Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/** @file
 * @brief TCP handler
 *
 * Handle TCP connections.
 */

/*
 * Copyright (c) 2016 Intel Corporation
 * Copyright 2011-2015 by Andrey Butok. FNET Community.
 * Copyright 2008-2010 by Andrey Butok. Freescale Semiconductor, Inc.
 * Copyright 2003 by Alexey Shervashidze, Andrey Butok. Motorola SPS.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#if defined(CONFIG_NET_DEBUG_TCP)
#define SYS_LOG_DOMAIN "net/tcp"
#define NET_LOG_ENABLED 1
#endif

#include <kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>

#include <net/net_pkt.h>
#include <net/net_ip.h>
#include <net/net_context.h>
#include <misc/byteorder.h>

#include "connection.h"
#include "net_private.h"

#include "ipv6.h"
#include "ipv4.h"
#include "tcp.h"
#include "net_stats.h"

/*
 * Each TCP connection needs to be tracked by net_context, so
 * we need to allocate equal number of control structures here.
 */
#define NET_MAX_TCP_CONTEXT CONFIG_NET_MAX_CONTEXTS
static struct net_tcp tcp_context[NET_MAX_TCP_CONTEXT];

#define INIT_RETRY_MS 200

/* 2MSL timeout, where "MSL" is arbitrarily 2 minutes in the RFC */
#if defined(CONFIG_NET_TCP_2MSL_TIME)
#define TIME_WAIT_MS K_SECONDS(CONFIG_NET_TCP_2MSL_TIME)
#else
#define TIME_WAIT_MS K_SECONDS(2 * 2 * 60)
#endif

struct tcp_segment {
	u32_t seq;
	u32_t ack;
	u16_t wnd;
	u8_t flags;
	u8_t optlen;
	void *options;
	struct sockaddr_ptr *src_addr;
	const struct sockaddr *dst_addr;
};

#if defined(CONFIG_NET_DEBUG_TCP) && (CONFIG_SYS_LOG_NET_LEVEL > 2)
static char upper_if_set(char chr, bool set)
{
	if (set) {
		return chr & ~0x20;
	}

	return chr | 0x20;
}

static void net_tcp_trace(struct net_pkt *pkt, struct net_tcp *tcp)
{
	u8_t flags = NET_TCP_FLAGS(pkt);
	u32_t rel_ack, ack;

	ack = sys_get_be32(NET_TCP_HDR(pkt)->ack);

	if (!tcp->sent_ack) {
		rel_ack = 0;
	} else {
		rel_ack = ack ? ack - tcp->sent_ack : 0;
	}

	NET_DBG("pkt %p src %u dst %u seq 0x%04x (%u) ack 0x%04x (%u/%u) "
		"flags %c%c%c%c%c%c win %u chk 0x%04x",
		pkt,
		ntohs(NET_TCP_HDR(pkt)->src_port),
		ntohs(NET_TCP_HDR(pkt)->dst_port),
		sys_get_be32(NET_TCP_HDR(pkt)->seq),
		sys_get_be32(NET_TCP_HDR(pkt)->seq),
		ack,
		ack,
		/* This tells how many bytes we are acking now */
		rel_ack,
		upper_if_set('u', flags & NET_TCP_URG),
		upper_if_set('a', flags & NET_TCP_ACK),
		upper_if_set('p', flags & NET_TCP_PSH),
		upper_if_set('r', flags & NET_TCP_RST),
		upper_if_set('s', flags & NET_TCP_SYN),
		upper_if_set('f', flags & NET_TCP_FIN),
		sys_get_be16(NET_TCP_HDR(pkt)->wnd),
		ntohs(NET_TCP_HDR(pkt)->chksum));
}
#else
#define net_tcp_trace(...)
#endif /* CONFIG_NET_DEBUG_TCP */

static inline u32_t init_isn(void)
{
	/* Randomise initial seq number */
	return sys_rand32_get();
}

static inline u32_t retry_timeout(const struct net_tcp *tcp)
{
	return ((u32_t)1 << tcp->retry_timeout_shift) * INIT_RETRY_MS;
}

