Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright (c) 2017, Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of the Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL CORPORATION OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "clk.h"
#include "flash_layout.h"
#include "qm_flash.h"
#if (!QM_SENSOR) || (UNIT_TEST)
#include <x86intrin.h>
#endif

#include "soc_watch.h"

#if (QM_SENSOR) && (!UNIT_TEST)
/* Timestamp counter for Sensor Subsystem is 32bit. */
#define get_ticks() __builtin_arc_lr(QM_SS_TSC_BASE + QM_SS_TIMER_COUNT)
#elif(QM_SENSOR) && (UNIT_TEST)
#define get_ticks() _rdtsc() % ((uint32_t)-1)
#else
/* 64bit Timestamp counter */
#define get_ticks() _rdtsc()
#endif

/* NOTE: Currently user space data / bss section overwrites the ROM data / bss
 * sections, so anything that is set in the ROM will be obliterated once we jump
 * into the user app.
 */
static uint32_t ticks_per_us = SYS_TICKS_PER_US_32MHZ;

/* Set up flash timings according to the target sysclk frequency.
 *
 * By POR prefetcher is disabled.
 * Drivers do not expect the pre-fetcher to be enabled,
 * therefore this function does assume the prefetcher is always turned off.
 */
static void apply_flash_timings(uint32_t sys_ticks_per_us)
{
	uint32_t flash;

	for (flash = QM_FLASH_0; flash < QM_FLASH_NUM; flash++) {
		if (sys_ticks_per_us <= SYS_TICKS_PER_US_4MHZ) {
			/*
			 * QM_FLASH_CLK_SLOW enables 0 wait states
			 * for flash accesses.
			 */
			QM_FLASH[flash]->tmg_ctrl |= QM_FLASH_CLK_SLOW;
			QM_FLASH[flash]->tmg_ctrl &= ~QM_FLASH_WAIT_STATE_MASK;
		} else if (sys_ticks_per_us <= SYS_TICKS_PER_US_16MHZ) {
			QM_FLASH[flash]->tmg_ctrl &= ~QM_FLASH_CLK_SLOW;
			/*
			 * READ_WAIT_STATE_L has an integrated +1 which
			 * results as 1 wait state for 8MHz and 16MHz.
			 */
			QM_FLASH[flash]->tmg_ctrl &= ~QM_FLASH_WAIT_STATE_MASK;
		} else {
			QM_FLASH[flash]->tmg_ctrl &= ~QM_FLASH_CLK_SLOW;
			/*
			 * READ_WAIT_STATE_L has an integrated +1 which
			 * results as 2 wait states for 32MHz.
			 */
			QM_FLASH[flash]->tmg_ctrl =
			    (QM_FLASH[flash]->tmg_ctrl &
			     ~QM_FLASH_WAIT_STATE_MASK) |
			    (1 << QM_FLASH_WAIT_STATE_OFFSET);
		}
	}
}

/*
 * Compute the system clock ticks per microsecond and get the shadowed trim code
 * from the Data Region of Flash.
 */
static void clk_sys_compute_new_frequency(clk_sys_mode_t mode,
					  clk_sys_div_t div,
					  uint32_t *sys_ticks_per_us,
					  uint16_t *trim)
{
	switch (mode) {
	case CLK_SYS_HYB_OSC_32MHZ:
		*sys_ticks_per_us = SYS_TICKS_PER_US_32MHZ / BIT(div);
		*trim = QM_FLASH_DATA_TRIM_CODE->osc_trim_32mhz;
		break;

	case CLK_SYS_HYB_OSC_16MHZ:
		*sys_ticks_per_us = SYS_TICKS_PER_US_16MHZ / BIT(div);
		*trim = QM_FLASH_DATA_TRIM_CODE->osc_trim_16mhz;
		break;

	case CLK_SYS_HYB_OSC_8MHZ:
		*sys_ticks_per_us = SYS_TICKS_PER_US_8MHZ / BIT(div);
		*trim = QM_FLASH_DATA_TRIM_CODE->osc_trim_8mhz;
		break;

	case CLK_SYS_HYB_OSC_4MHZ:
		*sys_ticks_per_us = SYS_TICKS_PER_US_4MHZ / BIT(div);
		*trim = QM_FLASH_DATA_TRIM_CODE->osc_trim_4mhz;
		break;

	case CLK_SYS_RTC_OSC:
		*sys_ticks_per_us = 1;
		break;

	case CLK_SYS_CRYSTAL_OSC:
		*sys_ticks_per_us = SYS_TICKS_PER_US_XTAL / BIT(div);
		break;
	}
}

int clk_sys_set_mode(const clk_sys_mode_t mode, const clk_sys_div_t div)
{
	QM_CHECK(div < CLK_SYS_DIV_NUM, -EINVAL);
	QM_CHECK(mode <= CLK_SYS_CRYSTAL_OSC, -EINVAL);
	uint16_t trim = 0;

