Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 | /* * Copyright (c) 2015, Freescale Semiconductor, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_dspi.h" /******************************************************************************* * Definitions ******************************************************************************/ /*! @brief Typedef for master interrupt handler. */ typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle); /*! @brief Typedef for slave interrupt handler. */ typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle); /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get instance number for DSPI module. * * @param base DSPI peripheral base address. */ uint32_t DSPI_GetInstance(SPI_Type *base); /*! * @brief Configures the DSPI peripheral chip select polarity. * * This function takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and * configures the Pcs signal to operate with the desired characteristic. * * @param base DSPI peripheral address. * @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to * apply the active high or active low characteristic. * @param activeLowOrHigh The setting for either "active high, inactive low (0)" or "active low, inactive high(1)" of * type dspi_pcs_polarity_config_t. */ static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh); /*! * @brief Master fill up the TX FIFO with data. * This is not a public API as it is called from other driver functions. */ static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle); /*! * @brief Master finish up a transfer. * It would call back if there is callback function and set the state to idle. * This is not a public API as it is called from other driver functions. */ static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle); /*! * @brief Slave fill up the TX FIFO with data. * This is not a public API as it is called from other driver functions. */ static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle); /*! * @brief Slave finish up a transfer. * It would call back if there is callback function and set the state to idle. * This is not a public API as it is called from other driver functions. */ static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle); /*! * @brief DSPI common interrupt handler. * * @param base DSPI peripheral address. * @param handle pointer to g_dspiHandle which stores the transfer state. */ static void DSPI_CommonIRQHandler(SPI_Type *base, void *param); /*! * @brief Master prepare the transfer. * Basically it set up dspi_master_handle . * This is not a public API as it is called from other driver functions. fsl_dspi_edma.c also call this function. */ static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer); /******************************************************************************* * Variables ******************************************************************************/ /* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/ static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7}; static const uint32_t s_baudrateScaler[] = {2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768}; static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7}; static const uint32_t s_delayScaler[] = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536}; /*! @brief Pointers to dspi bases for each instance. */ static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS; /*! @brief Pointers to dspi IRQ number for each instance. */ static IRQn_Type const s_dspiIRQ[] = SPI_IRQS; /*! @brief Pointers to dspi clocks for each instance. */ static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS; /*! @brief Pointers to dspi handles for each instance. */ static void *g_dspiHandle[FSL_FEATURE_SOC_DSPI_COUNT]; /*! @brief Pointer to master IRQ handler for each instance. */ static dspi_master_isr_t s_dspiMasterIsr; /*! @brief Pointer to slave IRQ handler for each instance. */ static dspi_slave_isr_t s_dspiSlaveIsr; /********************************************************************************************************************** * Code *********************************************************************************************************************/ uint32_t DSPI_GetInstance(SPI_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < FSL_FEATURE_SOC_DSPI_COUNT; instance++) { if (s_dspiBases[instance] == base) { break; } } assert(instance < FSL_FEATURE_SOC_DSPI_COUNT); return instance; } void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz) { uint32_t temp; /* enable DSPI clock */ CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]); DSPI_Enable(base, true); DSPI_StopTransfer(base); DSPI_SetMasterSlaveMode(base, kDSPI_Master); temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK | SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK)); base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) | SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) | SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) | SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false); DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow); if (0 == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz)) { assert(false); } temp = base->CTAR[masterConfig->whichCtar] & ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK); base->CTAR[masterConfig->whichCtar] = temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1) | SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) | SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) | SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction); DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz, masterConfig->ctarConfig.pcsToSckDelayInNanoSec); DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz, masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec); DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz, masterConfig->ctarConfig.betweenTransferDelayInNanoSec); DSPI_StartTransfer(base); } void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig) { masterConfig->whichCtar = kDSPI_Ctar0; masterConfig->ctarConfig.baudRate = 500000; masterConfig->ctarConfig.bitsPerFrame = 8; masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh; masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge; masterConfig->ctarConfig.direction = kDSPI_MsbFirst; masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000; masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000; masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000; masterConfig->whichPcs = kDSPI_Pcs0; masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow; masterConfig->enableContinuousSCK = false; masterConfig->enableRxFifoOverWrite = false; masterConfig->enableModifiedTimingFormat = false; masterConfig->samplePoint = kDSPI_SckToSin0Clock; } void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig) { uint32_t temp = 0; /* enable DSPI clock */ CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]); DSPI_Enable(base, true); DSPI_StopTransfer(base); DSPI_SetMasterSlaveMode(base, kDSPI_Slave); temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK | SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK)); base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) | SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) | SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) | SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false); DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow); temp = base->CTAR[slaveConfig->whichCtar] & ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK); base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1) | SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) | SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha); DSPI_StartTransfer(base); } void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig) { slaveConfig->whichCtar = kDSPI_Ctar0; slaveConfig->ctarConfig.bitsPerFrame = 8; slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh; slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge; slaveConfig->enableContinuousSCK = false; slaveConfig->enableRxFifoOverWrite = false; slaveConfig->enableModifiedTimingFormat = false; slaveConfig->samplePoint = kDSPI_SckToSin0Clock; } void DSPI_Deinit(SPI_Type *base) { DSPI_StopTransfer(base); DSPI_Enable(base, false); /* disable DSPI clock */ CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]); } static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh) { uint32_t temp; temp = base->MCR; if (activeLowOrHigh == kDSPI_PcsActiveLow) { temp |= SPI_MCR_PCSIS(pcs); } else { temp &= ~SPI_MCR_PCSIS(pcs); } base->MCR = temp; } uint32_t DSPI_MasterSetBaudRate(SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t baudRate_Bps, uint32_t srcClock_Hz) { /* for master mode configuration, if slave mode detected, return 0*/ if (!DSPI_IsMaster(base)) { return 0; } uint32_t temp; uint32_t prescaler, bestPrescaler; uint32_t scaler, bestScaler; uint32_t dbr, bestDbr; uint32_t realBaudrate, bestBaudrate; uint32_t diff, min_diff; uint32_t baudrate = baudRate_Bps; /* find combination of prescaler and scaler resulting in baudrate closest to the requested value */ min_diff = 0xFFFFFFFFU; bestPrescaler = 0; bestScaler = 0; bestDbr = 1; bestBaudrate = 0; /* required to avoid compilation warning */ /* In all for loops, if min_diff = 0, the exit for loop*/ for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++) { for (scaler = 0; (scaler < 16) && min_diff; scaler++) { for (dbr = 1; (dbr < 3) && min_diff; dbr++) { realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler]))); /* calculate the baud rate difference based on the conditional statement that states that the calculated * baud rate must not exceed the desired baud rate. */ if (baudrate >= realBaudrate) { diff = baudrate - realBaudrate; if (min_diff > diff) { /* a