#define is_6lo_technology(pkt)						    \
	(IS_ENABLED(CONFIG_NET_IPV6) &&	net_pkt_family(pkt) == AF_INET6 &&  \
	 ((IS_ENABLED(CONFIG_NET_L2_BLUETOOTH) &&			    \
	   net_pkt_ll_dst(pkt)->type == NET_LINK_BLUETOOTH) ||		    \
	  (IS_ENABLED(CONFIG_NET_L2_IEEE802154) &&			    \
	   net_pkt_ll_dst(pkt)->type == NET_LINK_IEEE802154)))

static inline void do_ref_if_needed(struct net_pkt *pkt)
{
	/* The ref should not be done for Bluetooth and IEEE 802.15.4 which use
	 * IPv6 header compression (6lo). For BT and 802.15.4 we copy the pkt
	 * chain we are about to send so it is fine if the network driver
	 * releases it. As we have our own copy of the sent data, we do not
	 * need to take a reference of it. See also net_tcp_send_pkt().
	 */
	if (!is_6lo_technology(pkt)) {
		pkt = net_pkt_ref(pkt);
	}
}

static void tcp_retry_expired(struct k_timer *timer)
{
	struct net_tcp *tcp = CONTAINER_OF(timer, struct net_tcp, retry_timer);
	struct net_pkt *pkt;

	/* Double the retry period for exponential backoff and resent
	 * the first (only the first!) unack'd packet.
	 */
	if (!sys_slist_is_empty(&tcp->sent_list)) {
		tcp->retry_timeout_shift++;
		k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);

		pkt = CONTAINER_OF(sys_slist_peek_head(&tcp->sent_list),
				   struct net_pkt, sent_list);

		do_ref_if_needed(pkt);
		if (net_tcp_send_pkt(pkt) < 0 && !is_6lo_technology(pkt)) {
			net_pkt_unref(pkt);
		} else {
			if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
			    !is_6lo_technology(pkt)) {
				net_stats_update_tcp_seg_rexmit();
			}
		}
	} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
		if (tcp->fin_sent && tcp->fin_rcvd) {
			net_context_unref(tcp->context);
		}
	}
}

struct net_tcp *net_tcp_alloc(struct net_context *context)
{
	int i, key;

	key = irq_lock();
	for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
		if (!net_tcp_is_used(&tcp_context[i])) {
			tcp_context[i].flags |= NET_TCP_IN_USE;
			break;
		}
	}
	irq_unlock(key);

	if (i >= NET_MAX_TCP_CONTEXT) {
		return NULL;
	}

	memset(&tcp_context[i], 0, sizeof(struct net_tcp));

	tcp_context[i].flags = NET_TCP_IN_USE;
	tcp_context[i].state = NET_TCP_CLOSED;
	tcp_context[i].context = context;

	tcp_context[i].send_seq = init_isn();
	tcp_context[i].recv_max_ack = tcp_context[i].send_seq + 1u;

	tcp_context[i].accept_cb = NULL;

	k_timer_init(&tcp_context[i].retry_timer, tcp_retry_expired, NULL);
	k_sem_init(&tcp_context[i].connect_wait, 0, UINT_MAX);

	return &tcp_context[i];
}

int net_tcp_release(struct net_tcp *tcp)
{
	struct net_pkt *pkt;
	struct net_pkt *tmp;
	int key;

	if (!PART_OF_ARRAY(tcp_context, tcp)) {
		return -EINVAL;
	}

	SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&tcp->sent_list, pkt, tmp,
					  sent_list) {
		sys_slist_remove(&tcp->sent_list, NULL, &pkt->sent_list);
		net_pkt_unref(pkt);
	}

	tcp->ack_timer_cancelled = true;
	k_delayed_work_cancel(&tcp->ack_timer);
	k_timer_stop(&tcp->retry_timer);
	k_sem_reset(&tcp->connect_wait);

	net_tcp_change_state(tcp, NET_TCP_CLOSED);
	tcp->context = NULL;

	key = irq_lock();
	tcp->flags &= ~(NET_TCP_IN_USE | NET_TCP_RECV_MSS_SET);
	irq_unlock(key);

