Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_dspi.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/
/*! @brief Typedef for master interrupt handler. */
typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
 * @brief Get instance number for DSPI module.
 *
 * @param base DSPI peripheral base address.
 */
uint32_t DSPI_GetInstance(SPI_Type *base);

/*!
 * @brief Configures the DSPI peripheral chip select polarity.
 *
 * This function  takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
 * configures the Pcs signal to operate with the desired characteristic.
 *
 * @param base DSPI peripheral address.
 * @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to
 *            apply the active high or active low characteristic.
 * @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or "active low, inactive high(1)" of
 *                        type dspi_pcs_polarity_config_t.
 */
static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh);

/*!
 * @brief Master fill up the TX FIFO with data.
 * This is not a public API.
 */
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);

/*!
 * @brief Master finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);

/*!
 * @brief Slave fill up the TX FIFO with data.
 * This is not a public API.
 */
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);

/*!
 * @brief Slave finish up a transfer.
 * It would call back if there is callback function and set the state to idle.
 * This is not a public API.
 */
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);

/*!
 * @brief DSPI common interrupt handler.
 *
 * @param base DSPI peripheral address.
 * @param handle pointer to g_dspiHandle which stores the transfer state.
 */
static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);

/*!
 * @brief Master prepare the transfer.
 * Basically it set up dspi_master_handle .
 * This is not a public API.
 */
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
static const uint32_t s_baudrateScaler[] = {2,   4,   6,    8,    16,   32,   64,    128,
                                            256, 512, 1024, 2048, 4096, 8192, 16384, 32768};

static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
static const uint32_t s_delayScaler[] = {2,   4,    8,    16,   32,   64,    128,   256,
                                         512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};

/*! @brief Pointers to dspi bases for each instance. */
static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;

/*! @brief Pointers to dspi IRQ number for each instance. */
static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to dspi clocks for each instance. */
static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointers to dspi handles for each instance. */
static void *g_dspiHandle[ARRAY_SIZE(s_dspiBases)];

/*! @brief Pointer to master IRQ handler for each instance. */
static dspi_master_isr_t s_dspiMasterIsr;

/*! @brief Pointer to slave IRQ handler for each instance. */
static dspi_slave_isr_t s_dspiSlaveIsr;

/**********************************************************************************************************************
* Code
*********************************************************************************************************************/
uint32_t DSPI_GetInstance(SPI_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < ARRAY_SIZE(s_dspiBases); instance++)
    {
        if (s_dspiBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < ARRAY_SIZE(s_dspiBases));

    return instance;
}

void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
    assert(masterConfig);

    uint32_t temp;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* enable DSPI clock */
    CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    DSPI_Enable(base, true);
    DSPI_StopTransfer(base);

    DSPI_SetMasterSlaveMode(base, kDSPI_Master);

    temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
                          SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));

    base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
                SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
                SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
                SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);

    DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);

    if (0 == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz))
    {
        assert(false);
    }

    temp = base->CTAR[masterConfig->whichCtar] &
           ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);

    base->CTAR[masterConfig->whichCtar] =
        temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1) | SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
        SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) | SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);

    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz,
                             masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz,
                             masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
    DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
                             masterConfig->ctarConfig.betweenTransferDelayInNanoSec);

    DSPI_StartTransfer(base);
}

void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
{
    assert(masterConfig);

    masterConfig->whichCtar = kDSPI_Ctar0;
    masterConfig->ctarConfig.baudRate = 500000;
    masterConfig->ctarConfig.bitsPerFrame = 8;
    masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
    masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
    masterConfig->ctarConfig.direction = kDSPI_MsbFirst;

    masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
    masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
    masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;

    masterConfig->whichPcs = kDSPI_Pcs0;
    masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;

    masterConfig->enableContinuousSCK = false;
    masterConfig->enableRxFifoOverWrite = false;
    masterConfig->enableModifiedTimingFormat = false;
    masterConfig->samplePoint = kDSPI_SckToSin0Clock;
}

void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

    uint32_t temp = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* enable DSPI clock */
    CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    DSPI_Enable(base, true);
    DSPI_StopTransfer(base);

    DSPI_SetMasterSlaveMode(base, kDSPI_Slave);

    temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
                          SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));

    base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
                SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
                SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
                SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);

    DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);

    temp = base->CTAR[slaveConfig->whichCtar] &
           ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);

    base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1) |
                                         SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
                                         SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);

    DSPI_StartTransfer(base);
}

void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
{
    assert(slaveConfig);

    slaveConfig->whichCtar = kDSPI_Ctar0;
    slaveConfig->ctarConfig.bitsPerFrame = 8;
    slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
    slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;

    slaveConfig->enableContinuousSCK = false;
    slaveConfig->enableRxFifoOverWrite = false;
    slaveConfig->enableModifiedTimingFormat = false;
    slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
}

void DSPI_Deinit(SPI_Type *base)
{
    DSPI_StopTransfer(base);
    DSPI_Enable(base, false);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* disable DSPI clock */
    CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh)
{
    uint32_t temp;

    temp = base->MCR;

    if (activeLowOrHigh == kDSPI_PcsActiveLow)
    {
        temp |= SPI_MCR_PCSIS(pcs);
    }
    else
    {
        temp &= ~SPI_MCR_PCSIS(pcs);
    }

    base->MCR = temp;
}

uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
                                dspi_ctar_selection_t whichCtar,
                                uint32_t baudRate_Bps,
                                uint32_t srcClock_Hz)
{
    /* for master mode configuration, if slave mode detected, return 0*/
    if (!DSPI_IsMaster(base))
    {
        return 0;
    }
    uint32_t temp;
    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t dbr, bestDbr;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t baudrate = baudRate_Bps;

    /* find combination of prescaler and scaler resulting in baudrate closest to the requested value */
    min_diff = 0xFFFFFFFFU;
    bestPrescaler = 0;
    bestScaler = 0;
    bestDbr = 1;
    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
        {
            for (dbr = 1; (dbr < 3) && min_diff; dbr++)
            {
                realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));

                /* calculate the baud rate difference based on the conditional statement that states that the calculated
                * baud rate must not exceed the desired baud rate.
                */
                if (baudrate >= realBaudrate)
                {
                    diff = baudrate - realBaudrate;
                    if (min_diff > diff)
                    {
                        /* a better match found */
                        min_diff = diff;
                        bestPrescaler = prescaler;
                        bestScaler = scaler;
                        bestBaudrate = realBaudrate;
                        bestDbr = dbr;
                    }
                }
            }
        }
    }

    /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
    temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK);

    base->CTAR[whichCtar] = temp | ((bestDbr - 1) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) |
                            (bestScaler << SPI_CTAR_BR_SHIFT);

    /* return the actual calculated baud rate */
    return bestBaudrate;
}

void DSPI_MasterSetDelayScaler(
    SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)
{
    /* these settings are only relevant in master mode */
    if (DSPI_IsMaster(base))
    {
        switch (whichDelay)
        {
            case kDSPI_PcsToSck:
                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
                                        SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler);
                break;
            case kDSPI_LastSckToPcs:
                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
                                        SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler);
                break;
            case kDSPI_BetweenTransfer:
                base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
                                        SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler);
                break;
            default:
                break;
        }
    }
}

uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
                                  dspi_ctar_selection_t whichCtar,
                                  dspi_delay_type_t whichDelay,
                                  uint32_t srcClock_Hz,
                                  uint32_t delayTimeInNanoSec)
{
    /* for master mode configuration, if slave mode detected, return 0 */
    if (!DSPI_IsMaster(base))
    {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t realDelay, bestDelay;
    uint32_t diff, min_diff;
    uint32_t initialDelayNanoSec;

    /* find combination of prescaler and scaler resulting in the delay closest to the
    * requested value
    */
    min_diff = 0xFFFFFFFFU;
    /* Initialize prescaler and scaler to their max values to generate the max delay */
    bestPrescaler = 0x3;
    bestScaler = 0xF;
    bestDelay = (((1000000000U * 4) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4;

    /* First calculate the initial, default delay */
    initialDelayNanoSec = 1000000000U / srcClock_Hz * 2;

    /* If the initial, default delay is already greater than the desired delay, then
    * set the delays to their initial value (0) and return the delay. In other words,
    * there is no way to decrease the delay value further.
    */
    if (initialDelayNanoSec >= delayTimeInNanoSec)
    {
        DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
        return initialDelayNanoSec;
    }

    /* In all for loops, if min_diff = 0, the exit for loop */
    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
        {
            realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4;

