Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
 * Copyright (c) 2010-2014 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief IA-32 specific kernel interface header
 * This header contains the IA-32 specific kernel interface.  It is included
 * by the generic kernel interface header (include/arch/cpu.h)
 */

#ifndef _ARCH_IFACE_H
#define _ARCH_IFACE_H

#include <irq.h>
#include <arch/x86/irq_controller.h>

#ifndef _ASMLANGUAGE
#include <arch/x86/asm_inline.h>
#include <arch/x86/addr_types.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

/* APIs need to support non-byte addressable architectures */

#define OCTET_TO_SIZEOFUNIT(X) (X)
#define SIZEOFUNIT_TO_OCTET(X) (X)

/**
 * Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM.
 * Not meant to be used explicitly by platform, driver or application code.
 */
#define MK_ISR_NAME(x) __isr__##x

#ifndef _ASMLANGUAGE

#ifdef CONFIG_INT_LATENCY_BENCHMARK
void _int_latency_start(void);
void _int_latency_stop(void);
#else
#define _int_latency_start()  do { } while (0)
#define _int_latency_stop()   do { } while (0)
#endif

/* interrupt/exception/error related definitions */

/**
 * Floating point register set alignment.
 *
 * If support for SSEx extensions is enabled a 16 byte boundary is required,
 * since the 'fxsave' and 'fxrstor' instructions require this. In all other
 * cases a 4 byte boundary is sufficient.
 */

#ifdef CONFIG_SSE
#define FP_REG_SET_ALIGN  16
#else
#define FP_REG_SET_ALIGN  4
#endif

/*
 * The TCS must be aligned to the same boundary as that used by the floating
 * point register set.  This applies even for threads that don't initially
 * use floating point, since it is possible to enable floating point support
 * later on.
 */

#define STACK_ALIGN  FP_REG_SET_ALIGN

typedef struct s_isrList {
	/** Address of ISR/stub */
	void		*fnc;
	/** IRQ associated with the ISR/stub, or -1 if this is not
	 * associated with a real interrupt; in this case vec must
	 * not be -1
	 */
	unsigned int    irq;
	/** Priority associated with the IRQ. Ignored if vec is not -1 */
	unsigned int    priority;
	/** Vector number associated with ISR/stub, or -1 to assign based
	 * on priority
	 */
	unsigned int    vec;
	/** Privilege level associated with ISR/stub */
	unsigned int    dpl;
} ISR_LIST;


/**
 * @brief Connect a routine to an interrupt vector
 *
 * This macro "connects" the specified routine, @a r, to the specified interrupt
 * vector, @a v using the descriptor privilege level @a d. On the IA-32
 * architecture, an interrupt vector is a value from 0 to 255. This macro
 * populates the special intList section with the address of the routine, the
 * vector number and the descriptor privilege level. The genIdt tool then picks
 * up this information and generates an actual IDT entry with this information
 * properly encoded.
 *
 * The @a d argument specifies the privilege level for the interrupt-gate
 * descriptor; (hardware) interrupts and exceptions should specify a level of 0,
 * whereas handlers for user-mode software generated interrupts should specify 3.
 * @param r Routine to be connected
 * @param n IRQ number
 * @param p IRQ priority
 * @param v Interrupt Vector
 * @param d Descriptor Privilege Level
 *
 * @return N/A
 *
 */

#define NANO_CPU_INT_REGISTER(r, n, p, v, d) \
	 static ISR_LIST __attribute__((section(".intList"))) \
			 __attribute__((used)) MK_ISR_NAME(r) = \
			{&r, n, p, v, d}


/**
 * Code snippets for populating the vector ID and priority into the intList
 *
 * The 'magic' of static interrupts is accomplished by building up an array
 * 'intList' at compile time, and the gen_idt tool uses this to create the
 * actual IDT data structure.
 *
 * For controllers like APIC, the vectors in the IDT are not normally assigned
 * at build time; instead the sentinel value -1 is saved, and gen_idt figures
 * out the right vector to use based on our priority scheme. Groups of 16
 * vectors starting at 32 correspond to each priority level.
 *
 * On MVIC, the mapping is fixed; the vector to use is just the irq line
 * number plus 0x20. The priority argument supplied by the user is discarded.
 *
 * These macros are only intended to be used by IRQ_CONNECT() macro.
 */
#if CONFIG_X86_FIXED_IRQ_MAPPING
#define _VECTOR_ARG(irq_p)	_IRQ_CONTROLLER_VECTOR_MAPPING(irq_p)
#else
#define _VECTOR_ARG(irq_p)	(-1)
#endif /* CONFIG_X86_FIXED_IRQ_MAPPING */

