Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Kernel thread support
 *
 * This module provides general purpose thread support.
 */

#include <kernel.h>

#include <toolchain.h>
#include <sections.h>

#include <kernel_structs.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>

extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];

#define _FOREACH_STATIC_THREAD(thread_data)              \
	for (struct _static_thread_data *thread_data =   \
	     _static_thread_data_list_start;             \
	     thread_data < _static_thread_data_list_end; \
	     thread_data++)


int k_is_in_isr(void)
{
	return _is_in_isr();
}

/*
 * This function tags the current thread as essential to system operation.
 * Exceptions raised by this thread will be treated as a fatal system error.
 */
void _thread_essential_set(void)
{
	_current->base.user_options |= K_ESSENTIAL;
}

/*
 * This function tags the current thread as not essential to system operation.
 * Exceptions raised by this thread may be recoverable.
 * (This is the default tag for a thread.)
 */
void _thread_essential_clear(void)
{
	_current->base.user_options &= ~K_ESSENTIAL;
}

/*
 * This routine indicates if the current thread is an essential system thread.
 *
 * Returns non-zero if current thread is essential, zero if it is not.
 */
int _is_thread_essential(void)
{
	return _current->base.user_options & K_ESSENTIAL;
}

void k_busy_wait(u32_t usec_to_wait)
{
#if defined(CONFIG_TICKLESS_KERNEL) && \
	    !defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
int saved_always_on = k_enable_sys_clock_always_on();
#endif
	/* use 64-bit math to prevent overflow when multiplying */
	u32_t cycles_to_wait = (u32_t)(
		(u64_t)usec_to_wait *
		(u64_t)sys_clock_hw_cycles_per_sec /
		(u64_t)USEC_PER_SEC
	);
	u32_t start_cycles = k_cycle_get_32();

	for (;;) {
		u32_t current_cycles = k_cycle_get_32();

		/* this handles the rollover on an unsigned 32-bit value */
		if ((current_cycles - start_cycles) >= cycles_to_wait) {
			break;
		}
	}
#if defined(CONFIG_TICKLESS_KERNEL) && \
	    !defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
	_sys_clock_always_on = saved_always_on;
#endif
}

#ifdef CONFIG_THREAD_CUSTOM_DATA

void k_thread_custom_data_set(void *value)
{
	_current->custom_data = value;
}

void *k_thread_custom_data_get(void)
{
	return _current->custom_data;
}

#endif /* CONFIG_THREAD_CUSTOM_DATA */

#if defined(CONFIG_THREAD_MONITOR)
/*
 * Remove a thread from the kernel's list of active threads.
 */
void _thread_monitor_exit(struct k_thread *thread)
{
	unsigned int key = irq_lock();

	if (thread == _kernel.threads) {
		_kernel.threads = _kernel.threads->next_thread;
	} else {
		struct k_thread *prev_thread;

		prev_thread = _kernel.threads;
		while (thread != prev_thread->next_thread) {
			prev_thread = prev_thread->next_thread;
		}
		prev_thread->next_thread = thread->next_thread;
	}

	irq_unlock(key);
}
#endif /* CONFIG_THREAD_MONITOR */

#ifdef CONFIG_STACK_SENTINEL
/* Check that the stack sentinel is still present
 *
 * The stack sentinel feature writes a magic value to the lowest 4 bytes of
 * the thread's stack when the thread is initialized. This value gets checked
 * in a few places:
 *
 * 1) In k_yield() if the current thread is not swapped out
 * 2) In the interrupt code, after the interrupt has been serviced, and
 *    a decision *not* to call _Swap() has been made.
 * 3) In _Swap(), check the sentinel in the outgoing thread
 * 4) When a thread returns from its entry function to cooperatively terminate
 *
 * Items 2 and 3 require support in arch/ code.
 *
 * If the check fails, the thread will be terminated appropriately through
 * the system fatal error handler.
 */
void _check_stack_sentinel(void)
{
	u32_t *stack;

	if (_is_thread_prevented_from_running(_current)) {
		/* Filter out threads that are dummy threads or already
		 * marked for termination (_THREAD_DEAD)
		 */
		return;
	}

	stack = (u32_t *)_current->stack_info.start;
	if (*stack != STACK_SENTINEL) {
		/* Restore it so further checks don't trigger this same error */
		*stack = STACK_SENTINEL;
		_k_except_reason(_NANO_ERR_STACK_CHK_FAIL);
	}
}
#endif