            /* calculate the delay difference based on the conditional statement
            * that states that the calculated delay must not be less then the desired delay
            */
            if (realDelay >= delayTimeInNanoSec)
            {
                diff = realDelay - delayTimeInNanoSec;
                if (min_diff > diff)
                {
                    /* a better match found */
                    min_diff = diff;
                    bestPrescaler = prescaler;
                    bestScaler = scaler;
                    bestDelay = realDelay;
                }
            }
        }
    }

    /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
    DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay);

    /* return the actual calculated baud rate */
    return bestDelay;
}

void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
{
    assert(command);

    command->isPcsContinuous = false;
    command->whichCtar = kDSPI_Ctar0;
    command->whichPcs = kDSPI_Pcs0;
    command->isEndOfQueue = false;
    command->clearTransferCount = false;
}

void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)
{
    assert(command);

    /* First, clear Transmit Complete Flag (TCF) */
    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);

    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
    {
        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
    }

    base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) |
                  SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) |
                  SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data);
    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

    /* Wait till TCF sets */
    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
    {
    }
}

void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
{
    /* First, clear Transmit Complete Flag (TCF) */
    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);

    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
    {
        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
    }

    base->PUSHR = data;

    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

    /* Wait till TCF sets */
    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
    {
    }
}

void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
{
    /* First, clear Transmit Complete Flag (TCF) */
    DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);

    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
    {
        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
    }

    base->PUSHR_SLAVE = data;

    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

    /* Wait till TCF sets */
    while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
    {
    }
}

void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
{
    if (mask & SPI_RSER_TFFF_RE_MASK)
    {
        base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
    }
    if (mask & SPI_RSER_RFDF_RE_MASK)
    {
        base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
    }
    base->RSER |= mask;
}

/*Transactional APIs -- Master*/

void DSPI_MasterTransferCreateHandle(SPI_Type *base,
                                     dspi_master_handle_t *handle,
                                     dspi_master_transfer_callback_t callback,
                                     void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    g_dspiHandle[DSPI_GetInstance(base)] = handle;

    handle->callback = callback;
    handle->userData = userData;
}

status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
{
    assert(transfer);

    uint16_t wordToSend = 0;
    uint16_t wordReceived = 0;
    uint8_t dummyData = DSPI_DUMMY_DATA;
    uint8_t bitsPerFrame;

    uint32_t command;
    uint32_t lastCommand;

    uint8_t *txData;
    uint8_t *rxData;
    uint32_t remainingSendByteCount;
    uint32_t remainingReceiveByteCount;

    uint32_t fifoSize;
    dspi_command_data_config_t commandStruct;

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0)
    {
        return kStatus_InvalidArgument;
    }

    DSPI_StopTransfer(base);
    DSPI_DisableInterrupts(base, kDSPI_AllInterruptEnable);
    DSPI_FlushFifo(base, true, true);
    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);

    /*Calculate the command and lastCommand*/
    commandStruct.whichPcs =
        (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
    commandStruct.isEndOfQueue = false;
    commandStruct.clearTransferCount = false;
    commandStruct.whichCtar =
        (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);

    command = DSPI_MasterGetFormattedCommand(&(commandStruct));

    commandStruct.isEndOfQueue = true;
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
    lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));

    /*Calculate the bitsPerFrame*/
    bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;

    txData = transfer->txData;
    rxData = transfer->rxData;
    remainingSendByteCount = transfer->dataSize;
    remainingReceiveByteCount = transfer->dataSize;

    if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
    {
        fifoSize = 1;
    }
    else
    {
        fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
    }

    DSPI_StartTransfer(base);

    if (bitsPerFrame <= 8)
    {
        while (remainingSendByteCount > 0)
        {
            if (remainingSendByteCount == 1)
            {
                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
                {
                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                }

                if (txData != NULL)
                {
                    base->PUSHR = (*txData) | (lastCommand);
                    txData++;
                }
                else
                {
                    base->PUSHR = (lastCommand) | (dummyData);
                }
                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                remainingSendByteCount--;

                while (remainingReceiveByteCount > 0)
                {
                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
                    {
                        if (rxData != NULL)
                        {
                            /* Read data from POPR*/
                            *(rxData) = DSPI_ReadData(base);
                            rxData++;
                        }
                        else
                        {
                            DSPI_ReadData(base);
                        }
                        remainingReceiveByteCount--;