	NET_DBG("Disposed of TCP connection state");

	return 0;
}

static inline u8_t net_tcp_add_options(struct net_buf *header, size_t len,
					  void *data)
{
	u8_t optlen;

	memcpy(net_buf_add(header, len), data, len);

	/* Set the length (this value is saved in 4-byte words format) */
	if ((len & 0x3u) != 0u) {
		optlen = (len & 0xfffCu) + 4u;
	} else {
		optlen = len;
	}

	return optlen;
}

static int finalize_segment(struct net_context *context, struct net_pkt *pkt)
{
#if defined(CONFIG_NET_IPV4)
	if (net_pkt_family(pkt) == AF_INET) {
		return net_ipv4_finalize(context, pkt);
	} else
#endif
#if defined(CONFIG_NET_IPV6)
	if (net_pkt_family(pkt) == AF_INET6) {
		return net_ipv6_finalize(context, pkt);
	}
#endif
	{
	}

	return 0;
}

static struct net_pkt *prepare_segment(struct net_tcp *tcp,
				       struct tcp_segment *segment,
				       struct net_pkt *pkt)
{
	struct net_buf *header, *tail = NULL;
	struct net_tcp_hdr *tcphdr;
	struct net_context *context = tcp->context;
	u16_t dst_port, src_port;
	u8_t optlen = 0;

	NET_ASSERT(context);

	if (pkt) {
		/* TCP transmit data comes in with a pre-allocated
		 * net_pkt at the head (so that net_context_send can find
		 * the context), and the data after.  Rejigger so we
		 * can insert a TCP header cleanly
		 */
		tail = pkt->frags;
		pkt->frags = NULL;
	} else {
		pkt = net_pkt_get_tx(context, K_FOREVER);
	}

#if defined(CONFIG_NET_IPV4)
	if (net_pkt_family(pkt) == AF_INET) {
		net_ipv4_create(context, pkt,
				net_sin_ptr(segment->src_addr)->sin_addr,
				&(net_sin(segment->dst_addr)->sin_addr));
		dst_port = net_sin(segment->dst_addr)->sin_port;
		src_port = ((struct sockaddr_in_ptr *)&context->local)->
								sin_port;
		NET_IPV4_HDR(pkt)->proto = IPPROTO_TCP;
	} else
#endif
#if defined(CONFIG_NET_IPV6)
	if (net_pkt_family(pkt) == AF_INET6) {
		net_ipv6_create(tcp->context, pkt,
				net_sin6_ptr(segment->src_addr)->sin6_addr,
				&(net_sin6(segment->dst_addr)->sin6_addr));
		dst_port = net_sin6(segment->dst_addr)->sin6_port;
		src_port = ((struct sockaddr_in6_ptr *)&context->local)->
								sin6_port;
		NET_IPV6_HDR(pkt)->nexthdr = IPPROTO_TCP;
	} else
#endif
	{
		NET_DBG("Protocol family %d not supported",
			net_pkt_family(pkt));
		net_pkt_unref(pkt);
		return NULL;
	}

	header = net_pkt_get_data(context, K_FOREVER);
	net_pkt_frag_add(pkt, header);

	tcphdr = (struct net_tcp_hdr *)net_buf_add(header, NET_TCPH_LEN);

	if (segment->options && segment->optlen) {
		optlen = net_tcp_add_options(header, segment->optlen,
					segment->options);
	}

	tcphdr->offset = (NET_TCPH_LEN + optlen) << 2;

	tcphdr->src_port = src_port;
	tcphdr->dst_port = dst_port;
	sys_put_be32(segment->seq, tcphdr->seq);
	sys_put_be32(segment->ack, tcphdr->ack);
	tcphdr->flags = segment->flags;
	sys_put_be16(segment->wnd, tcphdr->wnd);
	tcphdr->urg[0] = 0;
	tcphdr->urg[1] = 0;

	if (tail) {
		net_pkt_frag_add(pkt, tail);
	}

	if (finalize_segment(context, pkt) < 0) {
		net_pkt_unref(pkt);
		return NULL;
	}

	net_tcp_trace(pkt, tcp);

	return pkt;
}

static inline u32_t get_recv_wnd(struct net_tcp *tcp)
{
	ARG_UNUSED(tcp);