	/* Store system ticks per us */
	uint32_t sys_ticks_per_us = 1;

	/*
	 * Get current settings, clear the clock divisor bits, and clock divider
	 * enable bit.
	 */
	uint32_t ccu_sys_clk_ctl =
	    QM_SCSS_CCU->ccu_sys_clk_ctl & CLK_SYS_CLK_DIV_DEF_MASK;

	/* Compute new frequency parameters. */
	clk_sys_compute_new_frequency(mode, div, &sys_ticks_per_us, &trim);

	/*
	 * Changing sysclk frequency requires flash settings (mainly
	 * wait states) to be realigned so as to avoid timing violations.
	 * During clock switching, we change flash timings to the
	 * most conservative settings (supporting up to 32MHz).
	 */
	apply_flash_timings(SYS_TICKS_PER_US_32MHZ);

	/*
	 * Steps:
	 * 1. Enable the new oscillator and wait for it to stabilise.
	 * 2. Switch to the new oscillator
	 *    Note on registers:
	 *    - QM_OSC0_MODE_SEL:
	 *       - asserted: it switches to external crystal oscillator
	 *       - not asserted: it switches to silicon oscillator
	 *     - QM_CCU_SYS_CLK_SEL:
	 *       - asserted: it switches to hybrid (silicon or external)
	 *                   oscillator
	 *       - not asserted: it switches to RTC oscillator
	 * 3. Hybrid oscillator only: apply sysclk divisor
	 * 4. Disable mutually exclusive clock sources. For internal silicon
	 *    oscillator is disables the external crystal oscillator and vice
	 *    versa.
	 */
	switch (mode) {
	case CLK_SYS_HYB_OSC_32MHZ:
	case CLK_SYS_HYB_OSC_16MHZ:
	case CLK_SYS_HYB_OSC_8MHZ:
	case CLK_SYS_HYB_OSC_4MHZ:
		/*
		 * Apply trim code for the selected mode if this has been
		 * written in the soc_data section.
		 * This is performed in rom on the first boot for each
		 * available frequency.
		 * If not present, something went wrong and trim code
		 * will not be applied.
		 */
		if ((trim & QM_FLASH_TRIM_PRESENT_MASK) ==
		    QM_FLASH_TRIM_PRESENT) {
			clk_trim_apply(trim);
		}
		/* Select the silicon oscillator frequency */
		QM_SCSS_CCU->osc0_cfg1 &= ~OSC0_CFG1_SI_FREQ_SEL_MASK;
		QM_SCSS_CCU->osc0_cfg1 |= (mode << OSC0_CFG1_SI_FREQ_SEL_OFFS);
		/* Enable the silicon oscillator */
		QM_SCSS_CCU->osc0_cfg1 |= QM_OSC0_EN_SI_OSC;
		/* Wait for the oscillator to lock */
		while (!(QM_SCSS_CCU->osc0_stat1 & QM_OSC0_LOCK_SI)) {
		};
		/* Switch to silicon oscillator mode */
		QM_SCSS_CCU->osc0_cfg1 &= ~QM_OSC0_MODE_SEL;
		/* Set the system clock divider */
		QM_SCSS_CCU->ccu_sys_clk_ctl =
		    ccu_sys_clk_ctl | QM_CCU_SYS_CLK_SEL |
		    (div << QM_CCU_SYS_CLK_DIV_OFFSET);
		/* Disable the crystal oscillator */
		QM_SCSS_CCU->osc0_cfg1 &= ~QM_OSC0_EN_CRYSTAL;
		break;

	case CLK_SYS_RTC_OSC:
		/* The RTC oscillator is on by hardware default */
		ccu_sys_clk_ctl |=
		    (QM_CCU_RTC_CLK_EN | (div << QM_CCU_SYS_CLK_DIV_OFFSET));