/**
 * Configure a static interrupt.
 *
 * All arguments must be computable by the compiler at build time.
 *
 * Internally this function does a few things:
 *
 * 1. There is a declaration of the interrupt parameters in the .intList
 * section, used by gen_idt to create the IDT. This does the same thing
 * as the NANO_CPU_INT_REGISTER() macro, but is done in assembly as we
 * need to populate the .fnc member with the address of the assembly
 * IRQ stub that we generate immediately afterwards.
 *
 * 2. The IRQ stub itself is declared. The code will go in its own named
 * section .text.irqstubs section (which eventually gets linked into 'text')
 * and the stub shall be named (isr_name)_irq(irq_line)_stub
 *
 * 3. The IRQ stub pushes the ISR routine and its argument onto the stack
 * and then jumps to the common interrupt handling code in _interrupt_enter().
 *
 * 4. _irq_controller_irq_config() is called at runtime to set the mapping
 * between the vector and the IRQ line as well as triggering flags
 *
 * @param irq_p IRQ line number
 * @param priority_p Interrupt priority
 * @param isr_p Interrupt service routine
 * @param isr_param_p ISR parameter
 * @param flags_p IRQ triggering options, as defined in irq_controller.h
 *
 * @return The vector assigned to this interrupt
 */
#define _ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
({ \
	__asm__ __volatile__(							\
		".pushsection .intList\n\t" \
		".long %P[isr]_irq%P[irq]_stub\n\t"	/* ISR_LIST.fnc */ \
		".long %P[irq]\n\t"		/* ISR_LIST.irq */ \
		".long %P[priority]\n\t"	/* ISR_LIST.priority */ \
		".long %P[vector]\n\t"		/* ISR_LIST.vec */ \
		".long 0\n\t"			/* ISR_LIST.dpl */ \
		".popsection\n\t" \
		".pushsection .text.irqstubs\n\t" \
		".global %P[isr]_irq%P[irq]_stub\n\t" \
		"%P[isr]_irq%P[irq]_stub:\n\t" \
		"pushl %[isr_param]\n\t" \
		"pushl %[isr]\n\t" \
		"jmp _interrupt_enter\n\t" \
		".popsection\n\t" \
		: \
		: [isr] "i" (isr_p), \
		  [isr_param] "i" (isr_param_p), \
		  [priority] "i" (priority_p), \
		  [vector] "i" _VECTOR_ARG(irq_p), \
		  [irq] "i" (irq_p)); \
	_irq_controller_irq_config(_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
				   (flags_p)); \
	_IRQ_TO_INTERRUPT_VECTOR(irq_p); \
})

/** Configure a 'direct' static interrupt
 *
 * All arguments must be computable by the compiler at build time
 *
 */
#define _ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
({ \
	NANO_CPU_INT_REGISTER(isr_p, irq_p, priority_p, -1, 0); \
	_irq_controller_irq_config(_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), \
				   (flags_p)); \
	_IRQ_TO_INTERRUPT_VECTOR(irq_p); \
})


#ifdef CONFIG_X86_FIXED_IRQ_MAPPING
/* Fixed vector-to-irq association mapping.
 * No need for the table at all.
 */
#define _IRQ_TO_INTERRUPT_VECTOR(irq) _IRQ_CONTROLLER_VECTOR_MAPPING(irq)
#else
/**
 * @brief Convert a statically connected IRQ to its interrupt vector number
 *
 * @param irq IRQ number
 */
extern unsigned char _irq_to_interrupt_vector[];
#define _IRQ_TO_INTERRUPT_VECTOR(irq)                       \
			((unsigned int) _irq_to_interrupt_vector[irq])
#endif

#ifdef CONFIG_SYS_POWER_MANAGEMENT
extern void _arch_irq_direct_pm(void);
#define _ARCH_ISR_DIRECT_PM() _arch_irq_direct_pm()
#else
#define _ARCH_ISR_DIRECT_PM() do { } while (0)
#endif

#define _ARCH_ISR_DIRECT_HEADER() _arch_isr_direct_header()
#define _ARCH_ISR_DIRECT_FOOTER(swap) _arch_isr_direct_footer(swap)