better match found */ min_diff = diff; bestPrescaler = prescaler; bestScaler = scaler; bestBaudrate = realBaudrate; bestDbr = dbr; } } } } } /* write the best dbr, prescalar, and baud rate scalar to the CTAR */ temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK); base->CTAR[whichCtar] = temp | ((bestDbr - 1) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) | (bestScaler << SPI_CTAR_BR_SHIFT); /* return the actual calculated baud rate */ return bestBaudrate; } void DSPI_MasterSetDelayScaler( SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay) { /* these settings are only relevant in master mode */ if (DSPI_IsMaster(base)) { switch (whichDelay) { case kDSPI_PcsToSck: base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) | SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler); break; case kDSPI_LastSckToPcs: base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) | SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler); break; case kDSPI_BetweenTransfer: base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) | SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler); break; default: break; } } } uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base, dspi_ctar_selection_t whichCtar, dspi_delay_type_t whichDelay, uint32_t srcClock_Hz, uint32_t delayTimeInNanoSec) { /* for master mode configuration, if slave mode detected, return 0 */ if (!DSPI_IsMaster(base)) { return 0; } uint32_t prescaler, bestPrescaler; uint32_t scaler, bestScaler; uint32_t realDelay, bestDelay; uint32_t diff, min_diff; uint32_t initialDelayNanoSec; /* find combination of prescaler and scaler resulting in the delay closest to the * requested value */ min_diff = 0xFFFFFFFFU; /* Initialize prescaler and scaler to their max values to generate the max delay */ bestPrescaler = 0x3; bestScaler = 0xF; bestDelay = (((1000000000U * 4) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4; /* First calculate the initial, default delay */ initialDelayNanoSec = 1000000000U / srcClock_Hz * 2; /* If the initial, default delay is already greater than the desired delay, then * set the delays to their initial value (0) and return the delay. In other words, * there is no way to decrease the delay value further. */ if (initialDelayNanoSec >= delayTimeInNanoSec) { DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay); return initialDelayNanoSec; } /* In all for loops, if min_diff = 0, the exit for loop */ for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++) { for (scaler = 0; (scaler < 16) && min_diff; scaler++) { realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4; /* calculate the delay difference based on the conditional statement * that states that the calculated delay must not be less then the desired delay */ if (realDelay >= delayTimeInNanoSec) { diff = realDelay - delayTimeInNanoSec; if (min_diff > diff) { /* a better match found */ min_diff = diff; bestPrescaler = prescaler; bestScaler = scaler; bestDelay = realDelay; } } } } /* write the best dbr, prescalar, and baud rate scalar to the CTAR */ DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay); /* return the actual calculated baud rate */ return bestDelay; } void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command) { command->isPcsContinuous = false; command->whichCtar = kDSPI_Ctar0; command->whichPcs = kDSPI_Pcs0; command->isEndOfQueue = false; command->clearTransferCount = false; } void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data) { /* First, clear Transmit Complete Flag (TCF) */ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag); while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) | SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) | SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data); DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); /* Wait till TCF sets */ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag)) { } } void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data) { /* First, clear Transmit Complete Flag (TCF) */ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag); while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } base->PUSHR = data; DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); /* Wait till TCF sets */ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag)) { } } void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data) { /* First, clear Transmit Complete Flag (TCF) */ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag); while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } base->PUSHR_SLAVE = data; DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); /* Wait till TCF sets */ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag)) { } } void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask) { if (mask & SPI_RSER_TFFF_RE_MASK) { base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK; } if (mask & SPI_RSER_RFDF_RE_MASK) { base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK; } base->RSER |= mask; } /*Transactional APIs -- Master*/ void DSPI_MasterTransferCreateHandle(SPI_Type *base, dspi_master_handle_t *handle, dspi_master_transfer_callback_t callback, void *userData) { assert(handle); /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); g_dspiHandle[DSPI_GetInstance(base)] = handle; handle->callback = callback; handle->userData = userData; } status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer) { assert(transfer); uint16_t wordToSend = 0; uint16_t wordReceived = 0; uint8_t dummyData = DSPI_DUMMY_DATA; uint8_t bitsPerFrame; uint32_t command; uint32_t lastCommand; uint8_t *txData; uint8_t *rxData; uint32_t remainingSendByteCount; uint32_t remainingReceiveByteCount; uint32_t fifoSize; dspi_command_data_config_t commandStruct; /* If the transfer count is zero, then return immediately.*/ if (transfer->dataSize == 0) { return kStatus_InvalidArgument; } DSPI_StopTransfer(base); DSPI_DisableInterrupts(base, kDSPI_AllInterruptEnable); DSPI_FlushFifo(base, true, true); DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); /*Calculate the command and lastCommand*/ commandStruct.whichPcs = (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT)); commandStruct.isEndOfQueue = false; commandStruct.clearTransferCount = false; commandStruct.whichCtar = (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT); commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous); command = DSPI_MasterGetFormattedCommand(&(commandStruct)); commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer); lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct)); /*Calculate the bitsPerFrame*/ bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1; txData = transfer->txData; rxData = transfer->rxData; remainingSendByteCount = transfer->dataSize; remainingReceiveByteCount = transfer->dataSize; if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK)) { fifoSize = 1; } else { fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base); } DSPI_StartTransfer(base); if (bitsPerFrame <= 8) { while (remainingSendByteCount > 0) { if (remainingSendByteCount == 1) { while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize) { if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { if (rxData != NULL) { *(rxData) = DSPI_ReadData(base); rxData++; } else { DSPI_ReadData(base); } remainingReceiveByteCount--; DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } if (txData != NULL) { base->PUSHR = (*txData) | (lastCommand); txData++; } else { base->PUSHR = (lastCommand) | (dummyData); } DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); remainingSendByteCount--; while (remainingReceiveByteCount > 0) { if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { if (rxData != NULL) { /* Read data from POPR*/ *(rxData) = DSPI_ReadData(base); rxData++; } else { DSPI_ReadData(base); } remainingReceiveByteCount--; DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } } else { /*Wait until Tx Fifo is not full*/ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } if (txData != NULL) { base->PUSHR = command | (uint16_t)(*txData); txData++; } else { base->PUSHR = command | dummyData; } remainingSendByteCount--; DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { if (rxData != NULL) { *(rxData) = DSPI_ReadData(base); rxData++; } else { DSPI_ReadData(base); } remainingReceiveByteCount--; DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } } } else { while (remainingSendByteCount > 0) { if (remainingSendByteCount <= 2) { while (((remainingReceiveByteCount - remainingSendByteCount) / 2) >= fifoSize) { if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { wordReceived = DSPI_ReadData(base); if (rxData != NULL) { *rxData = wordReceived; ++rxData; *rxData = wordReceived >> 8; ++rxData; } remainingReceiveByteCount -= 2; DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } if (txData != NULL) { wordToSend = *(txData); ++txData; if (remainingSendByteCount > 1) { wordToSend |= (unsigned)(*(txData)) << 8U; ++txData; } } else { wordToSend = dummyData; } base->PUSHR = lastCommand | wordToSend; DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); remainingSendByteCount = 0; while (remainingReceiveByteCount > 0) { if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { wordReceived = DSPI_ReadData(base); if (remainingReceiveByteCount != 1) { if (rxData != NULL) { *(rxData) = wordReceived; ++rxData; *(rxData) = wordReceived >> 8; ++rxData; } remainingReceiveByteCount -= 2; } else { if (rxData != NULL) { *(rxData) = wordReceived; ++rxData; } remainingReceiveByteCount--; } DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } } else { /*Wait until Tx Fifo is not full*/ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } if (txData != NULL) { wordToSend = *(txData); ++txData; wordToSend |= (unsigned)(*(txData)) << 