	/* We don't queue received data inside the stack, we hand off
	 * packets to synchronous callbacks (who can queue if they
	 * want, but it's not our business).  So the available window
	 * size is always the same.  There are two configurables to
	 * check though.
	 */
	return min(NET_TCP_MAX_WIN, NET_TCP_BUF_MAX_LEN);
}

int net_tcp_prepare_segment(struct net_tcp *tcp, u8_t flags,
			    void *options, size_t optlen,
			    const struct sockaddr_ptr *local,
			    const struct sockaddr *remote,
			    struct net_pkt **send_pkt)
{
	u32_t seq;
	u16_t wnd;
	struct tcp_segment segment = { 0 };

	if (!local) {
		local = &tcp->context->local;
	}

	seq = tcp->send_seq;

	if (flags & NET_TCP_ACK) {
		if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_1) {
			if (flags & NET_TCP_FIN) {
				/* FIN is used here only to determine which
				 * state to go to next; it's not to be used
				 * in the sent segment.
				 */
				flags &= ~NET_TCP_FIN;
				net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
			} else {
				net_tcp_change_state(tcp, NET_TCP_CLOSING);
			}
		} else if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_2) {
			net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
		} else if (net_tcp_get_state(tcp) == NET_TCP_CLOSE_WAIT) {
			tcp->flags |= NET_TCP_IS_SHUTDOWN;
			flags |= NET_TCP_FIN;
			net_tcp_change_state(tcp, NET_TCP_LAST_ACK);
		}
	}

	if (flags & NET_TCP_FIN) {
		tcp->flags |= NET_TCP_FINAL_SENT;
		/* RFC793 says about ACK bit: "Once a connection is
		 * established this is always sent." as teardown
		 * happens when connection is established, it must
		 * have ACK set.
		 */
		flags |= NET_TCP_ACK;
		/* FIXME: We apparently miss increment in another
		 * transition of the state machine, so have to
		 * adjust seq no by 2 here. This is required for
		 * Linux to detect active close on server side, and
		 * to make Wireshark happy about sequence numbers.
		 */
		seq += 2;

		if (net_tcp_get_state(tcp) == NET_TCP_ESTABLISHED ||
		    net_tcp_get_state(tcp) == NET_TCP_SYN_RCVD) {
			net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_1);
		}
	}

	if (flags & NET_TCP_SYN) {
		seq++;
	}

	wnd = get_recv_wnd(tcp);

	segment.src_addr = (struct sockaddr_ptr *)local;
	segment.dst_addr = remote;
	segment.seq = tcp->send_seq;
	segment.ack = tcp->send_ack;
	segment.flags = flags;
	segment.wnd = wnd;
	segment.options = options;
	segment.optlen = optlen;

	*send_pkt = prepare_segment(tcp, &segment, *send_pkt);
	if (!*send_pkt) {
		return -EINVAL;
	}

	tcp->send_seq = seq;

	if (net_tcp_seq_greater(tcp->send_seq, tcp->recv_max_ack)) {
		tcp->recv_max_ack = tcp->send_seq;
	}

	return 0;
}

static inline u32_t get_size(u32_t pos1, u32_t pos2)
{
	u32_t size;

	if (pos1 <= pos2) {
		size = pos2 - pos1;
	} else {
		size = NET_TCP_MAX_SEQ - pos1 + pos2 + 1;
	}

	return size;
}

#if defined(CONFIG_NET_IPV4)
#ifndef NET_IP_MAX_PACKET
#define NET_IP_MAX_PACKET (10 * 1024)
#endif

