Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/* adc_dw.c - Designware ADC driver */

/*
 * Copyright (c) 2015 Intel Corporation
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <errno.h>

#include <init.h>
#include <kernel.h>
#include <string.h>
#include <stdlib.h>
#include <board.h>
#include <adc.h>
#include <arch/cpu.h>
#include "adc_dw.h"

#define ADC_CLOCK_GATE      (1 << 31)
#define ADC_POWER_DOWN       0x01
#define ADC_STANDBY          0x02
#define ADC_NORMAL_WITH_CALIB  0x03
#define ADC_NORMAL_WO_CALIB    0x04
#define ADC_MODE_MASK        0x07

#define ONE_BIT_SET     0x1
#define THREE_BITS_SET   0x7
#define FIVE_BITS_SET   0x1f
#define SIX_BITS_SET    0x3f
#define SEVEN_BITS_SET  0xef
#define ELEVEN_BITS_SET 0x7ff

#define INPUT_MODE_POS     5
#define CAPTURE_MODE_POS   6
#define OUTPUT_MODE_POS    7
#define SERIAL_DELAY_POS   8
#define SEQUENCE_MODE_POS  13
#define SEQ_ENTRIES_POS    16
#define THRESHOLD_POS      24

#define SEQ_DELAY_EVEN_POS 5
#define SEQ_MUX_ODD_POS    16
#define SEQ_DELAY_ODD_POS  21

#ifdef CONFIG_SOC_QUARK_SE_C1000_SS
#define int_unmask(__mask)                                             \
	sys_write32(sys_read32((__mask)) & ENABLE_SSS_INTERRUPTS, (__mask))
#else
#define int_unmask(...) { ; }
#endif
static void adc_config_irq(void);

#ifdef CONFIG_ADC_DW_CALIBRATION
static void calibration_command(uint8_t command)
{
	uint32_t state;
	uint32_t reg_value;

	state = irq_lock();
	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
	reg_value |= (command & THREE_BITS_SET) << 17;
	reg_value |= 0x10000;
	sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
	irq_unlock(state);
	/*Poll waiting for command*/
	do {
		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
	} while ((reg_value & 0x10) == 0);

	/*Clear Calibration Request*/
	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
	reg_value &= ~(0x10000);
	sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
}

static void adc_goto_normal_mode(struct device *dev)
{
	struct adc_info *info = dev->driver_data;
	uint8_t calibration_value;
	uint32_t reg_value;
	uint32_t state;

	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);

	if (((reg_value & 0xE) >> 1) != ADC_NORMAL_WITH_CALIB) {

		state = irq_lock();
		/*Request  Normal With Calibration Mode*/
		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
		reg_value &= ~(ADC_MODE_MASK);
		reg_value |= ADC_NORMAL_WITH_CALIB;
		sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
		irq_unlock(state);

		/*Poll waiting for normal mode*/
		do {
			reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
		} while ((reg_value & 0x1) == 0);

		if (info->calibration_value == ADC_NONE_CALIBRATION) {
			/*Reset Calibration*/
			calibration_command(ADC_CMD_RESET_CALIBRATION);
			/*Request Calibration*/
			calibration_command(ADC_CMD_START_CALIBRATION);
			reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
			calibration_value = (reg_value >> 5) & SEVEN_BITS_SET;
			info->calibration_value = calibration_value;
		}

		/*Load Calibration*/
		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
		reg_value |= (info->calibration_value << 20);
		sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
		calibration_command(ADC_CMD_LOAD_CALIBRATION);
	}
}

#else
static void adc_goto_normal_mode(struct device *dev)
{
	uint32_t reg_value;
	uint32_t state;

	ARG_UNUSED(dev);
	reg_value = sys_in32(
		PERIPH_ADDR_BASE_CREG_SLV0 + SLV_OBSR);

	if (((reg_value & 0xE) >> 1) == ADC_NORMAL_WO_CALIB) {
		state = irq_lock();
		/*Request  Power Down*/
		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);

		reg_value &= ~(ADC_MODE_MASK);
		reg_value |= ADC_POWER_DOWN;

		sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
		irq_unlock(state);

		do {
			reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
		} while ((reg_value & 0x1) == 0);
	}