		QM_SCSS_CCU->ccu_sys_clk_ctl =
		    (ccu_sys_clk_ctl & ~(QM_CCU_SYS_CLK_SEL));
		break;

	case CLK_SYS_CRYSTAL_OSC:
		QM_SCSS_CCU->osc0_cfg1 |= QM_OSC0_EN_CRYSTAL;
		sys_ticks_per_us = SYS_TICKS_PER_US_XTAL / BIT(div);
		while (!(QM_SCSS_CCU->osc0_stat1 & QM_OSC0_LOCK_XTAL)) {
		};
		QM_SCSS_CCU->osc0_cfg1 |= QM_OSC0_MODE_SEL;
		QM_SCSS_CCU->ccu_sys_clk_ctl =
		    ccu_sys_clk_ctl | QM_CCU_SYS_CLK_SEL |
		    (div << QM_CCU_SYS_CLK_DIV_OFFSET);
		QM_SCSS_CCU->osc0_cfg1 &= ~QM_OSC0_EN_SI_OSC;
		break;
	}

	QM_SCSS_CCU->ccu_sys_clk_ctl |= QM_CCU_SYS_CLK_DIV_EN;
	ticks_per_us = (sys_ticks_per_us > 0 ? sys_ticks_per_us : 1);

	/*
	 * Apply flash timings for the new clock settings.
	 */
	apply_flash_timings(sys_ticks_per_us);

	/* Log any clock changes. */
	SOC_WATCH_LOG_EVENT(SOCW_EVENT_FREQ, 0);
	return 0;
}

int clk_trim_read(uint32_t *const value)
{
	QM_CHECK(NULL != value, -EINVAL);

	*value = (QM_SCSS_CCU->osc0_cfg1 & OSC0_CFG1_FTRIMOTP_MASK) >>
		 OSC0_CFG1_FTRIMOTP_OFFS;

	return 0;
}

int clk_trim_apply(const uint32_t value)
{
	/* Enable trim mode */
	QM_SCSS_CCU->osc0_cfg0 |= BIT(1);

	/* Apply trim code */
	QM_SCSS_CCU->osc0_cfg1 &= ~OSC0_CFG1_FTRIMOTP_MASK;
	QM_SCSS_CCU->osc0_cfg1 |=
	    (value << OSC0_CFG1_FTRIMOTP_OFFS) & OSC0_CFG1_FTRIMOTP_MASK;

	/*
	 * Recommended wait time after setting up the trim code
	 * is 200us. Minimum wait time is 100us.
	 * The delay is running from of the silicon oscillator
	 * which is been trimmed. This induces a lack of precision
	 * in the delay.
	 */
	clk_sys_udelay(200);

	/* Disable trim mode */
	QM_SCSS_CCU->osc0_cfg0 &= ~BIT(1);

	return 0;
}

int clk_periph_set_div(const clk_periph_div_t div)
{
	QM_CHECK(div <= CLK_PERIPH_DIV_8, -EINVAL);

	QM_SCSS_CCU->ccu_periph_clk_div_ctl0 =
	    (div << QM_CCU_PERIPH_PCLK_DIV_OFFSET);
	/* CLK Div en bit must be written from 0 -> 1 to apply new value */
	QM_SCSS_CCU->ccu_periph_clk_div_ctl0 |= QM_CCU_PERIPH_PCLK_DIV_EN;

	return 0;
}

int clk_gpio_db_set_div(const clk_gpio_db_div_t div)
{
	QM_CHECK(div <= CLK_GPIO_DB_DIV_128, -EINVAL);

	uint32_t reg =
	    QM_SCSS_CCU->ccu_gpio_db_clk_ctl & CLK_GPIO_DB_DIV_DEF_MASK;
	reg |= (div << QM_CCU_GPIO_DB_DIV_OFFSET);
	QM_SCSS_CCU->ccu_gpio_db_clk_ctl = reg;
	/* CLK Div en bit must be written from 0 -> 1 to apply new value */
	QM_SCSS_CCU->ccu_gpio_db_clk_ctl |= QM_CCU_GPIO_DB_CLK_DIV_EN;

	return 0;
}

int clk_ext_set_div(const clk_ext_div_t div)
{
	QM_CHECK(div <= CLK_EXT_DIV_8, -EINVAL);

	uint32_t reg = QM_SCSS_CCU->ccu_ext_clock_ctl & CLK_EXTERN_DIV_DEF_MASK;
	reg |= (div << QM_CCU_EXTERN_DIV_OFFSET);
	QM_SCSS_CCU->ccu_ext_clock_ctl = reg;
	/* CLK Div en bit must be written from 0 -> 1 to apply new value */
	QM_SCSS_CCU->ccu_ext_clock_ctl |= QM_CCU_EXT_CLK_DIV_EN;

	return 0;
}

int clk_rtc_set_div(const clk_rtc_div_t div)
{
	QM_CHECK(div <= CLK_RTC_DIV_32768, -EINVAL);

	uint32_t reg = QM_SCSS_CCU->ccu_sys_clk_ctl & CLK_RTC_DIV_DEF_MASK;
	reg |= (div << QM_CCU_RTC_CLK_DIV_OFFSET);
	QM_SCSS_CCU->ccu_sys_clk_ctl = reg;
	/* CLK Div en bit must be written from 0 -> 1 to apply new value */
	QM_SCSS_CCU->ccu_sys_clk_ctl |= QM_CCU_RTC_CLK_DIV_EN;

	return 0;
}

int clk_periph_enable(const clk_periph_t clocks)
{
	QM_CHECK(clocks <= CLK_PERIPH_ALL, -EINVAL);

