Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | /* * Copyright (c) 2016 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include <errno.h> #include <pwm.h> #include <device.h> #include <kernel.h> #include <init.h> #include <power.h> #include <misc/util.h> #include "qm_pwm.h" #include "clk.h" #define HW_CLOCK_CYCLES_PER_USEC (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / \ USEC_PER_SEC) /* pwm uses 32 bits counter to control low and high period */ #define MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32) #define MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32) #define MAX_PERIOD_IN_HW_CLOCK_CYCLES (MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES + \ MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES) /* in micro seconds. */ #define MAX_PERIOD (MAX_PERIOD_IN_HW_CLOCK_CYCLES / HW_CLOCK_CYCLES_PER_USEC) /** * in micro seconds. To be able to get 1% granularity, MIN_PERIOD should * have at least 100 HW clock cycles. */ #define MIN_PERIOD ((100 + (HW_CLOCK_CYCLES_PER_USEC - 1)) / \ HW_CLOCK_CYCLES_PER_USEC) /* in micro seconds */ #define DEFAULT_PERIOD 2000 struct pwm_data { #ifdef CONFIG_PWM_QMSI_API_REENTRANCY struct k_sem sem; #endif #ifdef CONFIG_DEVICE_POWER_MANAGEMENT uint32_t device_power_state; #endif uint32_t channel_period[CONFIG_PWM_QMSI_NUM_PORTS]; }; static struct pwm_data pwm_context; #ifdef CONFIG_PWM_QMSI_API_REENTRANCY #define RP_GET(dev) (&((struct pwm_data *)(dev->driver_data))->sem) #else #define RP_GET(dev) (NULL) #endif static int pwm_qmsi_configure(struct device *dev, int access_op, uint32_t pwm, int flags) { ARG_UNUSED(dev); ARG_UNUSED(access_op); ARG_UNUSED(pwm); ARG_UNUSED(flags); return 0; } static int __set_one_port(struct device *dev, qm_pwm_t id, uint32_t pwm, uint32_t on, uint32_t off) { qm_pwm_config_t cfg; int ret_val = 0; if (IS_ENABLED(CONFIG_PWM_QMSI_API_REENTRANCY)) { k_sem_take(RP_GET(dev), K_FOREVER); } /* Disable timer to prevent any output */ qm_pwm_stop(id, pwm); if (on == 0) { /* stop PWM if so specified */ goto pwm_set_port_return; } /** * off period must be more than zero. Otherwise, the PWM pin will be * turned off. Let's use the minimum value which is 1 for this case. */ if (off == 0) { off = 1; } /* PWM mode, user-defined count mode, timer disabled */ cfg.mode = QM_PWM_MODE_PWM; /* No interrupts */ cfg.mask_interrupt = true; cfg.callback = NULL; cfg.callback_data = NULL; /* Data for the timer to stay high and low */ cfg.hi_count = on; cfg.lo_count = off; if (qm_pwm_set_config(id, pwm, &cfg) != 0) { ret_val = -EIO; goto pwm_set_port_return; } /* Enable timer so it starts running and counting */ qm_pwm_start(id, pwm); pwm_set_port_return: if (IS_ENABLED(CONFIG_PWM_QMSI_API_REENTRANCY)) { k_sem_give(RP_GET(dev)); } return ret_val; } /* * Set the time to assert and de-assert the PWM pin. * * This sets the duration for the pin to stay low or high. * * For example, with a nominal system clock of 32MHz, each count of on/off * represents 31.25ns (e.g. off == 2 means the pin is to be de-asserted at * 62.5ns from the beginning of a PWM cycle). The duration of 1 count depends * on system clock. Refer to the hardware manual for more information. * * Parameters * dev: Pointer to PWM device structure * access_op: whether to set one pin or all * pwm: PWM port number to set * on: How far (in timer count) from the beginning of a PWM cycle the PWM * pin should be asserted. Must be zero, since PWM from Quark MCU always * starts from high. * off: How far (in timer count) from the beginning of a PWM cycle the PWM * pin should be de-asserted. * * return 0, or negative errno code */ static int pwm_qmsi_set_values(struct device *dev, int access_op, uint32_t pwm, uint32_t on, uint32_t off) { struct pwm_data *context = dev->driver_data; uint32_t *channel_period = context->channel_period; int i, high, low; if (on) { return -EINVAL; } switch (access_op) { case PWM_ACCESS_BY_PIN: /* make sure the PWM port exists */ if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) { return -EIO; } high = off; low = channel_period[pwm] - off; if (off >= channel_period[pwm]) { high = channel_period[pwm] - 1; low = 1; } if (off == 0) { high = 1; low = channel_period[pwm] - 1; } return __set_one_port(dev, QM_PWM_0, pwm, high, low); case PWM_ACCESS_ALL: for (i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) { high = off; low = channel_period[i] - off; if (off >= channel_period[i]) { high = channel_period[i] - 1; low = 1; } if (off == 0) { high = 1; low = channel_period[i] - 1; } if (__set_one_port(dev, QM_PWM_0, i, high, low) != 0) { return -EIO; } } break; default: return -ENOTSUP; } return 0; } static int pwm_qmsi_set_period(struct device *dev, int access_op, uint32_t pwm, uint32_t period) { struct pwm_data *context = dev->driver_data; uint32_t *channel_period = context->channel_period; int ret_val = 0; if (channel_period == NULL) { return -EIO; } if (period < MIN_PERIOD || period > MAX_PERIOD) { return -ENOTSUP; } if (IS_ENABLED(CONFIG_PWM_QMSI_API_REENTRANCY)) { k_sem_take(RP_GET(dev), K_FOREVER); } switch (access_op) { case PWM_ACCESS_BY_PIN: /* make sure the PWM port exists */ if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) { ret_val = -EIO; goto pwm_set_period_return; } channel_period[pwm] = period * HW_CLOCK_CYCLES_PER_USEC; break; case PWM_ACCESS_ALL: for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) { channel_period[i] = period * HW_CLOCK_CYCLES_PER_USEC; } break; default: ret_val = -ENOTSUP; } pwm_set_period_return: if (IS_ENABLED(CONFIG_PWM_QMSI_API_REENTRANCY)) { k_sem_give(RP_GET(dev)); } return ret_val; } static int pwm_qmsi_set_duty_cycle(struct device *dev, int access_op, uint32_t pwm, uint8_t duty) { struct pwm_data *context = dev->driver_data; uint32_t *channel_period = context->channel_period; uint32_t on, off; if (channel_period == NULL) { return -EIO; } if (duty > 100) { return -ENOTSUP; } switch (access_op) { case PWM_ACCESS_BY_PIN: /* make sure the PWM port exists */ if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) { return -EIO; } on = (channel_period[pwm] * duty) / 100; off = channel_period[pwm] - on; if (off == 0) { on--; off = 1; } return __set_one_port(dev, QM_PWM_0, pwm, on, off); case PWM_ACCESS_ALL: for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) { on = (channel_period[i] * duty) / 100; off = channel_period[i] - on; if (off == 0) { on--; off = 1; } if (__set_one_port(dev, QM_PWM_0, i, on, off) != 0) { return -EIO; } } break; default: return -ENOTSUP; } return 0; } static int pwm_qmsi_set_phase(struct device *dev, int access_op, uint32_t pwm, uint8_t phase) { ARG_UNUSED(dev); ARG_UNUSED(access_op); ARG_UNUSED(pwm); ARG_UNUSED(phase); return -ENOTSUP; } /* * Set the period and pulse width for a PWM pin. * * For example, with a nominal system clock of 32MHz, each count represents * 31.25ns (e.g. period = 100 means the pulse is to repeat every 3125ns). The * duration of one count depends on system clock. Refer to the hardware manual * for more information. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM port number to set * period_cycles: Period (in timer count) * pulse_cycles: Pulse width (in timer count). * * return 0, or negative errno code */ static int pwm_qmsi_pin_set(struct device *dev, uint32_t pwm, uint32_t period_cycles, uint32_t pulse_cycles) { uint32_t high, low; if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) { return -EINVAL; } if (period_cycles == 0 || pulse_cycles > period_cycles) { return -EINVAL; } high = pulse_cycles; low = period_cycles - pulse_cycles; /* * low must be more than zero. Otherwise, the PWM pin will be * turned off. Let's make sure low is always more than zero. */ if (low == 0) { high--; low = 1; } return __set_one_port(dev, QM_PWM_0, pwm, high, low); } /* * Get the clock rate (cycles per second) for a PWM pin. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM port number * cycles: Pointer to the memory to store clock rate (cycles per second) * * return 0, or negative errno code */ static int pwm_qmsi_get_cycles_per_sec(struct device *dev, uint32_t pwm, uint64_t *cycles) { if (cycles == NULL) { return -EINVAL; } *cycles = (uint64_t)clk_sys_get_ticks_per_us() * USEC_PER_SEC; return 0; } static const struct pwm_driver_api pwm_qmsi_drv_api_funcs = { .config = pwm_qmsi_configure, .set_values = pwm_qmsi_set_values, .set_period = pwm_qmsi_set_period, .set_duty_cycle = pwm_qmsi_set_duty_cycle, .set_phase = pwm_qmsi_set_phase, .pin_set = pwm_qmsi_pin_set, .get_cycles_per_sec = pwm_qmsi_get_cycles_per_sec, }; #ifdef CONFIG_DEVICE_POWER_MANAGEMENT static void pwm_qmsi_set_power_state(struct device *dev, uint32_t power_state) { struct pwm_data *context = dev->driver_data; context->device_power_state = power_state; } #else #define pwm_qmsi_set_power_state(...) #endif static int pwm_qmsi_init(struct device *dev) { struct pwm_data *context = dev->driver_data; uint32_t *channel_period = context->channel_period; for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) { channel_period[i] = DEFAULT_PERIOD * HW_CLOCK_CYCLES_PER_USEC; } clk_periph_enable(CLK_PERIPH_PWM_REGISTER | CLK_PERIPH_CLK); if (IS_ENABLED(CONFIG_PWM_QMSI_API_REENTRANCY)) { k_sem_init(RP_GET(dev), 0, UINT_MAX); k_sem_give(RP_GET(dev)); } pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE); return 0; } #ifdef CONFIG_DEVICE_POWER_MANAGEMENT static qm_pwm_context_t pwm_ctx; static uint32_t pwm_qmsi_get_power_state(struct device *dev) { struct pwm_data *context = dev->driver_data; return context->device_power_state; } static int pwm_qmsi_suspend(struct device *dev) { qm_pwm_save_context(QM_PWM_0, &pwm_ctx); pwm_qmsi_set_power_state(dev, DEVICE_PM_SUSPEND_STATE); return 0; } static int pwm_qmsi_resume_from_suspend(struct device *dev) { qm_pwm_restore_context(QM_PWM_0, &pwm_ctx); pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE); return 0; } /* * Implements the driver control management functionality * the *context may include IN data or/and OUT data */ static int pwm_qmsi_device_ctrl(struct device *dev, uint32_t ctrl_command, void *context) { if (ctrl_command == DEVICE_PM_SET_POWER_STATE) { if (*((uint32_t *)context) == DEVICE_PM_SUSPEND_STATE) { return pwm_qmsi_suspend(dev); } else if (*((uint32_t *)context) == DEVICE_PM_ACTIVE_STATE) { return pwm_qmsi_resume_from_suspend(dev); } } else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) { *((uint32_t *)context) = pwm_qmsi_get_power_state(dev); return 0; } return 0; } #endif DEVICE_DEFINE(pwm_qmsi_0, CONFIG_PWM_QMSI_DEV_NAME, pwm_qmsi_init, pwm_qmsi_device_ctrl, &pwm_context, NULL, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &pwm_qmsi_drv_api_funcs); |