	/*Request  Normal With Calibration Mode*/
	state = irq_lock();
	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
	reg_value &= ~(ADC_MODE_MASK);
	reg_value |= ADC_NORMAL_WO_CALIB;
	sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
	irq_unlock(state);

	/*Poll waiting for normal mode*/
	do {
		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
	} while ((reg_value & 0x1) == 0);
}
#endif

static void adc_goto_deep_power_down(void)
{
	uint32_t reg_value;
	uint32_t state;

	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
	if ((reg_value & 0xE >> 1) != 0) {
		state = irq_lock();

		reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);

		reg_value &= ~(ADC_MODE_MASK);

		reg_value |= 0 | ADC_CLOCK_GATE;
		sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);

		irq_unlock(state);
		do {
			reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_SLV0);
		} while ((reg_value & 0x1) == 0);
	}
}

static void adc_dw_enable(struct device *dev)
{
	uint32_t reg_value;
	struct adc_info *info = dev->driver_data;
	const struct adc_config *config = dev->config->config_info;
	uint32_t adc_base = config->reg_base;

	/*Go to Normal Mode*/
	sys_out32(ADC_INT_DSB|ENABLE_ADC, adc_base + ADC_CTRL);
	adc_goto_normal_mode(dev);

	/*Clock Gate*/
	reg_value = sys_in32(PERIPH_ADDR_BASE_CREG_MST0);
	reg_value &= ~(ADC_CLOCK_GATE);
	sys_out32(reg_value, PERIPH_ADDR_BASE_CREG_MST0);
	sys_out32(ENABLE_ADC, adc_base + ADC_CTRL);

	info->state = ADC_STATE_IDLE;
}

static void adc_dw_disable(struct device *dev)
{
	uint32_t saved;
	struct adc_info *info = dev->driver_data;
	const struct adc_config *config = dev->config->config_info;
	uint32_t adc_base = config->reg_base;

	sys_out32(ADC_INT_DSB|ENABLE_ADC, adc_base + ADC_CTRL);
	adc_goto_deep_power_down();
	sys_out32(ADC_INT_DSB|ADC_SEQ_PTR_RST, adc_base + ADC_CTRL);

	saved = irq_lock();

	sys_out32(sys_in32(adc_base + ADC_SET)|ADC_FLUSH_RX, adc_base + ADC_SET);
	irq_unlock(saved);

	info->state = ADC_STATE_DISABLED;
}

static int adc_dw_read_request(struct device *dev, struct adc_seq_table *seq_tbl)
{
	uint32_t i;
	uint32_t ctrl;
	uint32_t tmp_val;
	uint32_t num_iters;
	uint32_t saved;
	struct adc_seq_entry *entry;
	struct adc_info *info = dev->driver_data;
	const struct adc_config *config = dev->config->config_info;
	uint32_t adc_base = config->reg_base;

	if (info->state != ADC_STATE_IDLE) {
		return 1;
	}

	saved = irq_lock();
	info->seq_size = seq_tbl->num_entries;

	ctrl = sys_in32(adc_base + ADC_CTRL);
	ctrl |= ADC_SEQ_PTR_RST;
	sys_out32(ctrl, adc_base + ADC_CTRL);

	tmp_val = sys_in32(adc_base + ADC_SET);
	tmp_val &= ADC_SEQ_SIZE_SET_MASK;
	tmp_val |= (((seq_tbl->num_entries - 1) & SIX_BITS_SET)
		<< SEQ_ENTRIES_POS);
	tmp_val |= ((seq_tbl->num_entries - 1) << THRESHOLD_POS);
	sys_out32(tmp_val, adc_base + ADC_SET);

	irq_unlock(saved);

	num_iters = seq_tbl->num_entries/2;

	for (i = 0, entry = seq_tbl->entries;
		i < num_iters; i++, entry += 2) {
		tmp_val = ((entry[1].sampling_delay & ELEVEN_BITS_SET)
			<< SEQ_DELAY_ODD_POS);
		tmp_val |= ((entry[1].channel_id & FIVE_BITS_SET)
			<< SEQ_MUX_ODD_POS);
		tmp_val |= ((entry[0].sampling_delay & ELEVEN_BITS_SET)
			<< SEQ_DELAY_EVEN_POS);
		tmp_val |= (entry[0].channel_id & FIVE_BITS_SET);
		sys_out32(tmp_val, adc_base + ADC_SEQ);
	}