	QM_SCSS_CCU->ccu_periph_clk_gate_ctl |= clocks;

#if (HAS_SW_SOCWATCH)
	SOC_WATCH_LOG_EVENT(SOCW_EVENT_REGISTER,
			    SOCW_REG_CCU_PERIPH_CLK_GATE_CTL);
#endif /* HAS_SW_SOCWATCH */

	return 0;
}

int clk_periph_disable(const clk_periph_t clocks)
{
	QM_CHECK(clocks <= CLK_PERIPH_ALL, -EINVAL);

	QM_SCSS_CCU->ccu_periph_clk_gate_ctl &= ~clocks;

#if (HAS_SW_SOCWATCH)
	SOC_WATCH_LOG_EVENT(SOCW_EVENT_REGISTER,
			    SOCW_REG_CCU_PERIPH_CLK_GATE_CTL);
#endif /* HAS_SW_SOCWATCH */
	return 0;
}

uint32_t clk_sys_get_ticks_per_us(void)
{
	return ticks_per_us;
}

void clk_sys_udelay(uint32_t microseconds)
{
	uint32_t timeout = ticks_per_us * microseconds;
#if (QM_SENSOR)
	uint32_t tsc_start;
#else
	unsigned long long tsc_start;
#endif
	tsc_start = get_ticks();
	/* We need to wait until timeout system clock ticks has occurred. */
	while (get_ticks() - tsc_start < timeout) {
	}
}

int clk_sys_usb_enable(void)
{
	/*
	 * Section 7.2.7 from Quark SE datasheet describes the USB
	 * Clock setup.
	 */
	clk_sys_set_mode(CLK_SYS_CRYSTAL_OSC, CLK_SYS_DIV_1);

	/* Enable the USB Clock. */
	QM_SCSS_CCU->ccu_mlayer_ahb_ctl |= QM_CCU_USB_CLK_EN;

	/* Set up the PLL. */
	QM_USB_PLL_CFG0 = QM_USB_PLL_CFG0_DEFAULT | QM_USB_PLL_PDLD;

	/* Let's have at most 50ms timeout for the PLL lock. */
	int timeout = 5;

	/* Wait for the PLL lock. */
	while (!(QM_USB_PLL_CFG0 & QM_USB_PLL_LOCK) && timeout) {
		clk_sys_udelay(10000); /* delay for 10ms. */
		timeout--;
	}

	if (!timeout) {
		return -EIO;
	}

	return 0;
}

int clk_sys_usb_disable(void)
{
	/* Disable the USB Clock. */
	QM_SCSS_CCU->ccu_mlayer_ahb_ctl &= ~QM_CCU_USB_CLK_EN;

	/* Disable the PLL. */
	QM_USB_PLL_CFG0 &= ~QM_USB_PLL_PDLD;

	/* Let's have at most 50ms timeout for the PLL lock. */
	int timeout = 5;

	/* Wait for the PLL to unlock. */
	while ((QM_USB_PLL_CFG0 & QM_USB_PLL_LOCK) && timeout) {
		clk_sys_udelay(10000); /* delay for 10ms. */
		timeout--;
	}

	if (!timeout) {
		return -EIO;
	}

	return 0;
}

int clk_dma_enable(void)
{
	QM_SCSS_CCU->ccu_mlayer_ahb_ctl |= QM_CCU_DMA_CLK_EN;

	return 0;
}

int clk_dma_disable(void)
{
	QM_SCSS_CCU->ccu_mlayer_ahb_ctl &= ~QM_CCU_DMA_CLK_EN;

	return 0;
}

/**
 * Get I2C clock frequency in MHz.
 *
 * @return [uint32_t] I2C freq_in_mhz.
 */
uint32_t get_i2c_clk_freq_in_mhz(void)
{
	return clk_sys_get_ticks_per_us() >>
	       ((QM_SCSS_CCU->ccu_periph_clk_div_ctl0 &
		 CLK_PERIPH_DIV_DEF_MASK) >>
		QM_CCU_PERIPH_PCLK_DIV_OFFSET);
}