8U; ++txData; } else { wordToSend = dummyData; } base->PUSHR = command | wordToSend; remainingSendByteCount -= 2; DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { wordReceived = DSPI_ReadData(base); if (rxData != NULL) { *rxData = wordReceived; ++rxData; *rxData = wordReceived >> 8; ++rxData; } remainingReceiveByteCount -= 2; DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); } } } } return kStatus_Success; } static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer) { dspi_command_data_config_t commandStruct; DSPI_StopTransfer(base); DSPI_FlushFifo(base, true, true); DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); commandStruct.whichPcs = (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT)); commandStruct.isEndOfQueue = false; commandStruct.clearTransferCount = false; commandStruct.whichCtar = (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT); commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous); handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct)); commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer); handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct)); handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1; if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK)) { handle->fifoSize = 1; } else { handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base); } handle->txData = transfer->txData; handle->rxData = transfer->rxData; handle->remainingSendByteCount = transfer->dataSize; handle->remainingReceiveByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize; } status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer) { assert(handle && transfer); /* If the transfer count is zero, then return immediately.*/ if (transfer->dataSize == 0) { return kStatus_InvalidArgument; } /* Check that we're not busy.*/ if (handle->state == kDSPI_Busy) { return kStatus_DSPI_Busy; } handle->state = kDSPI_Busy; DSPI_MasterTransferPrepare(base, handle, transfer); DSPI_StartTransfer(base); /* Enable the NVIC for DSPI peripheral. */ EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]); DSPI_MasterTransferFillUpTxFifo(base, handle); /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt * Since SPI is a synchronous interface, we only need to enable the RX interrupt. * The IRQ handler will get the status of RX and TX interrupt flags. */ s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ; DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable); return kStatus_Success; } status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count) { assert(handle); if (!count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (handle->state != kDSPI_Busy) { *count = 0; return kStatus_NoTransferInProgress; } *count = handle->totalByteCount - handle->remainingReceiveByteCount; return kStatus_Success; } static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle) { /* Disable interrupt requests*/ DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable); status_t status = 0; if (handle->state == kDSPI_Error) { status = kStatus_DSPI_Error; } else { status = kStatus_Success; } if (handle->callback) { handle->callback(base, handle, status, handle->userData); } /* The transfer is complete.*/ handle->state = kDSPI_Idle; } static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle) { uint16_t wordToSend = 0; uint8_t dummyData = DSPI_DUMMY_DATA; /* If bits/frame is greater than one byte */ if (handle->bitsPerFrame > 8) { /* Fill the fifo until it is full or until the send word count is 0 or until the difference * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth. * The reason for checking the difference is to ensure we only send as much as the * RX FIFO can receive. * For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the * send data, hence the difference between the remainingReceiveByteCount and * remainingSendByteCount must be divided by 2 to convert this difference into a * 16-bit (2 byte) value. */ while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) && ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) / 2 < handle->fifoSize)) { if (handle->remainingSendByteCount <= 2) { if (handle->txData) { if (handle->remainingSendByteCount == 1) { wordToSend = *(handle->txData); } else { wordToSend = *(handle->txData); ++handle->txData; /* increment to next data byte */ wordToSend |= (unsigned)(*(handle->txData)) << 8U; } } else { wordToSend = dummyData; } handle->remainingSendByteCount = 0; base->PUSHR = handle->lastCommand | wordToSend; } /* For all words except the last word */ else { if (handle->txData) { wordToSend = *(handle->txData); ++handle->txData; /* increment to next data byte */ wordToSend |= (unsigned)(*(handle->txData)) << 8U; ++handle->txData; /* increment to next data byte */ } else { wordToSend = dummyData; } handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */ base->PUSHR = handle->command | wordToSend; } /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); /* exit loop if send count is zero, else update local variables for next loop */ if (handle->remainingSendByteCount == 0) { break; } } /* End of TX FIFO fill while loop */ } /* Optimized for bits/frame less than or equal to one byte. */ else { /* Fill the fifo until it is full or until the send word count is 0 or until the difference * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth. * The reason for checking the difference is to ensure we only send as much as the * RX FIFO can receive. */ while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) && ((handle->remainingReceiveByteCount - handle->remainingSendByteCount) < handle->fifoSize)) { if (handle->txData) { wordToSend = *(handle->txData); ++handle->txData; } else { wordToSend = dummyData; } if (handle->remainingSendByteCount == 1) { base->PUSHR = handle->lastCommand | wordToSend; } else { base->PUSHR = handle->command | wordToSend; } /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); --handle->remainingSendByteCount; /* exit loop if send count is zero, else update local variables for next loop */ if (handle->remainingSendByteCount == 0) { break; } } } } void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle) { DSPI_StopTransfer(base); /* Disable interrupt requests*/ DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable); handle->state = kDSPI_Idle; } void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle) { /* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */ if (handle->remainingReceiveByteCount) { /* Check read buffer.*/ uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */ /* If bits/frame is greater than one byte */ if (handle->bitsPerFrame > 8) { while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { wordReceived = DSPI_ReadData(base); /* clear the rx fifo drain request, needed for non-DMA applications as this flag * will remain set even if the rx fifo is empty. By manually clearing this flag, it * either remain clear if no more data is in the fifo, or it will set if there is * more data in the fifo. */ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); /* Store read bytes into rx buffer only if a buffer pointer was provided */ if (handle->rxData) { /* For the last word received, if there is an extra byte due to the odd transfer * byte count, only save the the last byte and discard the upper byte */ if (handle->remainingReceiveByteCount == 1) { *handle->rxData = wordReceived; /* Write first data byte */ --handle->remainingReceiveByteCount; } else { *handle->rxData = wordReceived; /* Write first data byte */ ++handle->rxData; /* increment to next data byte */ *handle->rxData = wordReceived >> 8; /* Write second data byte */ ++handle->rxData; /* increment to next data byte */ handle->remainingReceiveByteCount -= 2; } } else { if (handle->remainingReceiveByteCount == 1) { --handle->remainingReceiveByteCount; } else { handle->remainingReceiveByteCount -= 2; } } if (handle->remainingReceiveByteCount == 0) { break; } } /* End of RX FIFO drain while loop */ } /* Optimized for bits/frame less than or equal to one byte. */ else { while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { wordReceived = DSPI_ReadData(base); /* clear the rx fifo drain request, needed for non-DMA applications as this flag * will remain set even if the rx fifo is empty. By manually clearing this flag, it * either remain clear if no more data is in the fifo, or it will set if there is * more data in the fifo. */ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); /* Store read bytes into rx buffer only if a buffer pointer was provided */ if (handle->rxData) { *handle->rxData = wordReceived; ++handle->rxData; } --handle->remainingReceiveByteCount; if (handle->remainingReceiveByteCount == 0) { break; } } /* End of RX FIFO drain while loop */ } } /* Check write buffer. We always have to send a word in order to keep the transfer * moving. So if the caller didn't provide a send buffer, we just send a zero. */ if (handle->remainingSendByteCount) { DSPI_MasterTransferFillUpTxFifo(base, handle); } /* Check if we're done with this transfer.*/ if ((handle->remainingSendByteCount == 0) && (handle->remainingReceiveByteCount == 0)) { /* Complete the transfer and disable the interrupts */ DSPI_MasterTransferComplete(base, handle); } } /*Transactional APIs -- Slave*/ void DSPI_SlaveTransferCreateHandle(SPI_Type *base, dspi_slave_handle_t *handle, dspi_slave_transfer_callback_t callback, void *userData) { assert(handle); /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); g_dspiHandle[DSPI_GetInstance(base)] = handle; handle->callback = callback; handle->userData = userData; } status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer) { assert(handle && transfer); /* If receive length is zero */ if (transfer->dataSize == 0) { return kStatus_InvalidArgument; } /* If both send buffer and receive buffer is null */ if ((!