	if ((seq_tbl->num_entries % 2) != 0) {
		tmp_val = ((entry[0].sampling_delay & ELEVEN_BITS_SET)
			<< SEQ_DELAY_EVEN_POS);
		tmp_val |= (entry[0].channel_id & FIVE_BITS_SET);
		sys_out32(tmp_val, adc_base + ADC_SEQ);
	}

	sys_out32(ctrl | ADC_SEQ_PTR_RST, adc_base + ADC_CTRL);

	info->entries = seq_tbl->entries;
#ifdef CONFIG_ADC_DW_REPETITIVE
	memset(info->index, 0, seq_tbl->num_entries);
#endif
	info->state = ADC_STATE_SAMPLING;
	sys_out32(START_ADC_SEQ, adc_base + ADC_CTRL);

	k_sem_take(&info->device_sync_sem, K_FOREVER);

	if (info->state == ADC_STATE_ERROR) {
		info->state = ADC_STATE_IDLE;
		return -EIO;
	}

	return 0;
}

static int adc_dw_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
	struct adc_info *info = dev->driver_data;

#ifdef CONFIG_ADC_DW_DUMMY_CONVERSION
	if (info->dummy_conversion == ADC_NONE_DUMMY) {
		adc_dw_read_request(dev, seq_tbl);
		info->dummy_conversion = ADC_DONE_DUMMY;
	}
#endif
	return adc_dw_read_request(dev, seq_tbl);
}

static struct adc_driver_api api_funcs = {
	.enable  = adc_dw_enable,
	.disable = adc_dw_disable,
	.read    = adc_dw_read,
};

int adc_dw_init(struct device *dev)
{
	uint32_t tmp_val;
	uint32_t val;
	const struct adc_config *config = dev->config->config_info;
	uint32_t adc_base = config->reg_base;
	struct adc_info *info = dev->driver_data;

	sys_out32(ADC_INT_DSB | ADC_CLK_ENABLE, adc_base + ADC_CTRL);

	tmp_val = sys_in32(adc_base + ADC_SET);
	tmp_val &= ADC_CONFIG_SET_MASK;
	val = (config->sample_width) & FIVE_BITS_SET;
	val &= ~(1 << INPUT_MODE_POS);
	val |= ((config->capture_mode & ONE_BIT_SET) << CAPTURE_MODE_POS);
	val |= ((config->out_mode & ONE_BIT_SET) << OUTPUT_MODE_POS);
	val |= ((config->serial_dly & FIVE_BITS_SET) << SERIAL_DELAY_POS);
	val |= ((config->seq_mode & ONE_BIT_SET) << SEQUENCE_MODE_POS);
	sys_out32(tmp_val|val, adc_base + ADC_SET);

	sys_out32(config->clock_ratio & ADC_CLK_RATIO_MASK,
		adc_base + ADC_DIVSEQSTAT);

	sys_out32(ADC_INT_ENABLE & ~(ADC_CLK_ENABLE),
		adc_base + ADC_CTRL);

	config->config_func();

	k_sem_init(&info->device_sync_sem, 0, UINT_MAX);

	int_unmask(config->reg_irq_mask);
	int_unmask(config->reg_err_mask);

	return 0;
}

#ifdef CONFIG_ADC_DW_SINGLESHOT
static void adc_dw_rx_isr(void *arg)
{
	struct device *dev = (struct device *)arg;
	struct device_config *dev_config = dev->config;
	const struct adc_config *config = dev_config->config_info;
	struct adc_info *info = dev->driver_data;
	uint32_t adc_base = config->reg_base;
	struct adc_seq_entry *entries = info->entries;
	uint32_t reg_val;
	uint32_t seq_index;

	for (seq_index = 0; seq_index < info->seq_size; seq_index++) {
		uint32_t *adc_buffer;

		reg_val = sys_in32(adc_base + ADC_SET);
		sys_out32(reg_val|ADC_POP_SAMPLE, adc_base + ADC_SET);
		adc_buffer = (uint32_t *)entries[seq_index].buffer;
		*adc_buffer = sys_in32(adc_base + ADC_SAMPLE);
	}