/* FIXME prefer these inline, but see ZEP-1595 */
extern void _arch_isr_direct_header(void);
extern void _arch_isr_direct_footer(int maybe_swap);

#define _ARCH_ISR_DIRECT_DECLARE(name) \
	static inline int name##_body(void); \
	__attribute__ ((interrupt)) void name(void *stack_frame) \
	{ \
		ARG_UNUSED(stack_frame); \
		int check_reschedule; \
		ISR_DIRECT_HEADER(); \
		check_reschedule = name##_body(); \
		ISR_DIRECT_FOOTER(check_reschedule); \
	} \
	static inline int name##_body(void)

/**
 * @brief Nanokernel Exception Stack Frame
 *
 * A pointer to an "exception stack frame" (ESF) is passed as an argument
 * to exception handlers registered via nanoCpuExcConnect().  As the system
 * always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed
 * onto the stack when an exception occurs.
 *
 * The exception stack frame includes the volatile registers (EAX, ECX, and
 * EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP).
 * Those registers are pushed onto the stack by _ExcEnt().
 */

typedef struct nanoEsf {
	unsigned int esp;
	unsigned int ebp;
	unsigned int ebx;
	unsigned int esi;
	unsigned int edi;
	unsigned int edx;
	unsigned int eax;
	unsigned int ecx;
	unsigned int errorCode;
	unsigned int eip;
	unsigned int cs;
	unsigned int eflags;
} NANO_ESF;

/**
 * @brief Nanokernel "interrupt stack frame" (ISF)
 *
 * An "interrupt stack frame" (ISF) as constructed by the processor and the
 * interrupt wrapper function _interrupt_enter().  As the system always
 * operates at ring 0, only the EIP, CS and EFLAGS registers are pushed onto
 * the stack when an interrupt occurs.
 *
 * The interrupt stack frame includes the volatile registers EAX, ECX, and EDX
 * plus nonvolatile EDI pushed on the stack by _interrupt_enter().
 *
 * Only target-based debug tools such as GDB require the other non-volatile
 * registers (ESI, EBX, EBP and ESP) to be preserved during an interrupt.
 */

typedef struct nanoIsf {
#ifdef CONFIG_DEBUG_INFO
	unsigned int esp;
	unsigned int ebp;
	unsigned int ebx;
	unsigned int esi;
#endif /* CONFIG_DEBUG_INFO */
	unsigned int edi;
	unsigned int ecx;
	unsigned int edx;
	unsigned int eax;
	unsigned int eip;
	unsigned int cs;
	unsigned int eflags;
} NANO_ISF;

#endif /* !_ASMLANGUAGE */

/*
 * Reason codes passed to both _NanoFatalErrorHandler()
 * and _SysFatalErrorHandler().
 */

/** Unhandled exception/interrupt */
#define _NANO_ERR_SPURIOUS_INT		 (0)
/** Page fault */
#define _NANO_ERR_PAGE_FAULT		 (1)
/** General protection fault */
#define _NANO_ERR_GEN_PROT_FAULT	 (2)
/** Invalid task exit */
#define _NANO_ERR_INVALID_TASK_EXIT  (3)
/** Stack corruption detected */
#define _NANO_ERR_STACK_CHK_FAIL	 (4)
/** Kernel Allocation Failure */
#define _NANO_ERR_ALLOCATION_FAIL    (5)
/** Unhandled exception */
#define _NANO_ERR_CPU_EXCEPTION		(6)

#ifndef _ASMLANGUAGE

/**
 * @brief Disable all interrupts on the CPU (inline)
 *
 * This routine disables interrupts.  It can be called from either interrupt,
 * task or fiber level.  This routine returns an architecture-dependent
 * lock-out key representing the "interrupt disable state" prior to the call;
 * this key can be passed to irq_unlock() to re-enable interrupts.
 *
 * The lock-out key should only be used as the argument to the irq_unlock()
 * API.  It should never be used to manually re-enable interrupts or to inspect
 * or manipulate the contents of the source register.
 *
 * This function can be called recursively: it will return a key to return the
 * state of interrupt locking to the previous level.
 *
 * WARNINGS
 * Invoking a kernel routine with interrupts locked may result in
 * interrupts being re-enabled for an unspecified period of time.  If the
 * called routine blocks, interrupts will be re-enabled while another
 * thread executes, or while the system is idle.
 *
 * The "interrupt disable state" is an attribute of a thread.  Thus, if a
 * fiber or task disables interrupts and subsequently invokes a kernel
 * routine that causes the calling thread to block, the interrupt
 * disable state will be restored when the thread is later rescheduled
 * for execution.
 *
 * @return An architecture-dependent lock-out key representing the
 * "interrupt disable state" prior to the call.
 *
 */

static ALWAYS_INLINE unsigned int _arch_irq_lock(void)
{
	unsigned int key = _do_irq_lock();