#define NET_IP_MAX_OPTIONS 40 /* Maximum option field length */

static inline size_t ip_max_packet_len(struct in_addr *dest_ip)
{
	ARG_UNUSED(dest_ip);

	return (NET_IP_MAX_PACKET - (NET_IP_MAX_OPTIONS +
		      sizeof(struct net_ipv4_hdr))) & (~0x3LU);
}
#else /* CONFIG_NET_IPV4 */
#define ip_max_packet_len(...) 0
#endif /* CONFIG_NET_IPV4 */

u16_t net_tcp_get_recv_mss(const struct net_tcp *tcp)
{
	sa_family_t family = net_context_get_family(tcp->context);

	if (family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
		struct net_if *iface = net_context_get_iface(tcp->context);

		if (iface && iface->mtu >= NET_IPV4TCPH_LEN) {
			/* Detect MSS based on interface MTU minus "TCP,IP
			 * header size"
			 */
			return iface->mtu - NET_IPV4TCPH_LEN;
		}
#else
		return 0;
#endif /* CONFIG_NET_IPV4 */
	}
#if defined(CONFIG_NET_IPV6)
	else if (family == AF_INET6) {
		return 1280;
	}
#endif /* CONFIG_NET_IPV6 */

	return 0;
}

static void net_tcp_set_syn_opt(struct net_tcp *tcp, u8_t *options,
				u8_t *optionlen)
{
	u16_t recv_mss;

	*optionlen = 0;

	if (!(tcp->flags & NET_TCP_RECV_MSS_SET)) {
		recv_mss = net_tcp_get_recv_mss(tcp);
		tcp->flags |= NET_TCP_RECV_MSS_SET;
	} else {
		recv_mss = 0;
	}

	UNALIGNED_PUT(htonl((u32_t)recv_mss | NET_TCP_MSS_HEADER),
		      (u32_t *)(options + *optionlen));

	*optionlen += NET_TCP_MSS_SIZE;
}

int net_tcp_prepare_ack(struct net_tcp *tcp, const struct sockaddr *remote,
			struct net_pkt **pkt)
{
	u8_t options[NET_TCP_MAX_OPT_SIZE];
	u8_t optionlen;

	switch (net_tcp_get_state(tcp)) {
	case NET_TCP_SYN_RCVD:
		/* In the SYN_RCVD state acknowledgment must be with the
		 * SYN flag.
		 */
		tcp->send_seq--;

		net_tcp_set_syn_opt(tcp, options, &optionlen);

		return net_tcp_prepare_segment(tcp, NET_TCP_SYN | NET_TCP_ACK,
					       options, optionlen, NULL, remote,
					       pkt);
	case NET_TCP_FIN_WAIT_1:
	case NET_TCP_LAST_ACK:
		/* In the FIN_WAIT_1 and LAST_ACK states acknowledgment must
		 * be with the FIN flag.
		 */
		tcp->send_seq--;

		return net_tcp_prepare_segment(tcp, NET_TCP_FIN | NET_TCP_ACK,
					       0, 0, NULL, remote, pkt);
	default:
		return net_tcp_prepare_segment(tcp, NET_TCP_ACK, 0, 0, NULL,
					       remote, pkt);
	}

	return -EINVAL;
}

int net_tcp_prepare_reset(struct net_tcp *tcp,
			  const struct sockaddr *remote,
			  struct net_pkt **pkt)
{
	struct tcp_segment segment = { 0 };

	if ((net_context_get_state(tcp->context) != NET_CONTEXT_UNCONNECTED) &&
	    (net_tcp_get_state(tcp) != NET_TCP_SYN_SENT) &&
	    (net_tcp_get_state(tcp) != NET_TCP_TIME_WAIT)) {
		/* Send the reset segment always with acknowledgment. */
		segment.ack = tcp->send_ack;
		segment.flags = NET_TCP_RST | NET_TCP_ACK;
		segment.seq = tcp->send_seq;
		segment.src_addr = &tcp->context->local;
		segment.dst_addr = remote;
		segment.wnd = 0;
		segment.options = NULL;
		segment.optlen = 0;

