle->transfer, 0, sizeof(handle->transfer)); /* Record that we're busy. */ handle->isBusy = true; /* Set up event mask. tx and rx are always enabled. */ handle->eventMask = eventMask | kI2C_SlaveTransmitEvent | kI2C_SlaveReceiveEvent | kI2C_SlaveGenaralcallEvent; /* Clear all flags. */ I2C_SlaveClearStatusFlags(base, kClearFlags); /* Enable I2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */ I2C_EnableInterrupts(base, kIrqFlags); } return kStatus_Success; } void I2C_SlaveTransferAbort(I2C_Type *base, i2c_slave_handle_t *handle) { assert(handle); if (handle->isBusy) { /* Disable interrupts. */ I2C_DisableInterrupts(base, kIrqFlags); /* Reset transfer info. */ memset(&handle->transfer, 0, sizeof(handle->transfer)); /* Reset the state to idle. */ handle->isBusy = false; } } status_t I2C_SlaveTransferGetCount(I2C_Type *base, i2c_slave_handle_t *handle, size_t *count) { assert(handle); if (!count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (!handle->isBusy) { *count = 0; return kStatus_NoTransferInProgress; } /* For an active transfer, just return the count from the handle. */ *count = handle->transfer.transferredCount; return kStatus_Success; } void I2C_SlaveTransferHandleIRQ(I2C_Type *base, void *i2cHandle) { assert(i2cHandle); uint16_t status; bool doTransmit = false; i2c_slave_handle_t *handle = (i2c_slave_handle_t *)i2cHandle; i2c_slave_transfer_t *xfer; volatile uint8_t dummy = 0; /* Add this to avoid build warning. */ dummy++; status = I2C_SlaveGetStatusFlags(base); xfer = &(handle->transfer); #ifdef I2C_HAS_STOP_DETECT /* Check stop flag. */ if (status & kI2C_StopDetectFlag) { I2C_MasterClearStatusFlags(base, kI2C_StopDetectFlag); /* Clear the interrupt flag. */ base->S = kI2C_IntPendingFlag; /* Call slave callback if this is the STOP of the transfer. */ if (handle->isBusy) { xfer->event = kI2C_SlaveCompletionEvent; xfer->completionStatus = kStatus_Success; handle->isBusy = false; if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } } if (!(status & kI2C_AddressMatchFlag)) { return; } } #endif /* I2C_HAS_STOP_DETECT */ #if defined(FSL_FEATURE_I2C_HAS_START_STOP_DETECT) && FSL_FEATURE_I2C_HAS_START_STOP_DETECT /* Check start flag. */ if (status & kI2C_StartDetectFlag) { I2C_MasterClearStatusFlags(base, kI2C_StartDetectFlag); /* Clear the interrupt flag. */ base->S = kI2C_IntPendingFlag; xfer->event = kI2C_SlaveStartEvent; if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } if (!(status & kI2C_AddressMatchFlag)) { return; } } #endif /* FSL_FEATURE_I2C_HAS_START_STOP_DETECT */ /* Clear the interrupt flag. */ base->S = kI2C_IntPendingFlag; /* Check NAK */ if (status & kI2C_ReceiveNakFlag) { /* Set receive mode. */ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Read dummy. */ dummy = base->D; if (handle->transfer.dataSize != 0) { xfer->event = kI2C_SlaveCompletionEvent; xfer->completionStatus = kStatus_I2C_Nak; handle->isBusy = false; if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } } else { #ifndef I2C_HAS_STOP_DETECT xfer->event = kI2C_SlaveCompletionEvent; xfer->completionStatus = kStatus_Success; handle->isBusy = false; if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } #endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */ } } /* Check address match. */ else if (status & kI2C_AddressMatchFlag) { handle->isBusy = true; xfer->event = kI2C_SlaveAddressMatchEvent; /* Slave transmit, master reading from slave. */ if (status & kI2C_TransferDirectionFlag) { /* Change direction to send data. */ base->C1 |= I2C_C1_TX_MASK; doTransmit = true; } else { /* Slave receive, master writing to slave. */ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Read dummy to release the bus. */ dummy = base->D; if (dummy == 0) { xfer->event = kI2C_SlaveGenaralcallEvent; } } if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } } /* Check transfer complete flag. */ else if (status & kI2C_TransferCompleteFlag) { /* Slave transmit, master reading from slave. */ if (status & kI2C_TransferDirectionFlag) { doTransmit = true; } else { /* If we're out of data, invoke callback to get more. */ if ((!xfer->data) || (!xfer->dataSize)) { xfer->event = kI2C_SlaveReceiveEvent; if (handle->callback) { handle->callback(base, xfer, handle->userData); } /* Clear the transferred count now that we have a new buffer. */ xfer->transferredCount = 0; } /* Slave receive, master writing to slave. */ uint8_t data = base->D; if (handle->transfer.dataSize) { /* Receive data. */ *handle->transfer.data++ = data; handle->transfer.dataSize--; xfer->transferredCount++; if (!handle->transfer.dataSize) { #ifndef I2C_HAS_STOP_DETECT xfer->event = kI2C_SlaveCompletionEvent; xfer->completionStatus = kStatus_Success; handle->isBusy = false; /* Proceed receive complete event. */ if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } #endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */ } } } } else { /* Read dummy to release bus. */ dummy = base->D; } /* Send data if there is the need. */ if (doTransmit) { /* If we're out of data, invoke callback to get more. */ if ((!xfer->data) || (!xfer->dataSize)) { xfer->event = kI2C_SlaveTransmitEvent; if (handle->callback) { handle->callback(base, xfer, handle->userData); } /* Clear the transferred count now that we have a new buffer. */ xfer->transferredCount = 0; } if (handle->transfer.dataSize) { /* Send data. */ base->D = *handle->transfer.data++; handle->transfer.dataSize--; xfer->transferredCount++; } else { /* Switch to receive mode. */ base->C1 &= ~(I2C_C1_TX_MASK | I2C_C1_TXAK_MASK); /* Read dummy to release bus. */ dummy = base->D; #ifndef I2C_HAS_STOP_DETECT xfer->event = kI2C_SlaveCompletionEvent; xfer->completionStatus = kStatus_Success; handle->isBusy = false; /* Proceed txdone event. */ if ((handle->eventMask & xfer->event) && (handle->callback)) { handle->callback(base, xfer, handle->userData); } #endif /* !FSL_FEATURE_I2C_HAS_START_STOP_DETECT or !FSL_FEATURE_I2C_HAS_STOP_DETECT */ } } } #if defined(I2C0) void I2C0_DriverIRQHandler(void) { I2C_TransferCommonIRQHandler(I2C0, s_i2cHandle[0]); } #endif #if defined(I2C1) void I2C1_DriverIRQHandler(void) { I2C_TransferCommonIRQHandler(I2C1, s_i2cHandle[1]); } #endif #if defined(I2C2) void I2C2_DriverIRQHandler(void) { I2C_TransferCommonIRQHandler(I2C2, s_i2cHandle[2]); } #endif #if defined(I2C3) void I2C3_DriverIRQHandler(void) { I2C_TransferCommonIRQHandler(I2C3, s_i2cHandle[3]); } #endif |