/*
 * Common thread entry point function (used by all threads)
 *
 * This routine invokes the actual thread entry point function and passes
 * it three arguments. It also handles graceful termination of the thread
 * if the entry point function ever returns.
 *
 * This routine does not return, and is marked as such so the compiler won't
 * generate preamble code that is only used by functions that actually return.
 */
FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *),
				 void *p1, void *p2, void *p3)
{
	entry(p1, p2, p3);

#ifdef CONFIG_STACK_SENTINEL
	_check_stack_sentinel();
#endif
#ifdef CONFIG_MULTITHREADING
	if (_is_thread_essential()) {
		_k_except_reason(_NANO_ERR_INVALID_TASK_EXIT);
	}

	k_thread_abort(_current);
#else
	for (;;) {
		k_cpu_idle();
	}
#endif

	/*
	 * Compiler can't tell that k_thread_abort() won't return and issues a
	 * warning unless we tell it that control never gets this far.
	 */

	CODE_UNREACHABLE;
}

#ifdef CONFIG_MULTITHREADING
static void start_thread(struct k_thread *thread)
{
	int key = irq_lock(); /* protect kernel queues */

	_mark_thread_as_started(thread);

	if (_is_thread_ready(thread)) {
		_add_thread_to_ready_q(thread);
		if (_must_switch_threads()) {
			_Swap(key);
			return;
		}
	}

	irq_unlock(key);
}
#endif

#ifdef CONFIG_MULTITHREADING
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
	if (delay == 0) {
		start_thread(thread);
	} else {
		s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
		int key = irq_lock();

		_add_thread_timeout(thread, NULL, ticks);
		irq_unlock(key);
	}
#else
	ARG_UNUSED(delay);
	start_thread(thread);
#endif
}
#endif

#ifdef CONFIG_MULTITHREADING

k_tid_t k_thread_create(struct k_thread *new_thread, char *stack,
			size_t stack_size, void (*entry)(void *, void *, void*),
			void *p1, void *p2, void *p3,
			int prio, u32_t options, s32_t delay)
{
	__ASSERT(!_is_in_isr(), "Threads may not be created in ISRs");
	_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3, prio,
		    options);

	schedule_new_thread(new_thread, delay);
	return new_thread;
}


k_tid_t k_thread_spawn(char *stack, size_t stack_size,
			void (*entry)(void *, void *, void*),
			void *p1, void *p2, void *p3,
			int prio, u32_t options, s32_t delay)
{
	struct k_thread *new_thread = (struct k_thread *)stack;

	return k_thread_create(new_thread, stack, stack_size, entry, p1, p2,
			       p3, prio, options, delay);
}

#endif

int k_thread_cancel(k_tid_t tid)
{
	struct k_thread *thread = tid;

	int key = irq_lock();

	if (_has_thread_started(thread) ||
	    !_is_thread_timeout_active(thread)) {
		irq_unlock(key);
		return -EINVAL;
	}

	_abort_thread_timeout(thread);
	_thread_monitor_exit(thread);

	irq_unlock(key);

	return 0;
}

static inline int is_in_any_group(struct _static_thread_data *thread_data,
				  u32_t groups)
{
	return !!(thread_data->init_groups & groups);
}

void _k_thread_group_op(u32_t groups, void (*func)(struct k_thread *))
{
	unsigned int  key;

	__ASSERT(!_is_in_isr(), "");

	_sched_lock();

	/* Invoke func() on each static thread in the specified group set. */

	_FOREACH_STATIC_THREAD(thread_data) {
		if (is_in_any_group(thread_data, groups)) {
			key = irq_lock();
			func(thread_data->init_thread);
			irq_unlock(key);
		}
	}