		*pkt = prepare_segment(tcp, &segment, NULL);
	}

	return 0;
}

const char * const net_tcp_state_str(enum net_tcp_state state)
{
#if defined(CONFIG_NET_DEBUG_TCP)
	switch (state) {
	case NET_TCP_CLOSED:
		return "CLOSED";
	case NET_TCP_LISTEN:
		return "LISTEN";
	case NET_TCP_SYN_SENT:
		return "SYN_SENT";
	case NET_TCP_SYN_RCVD:
		return "SYN_RCVD";
	case NET_TCP_ESTABLISHED:
		return "ESTABLISHED";
	case NET_TCP_CLOSE_WAIT:
		return "CLOSE_WAIT";
	case NET_TCP_LAST_ACK:
		return "LAST_ACK";
	case NET_TCP_FIN_WAIT_1:
		return "FIN_WAIT_1";
	case NET_TCP_FIN_WAIT_2:
		return "FIN_WAIT_2";
	case NET_TCP_TIME_WAIT:
		return "TIME_WAIT";
	case NET_TCP_CLOSING:
		return "CLOSING";
	}
#else /* CONFIG_NET_DEBUG_TCP */
	ARG_UNUSED(state);
#endif /* CONFIG_NET_DEBUG_TCP */

	return "";
}

int net_tcp_queue_data(struct net_context *context, struct net_pkt *pkt)
{
	struct net_conn *conn = (struct net_conn *)context->conn_handler;
	size_t data_len = net_pkt_get_len(pkt);
	int ret;

	/* Set PSH on all packets, our window is so small that there's
	 * no point in the remote side trying to finesse things and
	 * coalesce packets.
	 */
	ret = net_tcp_prepare_segment(context->tcp, NET_TCP_PSH | NET_TCP_ACK,
				      NULL, 0, NULL, &conn->remote_addr, &pkt);
	if (ret) {
		return ret;
	}

	context->tcp->send_seq += data_len;

	net_stats_update_tcp_sent(data_len);

	sys_slist_append(&context->tcp->sent_list, &pkt->sent_list);

	/* We need to restart retry_timer if it is stopped. */
	if (k_timer_remaining_get(&context->tcp->retry_timer) == 0) {
		k_timer_start(&context->tcp->retry_timer,
			      retry_timeout(context->tcp), 0);
	}

	do_ref_if_needed(pkt);

	return 0;
}

int net_tcp_send_pkt(struct net_pkt *pkt)
{
	struct net_context *ctx = net_pkt_context(pkt);
	struct net_tcp_hdr *tcphdr = NET_TCP_HDR(pkt);

	sys_put_be32(ctx->tcp->send_ack, tcphdr->ack);

	/* The data stream code always sets this flag, because
	 * existing stacks (Linux, anyway) seem to ignore data packets
	 * without a valid-but-already-transmitted ACK.  But set it
	 * anyway if we know we need it just to sanify edge cases.
	 */
	if (ctx->tcp->sent_ack != ctx->tcp->send_ack) {
		tcphdr->flags |= NET_TCP_ACK;
	}

	if (tcphdr->flags & NET_TCP_FIN) {
		ctx->tcp->fin_sent = 1;
	}

	ctx->tcp->sent_ack = ctx->tcp->send_ack;

	net_pkt_set_sent(pkt, true);

	/* We must have special handling for some network technologies that
	 * tweak the IP protocol headers during packet sending. This happens
	 * with Bluetooth and IEEE 802.15.4 which use IPv6 header compression
	 * (6lo) and alter the sent network packet. So in order to avoid any
	 * corruption of the original data buffer, we must copy the sent data.
	 * For Bluetooth, its fragmentation code will even mangle the data
	 * part of the message so we need to copy those too.
	 */
	if (is_6lo_technology(pkt)) {
		struct net_pkt *new_pkt, *check_pkt;
		int ret;
		bool pkt_in_slist = false;

		/*
		 * There are users of this function that don't add pkt to TCP
		 * sent_list. (See send_ack() in net_context.c) In these cases,
		 * we should avoid the extra 6lowpan specific buffer copy
		 * below.
		 */
		SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list,
					     check_pkt, sent_list) {
			if (check_pkt == pkt) {
				pkt_in_slist = true;
				break;
			}
		}

		if (pkt_in_slist) {
			new_pkt = net_pkt_get_tx(ctx, K_FOREVER);

			memcpy(new_pkt, pkt, sizeof(struct net_pkt));
			new_pkt->frags = net_pkt_copy_all(pkt, 0, K_FOREVER);

			NET_DBG("Copied %zu bytes from %p to %p",
				net_pkt_get_len(new_pkt), pkt, new_pkt);