(transfer->txData)) && (!(transfer->rxData))) { return kStatus_InvalidArgument; } /* Check that we're not busy.*/ if (handle->state == kDSPI_Busy) { return kStatus_DSPI_Busy; } handle->state = kDSPI_Busy; /* Enable the NVIC for DSPI peripheral. */ EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]); /* Store transfer information */ handle->txData = transfer->txData; handle->rxData = transfer->rxData; handle->remainingSendByteCount = transfer->dataSize; handle->remainingReceiveByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize; handle->errorCount = 0; uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT; handle->bitsPerFrame = (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1; DSPI_StopTransfer(base); DSPI_FlushFifo(base, true, true); DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); DSPI_StartTransfer(base); /* Prepare data to transmit */ DSPI_SlaveTransferFillUpTxFifo(base, handle); s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ; /* Enable RX FIFO drain request, the slave only use this interrupt */ DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable); if (handle->rxData) { /* RX FIFO overflow request enable */ DSPI_EnableInterrupts(base, kDSPI_RxFifoOverflowInterruptEnable); } if (handle->txData) { /* TX FIFO underflow request enable */ DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable); } return kStatus_Success; } status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count) { assert(handle); if (!count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (handle->state != kDSPI_Busy) { *count = 0; return kStatus_NoTransferInProgress; } *count = handle->totalByteCount - handle->remainingReceiveByteCount; return kStatus_Success; } static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle) { uint16_t transmitData = 0; uint8_t dummyPattern = DSPI_DUMMY_DATA; /* Service the transmitter, if transmit buffer provided, transmit the data, * else transmit dummy pattern */ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) { /* Transmit data */ if (handle->remainingSendByteCount > 0) { /* Have data to transmit, update the transmit data and push to FIFO */ if (handle->bitsPerFrame <= 8) { /* bits/frame is 1 byte */ if (handle->txData) { /* Update transmit data and transmit pointer */ transmitData = *handle->txData; handle->txData++; } else { transmitData = dummyPattern; } /* Decrease remaining dataSize */ --handle->remainingSendByteCount; } /* bits/frame is 2 bytes */ else { /* With multibytes per frame transmission, the transmit frame contains data from * transmit buffer until sent dataSize matches user request. Other bytes will set to * dummy pattern value. */ if (handle->txData) { /* Update first byte of transmit data and transmit pointer */ transmitData = *handle->txData; handle->txData++; if (handle->remainingSendByteCount == 1) { /* Decrease remaining dataSize */ --handle->remainingSendByteCount; /* Update second byte of transmit data to second byte of dummy pattern */ transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8); } else { /* Update second byte of transmit data and transmit pointer */ transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8); handle->txData++; handle->remainingSendByteCount -= 2; } } else { if (handle->remainingSendByteCount == 1) { --handle->remainingSendByteCount; } else { handle->remainingSendByteCount -= 2; } transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern; } } } else { break; } /* Write the data to the DSPI data register */ base->PUSHR_SLAVE = transmitData; /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); } } static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle) { /* Disable interrupt requests */ DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable | kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable); /* The transfer is complete. */ handle->txData = NULL; handle->rxData = NULL; handle->remainingReceiveByteCount = 0; handle->remainingSendByteCount = 0; status_t status = 0; if (handle->state == kDSPI_Error) { status = kStatus_DSPI_Error; } else { status = kStatus_Success; } if (handle->callback) { handle->callback(base, handle, status, handle->userData); } handle->state = kDSPI_Idle; } void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle) { DSPI_StopTransfer(base); /* Disable interrupt requests */ DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable | kDSPI_TxFifoFillRequestInterruptEnable | kDSPI_RxFifoOverflowInterruptEnable | kDSPI_RxFifoDrainRequestInterruptEnable); handle->state = kDSPI_Idle; handle->remainingSendByteCount = 0; handle->remainingReceiveByteCount = 0; } void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle) { uint8_t dummyPattern = DSPI_DUMMY_DATA; uint32_t dataReceived; uint32_t dataSend = 0; /* Because SPI protocol is synchronous, the number of bytes that that slave received from the * master is the actual