                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
                    }
                }
            }
            else
            {
                /*Wait until Tx Fifo is not full*/
                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
                {
                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                }
                if (txData != NULL)
                {
                    base->PUSHR = command | (uint16_t)(*txData);
                    txData++;
                }
                else
                {
                    base->PUSHR = command | dummyData;
                }
                remainingSendByteCount--;

                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

                while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize)
                {
                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
                    {
                        if (rxData != NULL)
                        {
                            *(rxData) = DSPI_ReadData(base);
                            rxData++;
                        }
                        else
                        {
                            DSPI_ReadData(base);
                        }
                        remainingReceiveByteCount--;

                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
                    }
                }
            }
        }
    }
    else
    {
        while (remainingSendByteCount > 0)
        {
            if (remainingSendByteCount <= 2)
            {
                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
                {
                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                }

                if (txData != NULL)
                {
                    wordToSend = *(txData);
                    ++txData;

                    if (remainingSendByteCount > 1)
                    {
                        wordToSend |= (unsigned)(*(txData)) << 8U;
                        ++txData;
                    }
                }
                else
                {
                    wordToSend = dummyData;
                }

                base->PUSHR = lastCommand | wordToSend;

                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                remainingSendByteCount = 0;

                while (remainingReceiveByteCount > 0)
                {
                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
                    {
                        wordReceived = DSPI_ReadData(base);

                        if (remainingReceiveByteCount != 1)
                        {
                            if (rxData != NULL)
                            {
                                *(rxData) = wordReceived;
                                ++rxData;
                                *(rxData) = wordReceived >> 8;
                                ++rxData;
                            }
                            remainingReceiveByteCount -= 2;
                        }
                        else
                        {
                            if (rxData != NULL)
                            {
                                *(rxData) = wordReceived;
                                ++rxData;
                            }
                            remainingReceiveByteCount--;
                        }
                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
                    }
                }
            }
            else
            {
                /*Wait until Tx Fifo is not full*/
                while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
                {
                    DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
                }

                if (txData != NULL)
                {
                    wordToSend = *(txData);
                    ++txData;
                    wordToSend |= (unsigned)(*(txData)) << 8U;
                    ++txData;
                }
                else
                {
                    wordToSend = dummyData;
                }
                base->PUSHR = command | wordToSend;
                remainingSendByteCount -= 2;

                DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

                while (((remainingReceiveByteCount - remainingSendByteCount) / 2) >= fifoSize)
                {
                    if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
                    {
                        wordReceived = DSPI_ReadData(base);

                        if (rxData != NULL)
                        {
                            *rxData = wordReceived;
                            ++rxData;
                            *rxData = wordReceived >> 8;
                            ++rxData;
                        }
                        remainingReceiveByteCount -= 2;

                        DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
                    }
                }
            }
        }
    }

    return kStatus_Success;
}

static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    dspi_command_data_config_t commandStruct;

    DSPI_StopTransfer(base);
    DSPI_FlushFifo(base, true, true);
    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);

    commandStruct.whichPcs =
        (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
    commandStruct.isEndOfQueue = false;
    commandStruct.clearTransferCount = false;
    commandStruct.whichCtar =
        (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous);
    handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));

    commandStruct.isEndOfQueue = true;
    commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer);
    handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));

    handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;

    if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK))
    {
        handle->fifoSize = 1;
    }
    else
    {
        handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
    }
    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->remainingSendByteCount = transfer->dataSize;
    handle->remainingReceiveByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;
}

status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    /* If the transfer count is zero, then return immediately.*/
    if (transfer->dataSize == 0)
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kDSPI_Busy)
    {
        return kStatus_DSPI_Busy;
    }

    handle->state = kDSPI_Busy;

    DSPI_MasterTransferPrepare(base, handle, transfer);
    DSPI_StartTransfer(base);

    /* Enable the NVIC for DSPI peripheral. */
    EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);

    DSPI_MasterTransferFillUpTxFifo(base, handle);

    /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
    * Since SPI is a synchronous interface, we only need to enable the RX interrupt.
    * The IRQ handler will get the status of RX and TX interrupt flags.
    */
    s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;

    DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);

    return kStatus_Success;
}

status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kDSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    *count = handle->totalByteCount - handle->remainingReceiveByteCount;
    return kStatus_Success;
}

static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests*/
    DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);

    status_t status = 0;
    if (handle->state == kDSPI_Error)
    {
        status = kStatus_DSPI_Error;
    }
    else
    {
        status = kStatus_Success;
    }

    handle->state = kDSPI_Idle;

    if (handle->callback)
    {
        handle->callback(base, handle, status, handle->userData);
    }
}

static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
{
    assert(handle);

    uint16_t wordToSend = 0;
    uint8_t dummyData = DSPI_DUMMY_DATA;

    /* If bits/frame is greater than one byte */
    if (handle->bitsPerFrame > 8)
    {
        /* Fill the fifo until it is full or until the send word count is 0 or until the difference
        * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
        * The reason for checking the difference is to ensure we only send as much as the
        * RX FIFO can receive.
        * For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the
        * send data, hence the difference between the remainingReceiveByteCount and
        * remainingSendByteCount must be divided by 2 to convert this difference into a
        * 16-bit (2 byte) value.
        */
        while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
               ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) / 2 < handle->fifoSize))
        {
            if (handle->remainingSendByteCount <= 2)
            {
                if (handle->txData)
                {
                    if (handle->remainingSendByteCount == 1)
                    {
                        wordToSend = *(handle->txData);
                    }
                    else
                    {
                        wordToSend = *(handle->txData);
                        ++handle->txData; /* increment to next data byte */
                        wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                    }
                }
                else
                {
                    wordToSend = dummyData;
                }
                handle->remainingSendByteCount = 0;
                base->PUSHR = handle->lastCommand | wordToSend;
            }
            /* For all words except the last word */
            else
            {
                if (handle->txData)
                {
                    wordToSend = *(handle->txData);
                    ++handle->txData; /* increment to next data byte */
                    wordToSend |= (unsigned)(*(handle->txData)) << 8U;
                    ++handle->txData; /* increment to next data byte */
                }
                else
                {
                    wordToSend = dummyData;
                }
                handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */
                base->PUSHR = handle->command | wordToSend;
            }

            /* Try to clear the TFFF; if the TX FIFO is full this will clear */
            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

            /* exit loop if send count is zero, else update local variables for next loop */
            if (handle->remainingSendByteCount == 0)
            {
                break;
            }
        } /* End of TX FIFO fill while loop */
    }
    /* Optimized for bits/frame less than or equal to one byte. */
    else
    {
        /* Fill the fifo until it is full or until the send word count is 0 or until the difference
        * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
        * The reason for checking the difference is to ensure we only send as much as the
        * RX FIFO can receive.
        */
        while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
               ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) < handle->fifoSize))
        {
            if (handle->txData)
            {
                wordToSend = *(handle->txData);
                ++handle->txData;
            }
            else
            {
                wordToSend = dummyData;
            }

            if (handle->remainingSendByteCount == 1)
            {
                base->PUSHR = handle->lastCommand | wordToSend;
            }
            else
            {
                base->PUSHR = handle->command | wordToSend;
            }

            /* Try to clear the TFFF; if the TX FIFO is full this will clear */
            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

            --handle->remainingSendByteCount;

            /* exit loop if send count is zero, else update local variables for next loop */
            if (handle->remainingSendByteCount == 0)
            {
                break;
            }
        }
    }
}

void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
{
    assert(handle);

    DSPI_StopTransfer(base);

    /* Disable interrupt requests*/
    DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable);

    handle->state = kDSPI_Idle;
}

void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
{
    assert(handle);

    /* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */
    if (handle->remainingReceiveByteCount)
    {
        /* Check read buffer.*/
        uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */

        /* If bits/frame is greater than one byte */
        if (handle->bitsPerFrame > 8)
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
            {
                wordReceived = DSPI_ReadData(base);
                /* clear the rx fifo drain request, needed for non-DMA applications as this flag
                * will remain set even if the rx fifo is empty. By manually clearing this flag, it
                * either remain clear if no more data is in the fifo, or it will set if there is
                * more data in the fifo.
                */
                DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);