			/* This function is called from net_context.c and if we
			 * return < 0, the caller will unref the original pkt.
			 * This would leak the new_pkt so remove it here.
			 */
			ret = net_send_data(new_pkt);
			if (ret < 0) {
				net_pkt_unref(new_pkt);
			} else {
				net_stats_update_tcp_seg_rexmit();
			}

			return ret;
		}
	}

	return net_send_data(pkt);
}

static void restart_timer(struct net_tcp *tcp)
{
	if (!sys_slist_is_empty(&tcp->sent_list)) {
		tcp->flags |= NET_TCP_RETRYING;
		tcp->retry_timeout_shift = 0;
		k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);
	} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
		if (tcp->fin_sent && tcp->fin_rcvd) {
			/* We know sent_list is empty, which means if
			 * fin_sent is true it must have been ACKd
			 */
			k_timer_start(&tcp->retry_timer, TIME_WAIT_MS, 0);
			net_context_ref(tcp->context);
		}
	} else {
		k_timer_stop(&tcp->retry_timer);
		tcp->flags &= ~NET_TCP_RETRYING;
	}
}

int net_tcp_send_data(struct net_context *context)
{
	struct net_pkt *pkt;

	/* For now, just send all queued data synchronously.  Need to
	 * add window handling and retry/ACK logic.
	 */
	SYS_SLIST_FOR_EACH_CONTAINER(&context->tcp->sent_list, pkt, sent_list) {
		if (!net_pkt_sent(pkt)) {
			if (net_tcp_send_pkt(pkt) < 0 &&
			    !is_6lo_technology(pkt)) {
				net_pkt_unref(pkt);
			}
		}
	}

	return 0;
}

void net_tcp_ack_received(struct net_context *ctx, u32_t ack)
{
	struct net_tcp *tcp = ctx->tcp;
	sys_slist_t *list = &ctx->tcp->sent_list;
	sys_snode_t *head;
	struct net_pkt *pkt;
	struct net_tcp_hdr *tcphdr;
	u32_t seq;
	bool valid_ack = false;

	if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
	    sys_slist_is_empty(list)) {
		net_stats_update_tcp_seg_ackerr();
	}

	while (!sys_slist_is_empty(list)) {
		head = sys_slist_peek_head(list);
		pkt = CONTAINER_OF(head, struct net_pkt, sent_list);
		tcphdr = NET_TCP_HDR(pkt);

		seq = sys_get_be32(tcphdr->seq) + net_pkt_appdatalen(pkt) - 1;

		if (!net_tcp_seq_greater(ack, seq)) {
			net_stats_update_tcp_seg_ackerr();
			break;
		}

		if (tcphdr->flags & NET_TCP_FIN) {
			enum net_tcp_state s = net_tcp_get_state(tcp);

			if (s == NET_TCP_FIN_WAIT_1) {
				net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_2);
			} else if (s == NET_TCP_CLOSING) {
				net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
			}
		}

		sys_slist_remove(list, NULL, head);
		net_pkt_unref(pkt);
		valid_ack = true;
	}

	if (valid_ack) {
		/* Restart the timer on a valid inbound ACK.  This
		 * isn't quite the same behavior as per-packet retry
		 * timers, but is close in practice (it starts retries
		 * one timer period after the connection "got stuck")
		 * and avoids the need to track per-packet timers or
		 * sent times.
		 */
		restart_timer(ctx->tcp);

		/* And, if we had been retrying, mark all packets
		 * untransmitted and then resend them.  The stalled
		 * pipe is uncorked again.
		 */
		if (ctx->tcp->flags & NET_TCP_RETRYING) {
			struct net_pkt *pkt;

			SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list, pkt,
						     sent_list) {
				if (net_pkt_sent(pkt)) {
					do_ref_if_needed(pkt);
					net_pkt_set_sent(pkt, false);
				}
			}

			net_tcp_send_data(ctx);
		}
	}
}

void net_tcp_init(void)
{
}

#if defined(CONFIG_NET_DEBUG_TCP)
static void validate_state_transition(enum net_tcp_state current,
				      enum net_tcp_state new)
{
	static const u16_t valid_transitions[] = {
		[NET_TCP_CLOSED] = 1 << NET_TCP_LISTEN |
			1 << NET_TCP_SYN_SENT,
		[NET_TCP_LISTEN] = 1 << NET_TCP_SYN_RCVD |
			1 << NET_TCP_SYN_SENT,
		[NET_TCP_SYN_RCVD] = 1 << NET_TCP_FIN_WAIT_1 |
			1 << NET_TCP_ESTABLISHED |
			1 << NET_TCP_LISTEN |
			1 << NET_TCP_CLOSED,
		[NET_TCP_SYN_SENT] = 1 << NET_TCP_CLOSED |
			1 << NET_TCP_ESTABLISHED |
			1 << NET_TCP_SYN_RCVD |
			1 << NET_TCP_CLOSED,
		[NET_TCP_ESTABLISHED] = 1 << NET_TCP_CLOSE_WAIT |
			1 << NET_TCP_FIN_WAIT_1 |
			1 << NET_TCP_CLOSED,
		[NET_TCP_CLOSE_WAIT] = 1 << NET_TCP_LAST_ACK |
			1 << NET_TCP_CLOSED,
		[NET_TCP_LAST_ACK] = 1 << NET_TCP_CLOSED,
		[NET_TCP_FIN_WAIT_1] = 1 << NET_TCP_CLOSING |
			1 << NET_TCP_FIN_WAIT_2 |
			1 << NET_TCP_TIME_WAIT |
			1 << NET_TCP_CLOSED,
		[NET_TCP_FIN_WAIT_2] = 1 << NET_TCP_TIME_WAIT |
			1 << NET_TCP_CLOSED,
		[NET_TCP_CLOSING] = 1 << NET_TCP_TIME_WAIT |
			1 << NET_TCP_CLOSED,
		[NET_TCP_TIME_WAIT] = 1 << NET_TCP_CLOSED
	};

	if (!(valid_transitions[current] & 1 << new)) {
		NET_DBG("Invalid state transition: %s (%d) => %s (%d)",
			net_tcp_state_str(current), current,
			net_tcp_state_str(new), new);
	}
}
#endif /* CONFIG_NET_DEBUG_TCP */

void net_tcp_change_state(struct net_tcp *tcp,
			  enum net_tcp_state new_state)
{
	NET_ASSERT(tcp);

	if (net_tcp_get_state(tcp) == new_state) {
		return;
	}

	NET_ASSERT(new_state >= NET_TCP_CLOSED &&
		   new_state <= NET_TCP_CLOSING);

	NET_DBG("state@%p %s (%d) => %s (%d)",
		tcp, net_tcp_state_str(tcp->state), tcp->state,
		net_tcp_state_str(new_state), new_state);

#if defined(CONFIG_NET_DEBUG_TCP)
	validate_state_transition(tcp->state, new_state);
#endif /* CONFIG_NET_DEBUG_TCP */

	tcp->state = new_state;

	if (net_tcp_get_state(tcp) != NET_TCP_CLOSED) {
		return;
	}

	if (!tcp->context) {
		return;
	}

	/* Remove any port handlers if we are closing */
	if (tcp->context->conn_handler) {
		net_tcp_unregister(tcp->context->conn_handler);
		tcp->context->conn_handler = NULL;
	}

	if (tcp->accept_cb) {
		tcp->accept_cb(tcp->context,
			       &tcp->context->remote,
			       sizeof(struct sockaddr),
			       -ENETRESET,
			       tcp->context->user_data);
	}
}

void net_tcp_foreach(net_tcp_cb_t cb, void *user_data)
{
	int i, key;

	key = irq_lock();

	for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
		if (!net_tcp_is_used(&tcp_context[i])) {
			continue;
		}

		irq_unlock(key);

		cb(&tcp_context[i], user_data);

		key = irq_lock();
	}

	irq_unlock(key);
}

bool net_tcp_validate_seq(struct net_tcp *tcp, struct net_pkt *pkt)
{
	return !net_tcp_seq_greater(tcp->send_ack + get_recv_wnd(tcp),
				    sys_get_be32(NET_TCP_HDR(pkt)->seq));
}