	/*
	 * If the current thread is still in a ready state, then let the
	 * "unlock scheduler" code determine if any rescheduling is needed.
	 */
	if (_is_thread_ready(_current)) {
		k_sched_unlock();
		return;
	}

	/* The current thread is no longer in a ready state--reschedule. */
	key = irq_lock();
	_sched_unlock_no_reschedule();
	_Swap(key);
}

void _k_thread_single_start(struct k_thread *thread)
{
	_mark_thread_as_started(thread);

	if (_is_thread_ready(thread)) {
		_add_thread_to_ready_q(thread);
	}
}

void _k_thread_single_suspend(struct k_thread *thread)
{
	if (_is_thread_ready(thread)) {
		_remove_thread_from_ready_q(thread);
	}

	_mark_thread_as_suspended(thread);
}

void k_thread_suspend(struct k_thread *thread)
{
	unsigned int  key = irq_lock();

	_k_thread_single_suspend(thread);

	if (thread == _current) {
		_Swap(key);
	} else {
		irq_unlock(key);
	}
}

void _k_thread_single_resume(struct k_thread *thread)
{
	_mark_thread_as_not_suspended(thread);

	if (_is_thread_ready(thread)) {
		_add_thread_to_ready_q(thread);
	}
}

void k_thread_resume(struct k_thread *thread)
{
	unsigned int  key = irq_lock();

	_k_thread_single_resume(thread);

	_reschedule_threads(key);
}

void _k_thread_single_abort(struct k_thread *thread)
{
	if (thread->fn_abort != NULL) {
		thread->fn_abort();
	}

	if (_is_thread_ready(thread)) {
		_remove_thread_from_ready_q(thread);
	} else {
		if (_is_thread_pending(thread)) {
			_unpend_thread(thread);
		}
		if (_is_thread_timeout_active(thread)) {
			_abort_thread_timeout(thread);
		}
	}
	_mark_thread_as_dead(thread);
}

#ifdef CONFIG_MULTITHREADING
void _init_static_threads(void)
{
	unsigned int  key;

	_FOREACH_STATIC_THREAD(thread_data) {
		_new_thread(
			thread_data->init_thread,
			thread_data->init_stack,
			thread_data->init_stack_size,
			thread_data->init_entry,
			thread_data->init_p1,
			thread_data->init_p2,
			thread_data->init_p3,
			thread_data->init_prio,
			thread_data->init_options);

		thread_data->init_thread->init_data = thread_data;
	}

	_sched_lock();

	/*
	 * Non-legacy static threads may be started immediately or after a
	 * previously specified delay. Even though the scheduler is locked,
	 * ticks can still be delivered and processed. Lock interrupts so
	 * that the countdown until execution begins from the same tick.
	 *
	 * Note that static threads defined using the legacy API have a
	 * delay of K_FOREVER.
	 */
	key = irq_lock();
	_FOREACH_STATIC_THREAD(thread_data) {
		if (thread_data->init_delay != K_FOREVER) {
			schedule_new_thread(thread_data->init_thread,
					    thread_data->init_delay);
		}
	}
	irq_unlock(key);
	k_sched_unlock();
}
#endif

void _init_thread_base(struct _thread_base *thread_base, int priority,
		       u32_t initial_state, unsigned int options)
{
	/* k_q_node is initialized upon first insertion in a list */

	thread_base->user_options = (u8_t)options;
	thread_base->thread_state = (u8_t)initial_state;

	thread_base->prio = priority;

	thread_base->sched_locked = 0;

	/* swap_data does not need to be initialized */

	_init_thread_timeout(thread_base);
}

u32_t _k_thread_group_mask_get(struct k_thread *thread)
{
	struct _static_thread_data *thread_data = thread->init_data;

	return thread_data->init_groups;
}

void _k_thread_group_join(u32_t groups, struct k_thread *thread)
{
	struct _static_thread_data *thread_data = thread->init_data;

	thread_data->init_groups |= groups;
}

void _k_thread_group_leave(u32_t groups, struct k_thread *thread)
{
	struct _static_thread_data *thread_data = thread->init_data;

	thread_data->init_groups &= groups;
}