                /* Store read bytes into rx buffer only if a buffer pointer was provided */
                if (handle->rxData)
                {
                    /* For the last word received, if there is an extra byte due to the odd transfer
                    * byte count, only save the the last byte and discard the upper byte
                    */
                    if (handle->remainingReceiveByteCount == 1)
                    {
                        *handle->rxData = wordReceived; /* Write first data byte */
                        --handle->remainingReceiveByteCount;
                    }
                    else
                    {
                        *handle->rxData = wordReceived;      /* Write first data byte */
                        ++handle->rxData;                    /* increment to next data byte */
                        *handle->rxData = wordReceived >> 8; /* Write second data byte */
                        ++handle->rxData;                    /* increment to next data byte */
                        handle->remainingReceiveByteCount -= 2;
                    }
                }
                else
                {
                    if (handle->remainingReceiveByteCount == 1)
                    {
                        --handle->remainingReceiveByteCount;
                    }
                    else
                    {
                        handle->remainingReceiveByteCount -= 2;
                    }
                }
                if (handle->remainingReceiveByteCount == 0)
                {
                    break;
                }
            } /* End of RX FIFO drain while loop */
        }
        /* Optimized for bits/frame less than or equal to one byte. */
        else
        {
            while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
            {
                wordReceived = DSPI_ReadData(base);
                /* clear the rx fifo drain request, needed for non-DMA applications as this flag
                * will remain set even if the rx fifo is empty. By manually clearing this flag, it
                * either remain clear if no more data is in the fifo, or it will set if there is
                * more data in the fifo.
                */
                DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);

                /* Store read bytes into rx buffer only if a buffer pointer was provided */
                if (handle->rxData)
                {
                    *handle->rxData = wordReceived;
                    ++handle->rxData;
                }

                --handle->remainingReceiveByteCount;

                if (handle->remainingReceiveByteCount == 0)
                {
                    break;
                }
            } /* End of RX FIFO drain while loop */
        }
    }

    /* Check write buffer. We always have to send a word in order to keep the transfer
    * moving. So if the caller didn't provide a send buffer, we just send a zero.
    */
    if (handle->remainingSendByteCount)
    {
        DSPI_MasterTransferFillUpTxFifo(base, handle);
    }

    /* Check if we're done with this transfer.*/
    if ((handle->remainingSendByteCount == 0) && (handle->remainingReceiveByteCount == 0))
    {
        /* Complete the transfer and disable the interrupts */
        DSPI_MasterTransferComplete(base, handle);
    }
}

/*Transactional APIs -- Slave*/
void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
                                    dspi_slave_handle_t *handle,
                                    dspi_slave_transfer_callback_t callback,
                                    void *userData)
{
    assert(handle);

    /* Zero the handle. */
    memset(handle, 0, sizeof(*handle));

    g_dspiHandle[DSPI_GetInstance(base)] = handle;

    handle->callback = callback;
    handle->userData = userData;
}

status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)
{
    assert(handle);
    assert(transfer);

    /* If receive length is zero */
    if (transfer->dataSize == 0)
    {
        return kStatus_InvalidArgument;
    }

    /* If both send buffer and receive buffer is null */
    if ((!(transfer->txData)) && (!(transfer->rxData)))
    {
        return kStatus_InvalidArgument;
    }

    /* Check that we're not busy.*/
    if (handle->state == kDSPI_Busy)
    {
        return kStatus_DSPI_Busy;
    }
    handle->state = kDSPI_Busy;

    /* Enable the NVIC for DSPI peripheral. */
    EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);

    /* Store transfer information */
    handle->txData = transfer->txData;
    handle->rxData = transfer->rxData;
    handle->remainingSendByteCount = transfer->dataSize;
    handle->remainingReceiveByteCount = transfer->dataSize;
    handle->totalByteCount = transfer->dataSize;

    handle->errorCount = 0;

    uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
    handle->bitsPerFrame =
        (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;

    DSPI_StopTransfer(base);

    DSPI_FlushFifo(base, true, true);
    DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);

    DSPI_StartTransfer(base);

    /* Prepare data to transmit */
    DSPI_SlaveTransferFillUpTxFifo(base, handle);

    s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;

    /* Enable RX FIFO drain request, the slave only use this interrupt */
    DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);

    if (handle->rxData)
    {
        /* RX FIFO overflow request enable */
        DSPI_EnableInterrupts(base, kDSPI_RxFifoOverflowInterruptEnable);
    }
    if (handle->txData)
    {
        /* TX FIFO underflow request enable */
        DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable);
    }

    return kStatus_Success;
}

status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state != kDSPI_Busy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    *count = handle->totalByteCount - handle->remainingReceiveByteCount;
    return kStatus_Success;
}

static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle)
{
    assert(handle);

    uint16_t transmitData = 0;
    uint8_t dummyPattern = DSPI_DUMMY_DATA;