	_int_latency_start();

	return key;
}


/**
 *
 * @brief Enable all interrupts on the CPU (inline)
 *
 * This routine re-enables interrupts on the CPU.  The @a key parameter
 * is an architecture-dependent lock-out key that is returned by a previous
 * invocation of irq_lock().
 *
 * This routine can be called from either interrupt, task or fiber level.
 *
 * @return N/A
 *
 */

static ALWAYS_INLINE void _arch_irq_unlock(unsigned int key)
{
	if (!(key & 0x200)) {
		return;
	}

	_int_latency_stop();

	_do_irq_unlock();
}

/**
 * The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter
 * to NANO_CPU_INT_REGISTER when connecting to an interrupt that does not
 * correspond to any IRQ line (such as spurious vector or SW IRQ)
 */
#define NANO_SOFT_IRQ	((unsigned int) (-1))

/**
 * @brief Enable a specific IRQ
 * @param irq IRQ
 */
extern void	_arch_irq_enable(unsigned int irq);
/**
 * @brief Disable a specific IRQ
 * @param irq IRQ
 */
extern void	_arch_irq_disable(unsigned int irq);

/**
 * @defgroup float_apis Floating Point APIs
 * @ingroup kernel_apis
 * @{
 */

/**
 * @brief Enable preservation of floating point context information.
 *
 * This routine informs the kernel that the specified thread (which may be
 * the current thread) will be using the floating point registers.
 * The @a options parameter indicates which floating point register sets
 * will be used by the specified thread:
 *
 *  a) K_FP_REGS  indicates x87 FPU and MMX registers only
 *  b) K_SSE_REGS indicates SSE registers (and also x87 FPU and MMX registers)
 *
 * Invoking this routine initializes the thread's floating point context info
 * to that of an FPU that has been reset. The next time the thread is scheduled
 * by _Swap() it will either inherit an FPU that is guaranteed to be in a "sane"
 * state (if the most recent user of the FPU was cooperatively swapped out)
 * or the thread's own floating point context will be loaded (if the most
 * recent user of the FPU was pre-empted, or if this thread is the first user
 * of the FPU). Thereafter, the kernel will protect the thread's FP context
 * so that it is not altered during a preemptive context switch.
 *
 * @warning
 * This routine should only be used to enable floating point support for a
 * thread that does not currently have such support enabled already.
 *
 * @param thread ID of thread.
 * @param options Registers to be preserved (K_FP_REGS or K_SSE_REGS).
 *
 * @return N/A
 */
extern void k_float_enable(k_tid_t thread, unsigned int options);

/**
 * @brief Disable preservation of floating point context information.
 *
 * This routine informs the kernel that the specified thread (which may be
 * the current thread) will no longer be using the floating point registers.
 *
 * @warning
 * This routine should only be used to disable floating point support for
 * a thread that currently has such support enabled.
 *
 * @param thread ID of thread.
 *
 * @return N/A
 */
extern void k_float_disable(k_tid_t thread);

/**
 * @}
 */

#include <stddef.h>	/* for size_t */

extern void	k_cpu_idle(void);

/** Nanokernel provided routine to report any detected fatal error. */
extern FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason,
						 const NANO_ESF * pEsf);
/** User provided routine to handle any detected fatal error post reporting. */
extern FUNC_NORETURN void _SysFatalErrorHandler(unsigned int reason,
						const NANO_ESF * pEsf);
/** Dummy ESF for fatal errors that would otherwise not have an ESF */
extern const NANO_ESF _default_esf;

#endif /* !_ASMLANGUAGE */

/* reboot through Reset Control Register (I/O port 0xcf9) */

#define SYS_X86_RST_CNT_REG 0xcf9
#define SYS_X86_RST_CNT_SYS_RST 0x02
#define SYS_X86_RST_CNT_CPU_RST 0x4
#define SYS_X86_RST_CNT_FULL_RST 0x08

#ifdef __cplusplus
}
#endif

#endif /* _ARCH_IFACE_H */