number of bytes that the slave transmitted to the master. So we only * monitor the received dataSize to know when the transfer is complete. */ if (handle->remainingReceiveByteCount > 0) { while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag) { /* Have received data in the buffer. */ dataReceived = base->POPR; /*Clear the rx fifo drain request, needed for non-DMA applications as this flag * will remain set even if the rx fifo is empty. By manually clearing this flag, it * either remain clear if no more data is in the fifo, or it will set if there is * more data in the fifo. */ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag); /* If bits/frame is one byte */ if (handle->bitsPerFrame <= 8) { if (handle->rxData) { /* Receive buffer is not null, store data into it */ *handle->rxData = dataReceived; ++handle->rxData; } /* Descrease remaining receive byte count */ --handle->remainingReceiveByteCount; if (handle->remainingSendByteCount > 0) { if (handle->txData) { dataSend = *handle->txData; ++handle->txData; } else { dataSend = dummyPattern; } --handle->remainingSendByteCount; /* Write the data to the DSPI data register */ base->PUSHR_SLAVE = dataSend; } } else /* If bits/frame is 2 bytes */ { /* With multibytes frame receiving, we only receive till the received dataSize * matches user request. Other bytes will be ignored. */ if (handle->rxData) { /* Receive buffer is not null, store first byte into it */ *handle->rxData = dataReceived; ++handle->rxData; if (handle->remainingReceiveByteCount == 1) { /* Decrease remaining receive byte count */ --handle->remainingReceiveByteCount; } else { /* Receive buffer is not null, store second byte into it */ *handle->rxData = dataReceived >> 8; ++handle->rxData; handle->remainingReceiveByteCount -= 2; } } /* If no handle->rxData*/ else { if (handle->remainingReceiveByteCount == 1) { /* Decrease remaining receive byte count */ --handle->remainingReceiveByteCount; } else { handle->remainingReceiveByteCount -= 2; } } if (handle->remainingSendByteCount > 0) { if (handle->txData) { dataSend = *handle->txData; ++handle->txData; if (handle->remainingSendByteCount == 1) { --handle->remainingSendByteCount; dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8); } else { dataSend |= (uint32_t)(*handle->txData) << 8; ++handle->txData; handle->remainingSendByteCount -= 2; } } /* If no handle->txData*/ else { if (handle->remainingSendByteCount == 1) { --handle->remainingSendByteCount; } else { handle->remainingSendByteCount -= 2; } dataSend = (uint16_t)((uint16_t)(dummyPattern) << 8) | dummyPattern; } /* Write the data to the DSPI data register */ base->PUSHR_SLAVE = dataSend; } } /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); if (handle->remainingReceiveByteCount == 0) { break; } } } /* Check if remaining receive byte count matches user request */ if ((handle->remainingReceiveByteCount == 0) || (handle->state == kDSPI_Error)) { /* Other cases, stop the transfer. */ DSPI_SlaveTransferComplete(base, handle); return; } /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */ if ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoUnderflowFlag) && (base->RSER & SPI_RSER_TFUF_RE_MASK)) { DSPI_ClearStatusFlags(base, kDSPI_TxFifoUnderflowFlag); /* Change state to error and clear flag */ if (handle->txData) { handle->state = kDSPI_Error; } handle->errorCount++; } /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */ if ((DSPI_GetStatusFlags(base) & kDSPI_RxFifoOverflowFlag) && (base->RSER & SPI_RSER_RFOF_RE_MASK)) { DSPI_ClearStatusFlags(base, kDSPI_RxFifoOverflowFlag); /* Change state to error and clear flag */ if (handle->txData) { handle->state = kDSPI_Error; } handle->errorCount++; } } static void DSPI_CommonIRQHandler(SPI_Type *base, void *param) { if (DSPI_IsMaster(base)) { s_dspiMasterIsr(base, (dspi_master_handle_t *)param); } else { s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param); } } #if defined(SPI0) void SPI0_DriverIRQHandler(void) { assert(g_dspiHandle[0]); DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]); } #endif #if defined(SPI1) void SPI1_DriverIRQHandler(void) { assert(g_dspiHandle[1]); DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]); } #endif #if defined(SPI2) void SPI2_DriverIRQHandler(void) { assert(g_dspiHandle[2]); DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]); } #endif #if defined(SPI3) void SPI3_DriverIRQHandler(void) { assert(g_dspiHandle[3]); DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]); } #endif #if defined(SPI4) void SPI4_DriverIRQHandler(void) { assert(g_dspiHandle[4]); DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]); } #endif #if defined(SPI5) void SPI5_DriverIRQHandler(void) { assert(g_dspiHandle[5]); DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]); } #endif #if (FSL_FEATURE_SOC_DSPI_COUNT > 6) #error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !" #endif |