    /* Service the transmitter, if transmit buffer provided, transmit the data,
    * else transmit dummy pattern
    */
    while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
    {
        /* Transmit data */
        if (handle->remainingSendByteCount > 0)
        {
            /* Have data to transmit, update the transmit data and push to FIFO */
            if (handle->bitsPerFrame <= 8)
            {
                /* bits/frame is 1 byte */
                if (handle->txData)
                {
                    /* Update transmit data and transmit pointer */
                    transmitData = *handle->txData;
                    handle->txData++;
                }
                else
                {
                    transmitData = dummyPattern;
                }

                /* Decrease remaining dataSize */
                --handle->remainingSendByteCount;
            }
            /* bits/frame is 2 bytes */
            else
            {
                /* With multibytes per frame transmission, the transmit frame contains data from
                * transmit buffer until sent dataSize matches user request. Other bytes will set to
                * dummy pattern value.
                */
                if (handle->txData)
                {
                    /* Update first byte of transmit data and transmit pointer */
                    transmitData = *handle->txData;
                    handle->txData++;

                    if (handle->remainingSendByteCount == 1)
                    {
                        /* Decrease remaining dataSize */
                        --handle->remainingSendByteCount;
                        /* Update second byte of transmit data to second byte of dummy pattern */
                        transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8);
                    }
                    else
                    {
                        /* Update second byte of transmit data and transmit pointer */
                        transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8);
                        handle->txData++;
                        handle->remainingSendByteCount -= 2;
                    }
                }
                else
                {
                    if (handle->remainingSendByteCount == 1)
                    {
                        --handle->remainingSendByteCount;
                    }
                    else
                    {
                        handle->remainingSendByteCount -= 2;
                    }
                    transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
                }
            }
        }
        else
        {
            break;
        }

        /* Write the data to the DSPI data register */
        base->PUSHR_SLAVE = transmitData;

        /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
        DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
    }
}

static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle)
{
    assert(handle);

    /* Disable interrupt requests */
    DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
                                     kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);

    /* The transfer is complete. */
    handle->txData = NULL;
    handle->rxData = NULL;
    handle->remainingReceiveByteCount = 0;
    handle->remainingSendByteCount = 0;

    status_t status = 0;
    if (handle->state == kDSPI_Error)
    {
        status = kStatus_DSPI_Error;
    }
    else
    {
        status = kStatus_Success;
    }

    handle->state = kDSPI_Idle;

    if (handle->callback)
    {
        handle->callback(base, handle, status, handle->userData);
    }
}

void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
{
    assert(handle);

    DSPI_StopTransfer(base);

    /* Disable interrupt requests */
    DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable |
                                     kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable);

    handle->state = kDSPI_Idle;
    handle->remainingSendByteCount = 0;
    handle->remainingReceiveByteCount = 0;
}

void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
{
    assert(handle);

    uint8_t dummyPattern = DSPI_DUMMY_DATA;
    uint32_t dataReceived;
    uint32_t dataSend = 0;

    /* Because SPI protocol is synchronous, the number of bytes that that slave received from the
    * master is the actual number of bytes that the slave transmitted to the master. So we only
    * monitor the received dataSize to know when the transfer is complete.
    */
    if (handle->remainingReceiveByteCount > 0)
    {
        while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
        {
            /* Have received data in the buffer. */
            dataReceived = base->POPR;
            /*Clear the rx fifo drain request, needed for non-DMA applications as this flag
            * will remain set even if the rx fifo is empty. By manually clearing this flag, it
            * either remain clear if no more data is in the fifo, or it will set if there is
            * more data in the fifo.
            */
            DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);

            /* If bits/frame is one byte */
            if (handle->bitsPerFrame <= 8)
            {
                if (handle->rxData)
                {
                    /* Receive buffer is not null, store data into it */
                    *handle->rxData = dataReceived;
                    ++handle->rxData;
                }
                /* Descrease remaining receive byte count */
                --handle->remainingReceiveByteCount;

                if (handle->remainingSendByteCount > 0)
                {
                    if (handle->txData)
                    {
                        dataSend = *handle->txData;
                        ++handle->txData;
                    }
                    else
                    {
                        dataSend = dummyPattern;
                    }

                    --handle->remainingSendByteCount;
                    /* Write the data to the DSPI data register */
                    base->PUSHR_SLAVE = dataSend;
                }
            }
            else /* If bits/frame is 2 bytes */
            {
                /* With multibytes frame receiving, we only receive till the received dataSize
                * matches user request. Other bytes will be ignored.
                */
                if (handle->rxData)
                {
                    /* Receive buffer is not null, store first byte into it */
                    *handle->rxData = dataReceived;
                    ++handle->rxData;

                    if (handle->remainingReceiveByteCount == 1)
                    {
                        /* Decrease remaining receive byte count */
                        --handle->remainingReceiveByteCount;
                    }
                    else
                    {
                        /* Receive buffer is not null, store second byte into it */
                        *handle->rxData = dataReceived >> 8;
                        ++handle->rxData;
                        handle->remainingReceiveByteCount -= 2;
                    }
                }
                /* If no handle->rxData*/
                else
                {
                    if (handle->remainingReceiveByteCount == 1)
                    {
                        /* Decrease remaining receive byte count */
                        --handle->remainingReceiveByteCount;
                    }
                    else
                    {
                        handle->remainingReceiveByteCount -= 2;
                    }
                }

                if (handle->remainingSendByteCount > 0)
                {
                    if (handle->txData)
                    {
                        dataSend = *handle->txData;
                        ++handle->txData;

                        if (handle->remainingSendByteCount == 1)
                        {
                            --handle->remainingSendByteCount;
                            dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8);
                        }
                        else
                        {
                            dataSend |= (uint32_t)(*handle->txData) << 8;
                            ++handle->txData;
                            handle->remainingSendByteCount -= 2;
                        }
                    }
                    /* If no handle->txData*/
                    else
                    {
                        if (handle->remainingSendByteCount == 1)
                        {
                            --handle->remainingSendByteCount;
                        }
                        else
                        {
                            handle->remainingSendByteCount -= 2;
                        }
                        dataSend = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern;
                    }
                    /* Write the data to the DSPI data register */
                    base->PUSHR_SLAVE = dataSend;
                }
            }
            /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
            DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);

            if (handle->remainingReceiveByteCount == 0)
            {
                break;
            }
        }
    }
    /* Check if remaining receive byte count matches user request */
    if ((handle->remainingReceiveByteCount == 0) || (handle->state == kDSPI_Error))
    {
        /* Other cases, stop the transfer. */
        DSPI_SlaveTransferComplete(base, handle);
        return;
    }

    /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
    if ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoUnderflowFlag) && (base->RSER & SPI_RSER_TFUF_RE_MASK))
    {
        DSPI_ClearStatusFlags(base, kDSPI_TxFifoUnderflowFlag);
        /* Change state to error and clear flag */
        if (handle->txData)
        {
            handle->state = kDSPI_Error;
        }
        handle->errorCount++;
    }
    /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
    if ((DSPI_GetStatusFlags(base) & kDSPI_RxFifoOverflowFlag) && (base->RSER & SPI_RSER_RFOF_RE_MASK))
    {
        DSPI_ClearStatusFlags(base, kDSPI_RxFifoOverflowFlag);
        /* Change state to error and clear flag */
        if (handle->txData)
        {
            handle->state = kDSPI_Error;
        }
        handle->errorCount++;
    }
}

static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
{
    if (DSPI_IsMaster(base))
    {
        s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
    }
    else
    {
        s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
    }
}

#if defined(SPI0)
void SPI0_DriverIRQHandler(void)
{
    assert(g_dspiHandle[0]);
    DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
}
#endif

#if defined(SPI1)
void SPI1_DriverIRQHandler(void)
{
    assert(g_dspiHandle[1]);
    DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
}
#endif

#if defined(SPI2)
void SPI2_DriverIRQHandler(void)
{
    assert(g_dspiHandle[2]);
    DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
}
#endif

#if defined(SPI3)
void SPI3_DriverIRQHandler(void)
{
    assert(g_dspiHandle[3]);
    DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
}
#endif

#if defined(SPI4)
void SPI4_DriverIRQHandler(void)
{
    assert(g_dspiHandle[4]);
    DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
}
#endif

#if defined(SPI5)
void SPI5_DriverIRQHandler(void)
{
    assert(g_dspiHandle[5]);
    DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
}
#endif

#if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
#error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !"
#endif