	/*Resume ADC state to continue new conversions*/
	sys_out32(RESUME_ADC_CAPTURE, adc_base + ADC_CTRL);
	reg_val = sys_in32(adc_base + ADC_SET);
	sys_out32(reg_val | ADC_FLUSH_RX, adc_base + ADC_SET);
	info->state = ADC_STATE_IDLE;

	/*Clear data A register*/
	reg_val = sys_in32(adc_base + ADC_CTRL);
	sys_out32(reg_val | ADC_CLR_DATA_A, adc_base + ADC_CTRL);

	k_sem_give(&info->device_sync_sem);
}
#else /*CONFIG_ADC_DW_REPETITIVE*/
static void adc_dw_rx_isr(void *arg)
{
	struct device *dev = (struct device *)arg;
	struct device_config *dev_config = dev->config;
	const struct adc_config *config = dev_config->config_info;
	struct adc_info *info = dev->driver_data;
	uint32_t adc_base = config->reg_base;
	struct adc_seq_entry *entries = info->entries;
	uint32_t reg_val;
	uint32_t sequence_index;
	uint8_t full_buffer_flag = 0;

	for (sequence_index = 0; sequence_index < info->seq_size; sequence_index++) {
		uint32_t *adc_buffer;
		uint32_t repetitive_index;

		repetitive_index = info->index[sequence_index];
		/*API array is 8 bits array but ADC reads blocks of 32 bits with every sample.*/
		if (repetitive_index >= (entries[sequence_index].buffer_length >> 2)) {
			full_buffer_flag = 1;
			continue;
		}

		reg_val = sys_in32(adc_base + ADC_SET);
		sys_out32(reg_val|ADC_POP_SAMPLE, adc_base + ADC_SET);
		adc_buffer = (uint32_t *)entries[sequence_index].buffer;
		adc_buffer[repetitive_index] = sys_in32(adc_base + ADC_SAMPLE);
		repetitive_index++;
		info->index[sequence_index] = repetitive_index;
	}

	if (full_buffer_flag == 1) {
		/*Resume ADC state to continue new conversions*/
		sys_out32(RESUME_ADC_CAPTURE, adc_base + ADC_CTRL);
		reg_val = sys_in32(adc_base + ADC_SET);
		sys_out32(reg_val | ADC_FLUSH_RX, adc_base + ADC_SET);
		info->state = ADC_STATE_IDLE;
		/*Clear data A register*/
		reg_val = sys_in32(adc_base + ADC_CTRL);
		sys_out32(reg_val | ADC_CLR_DATA_A, adc_base + ADC_CTRL);

		k_sem_give(&info->device_sync_sem);
		return;
	}

	/*Clear data A register*/
	reg_val = sys_in32(adc_base + ADC_CTRL);
	sys_out32(reg_val | ADC_CLR_DATA_A, adc_base + ADC_CTRL);
}
#endif


static void adc_dw_err_isr(void *arg)
{
	struct device *dev = (struct device *) arg;
	const struct adc_config  *config = dev->config->config_info;
	struct adc_info    *info   = dev->driver_data;
	uint32_t adc_base = config->reg_base;
	uint32_t reg_val = sys_in32(adc_base + ADC_SET);


	sys_out32(RESUME_ADC_CAPTURE, adc_base + ADC_CTRL);
	sys_out32(reg_val | ADC_FLUSH_RX, adc_base + ADC_CTRL);
	sys_out32(FLUSH_ADC_ERRORS, adc_base + ADC_CTRL);

	info->state = ADC_STATE_ERROR;

	k_sem_give(&info->device_sync_sem);
}

#ifdef CONFIG_ADC_DW

struct adc_info adc_info_dev = {
		.state = ADC_STATE_IDLE,
#ifdef CONFIG_ADC_DW_CALIBRATION
		.calibration_value = ADC_NONE_CALIBRATION,
#endif
#ifdef CONFIG_ADC_DW_DUMMY_CONVERSION
		.dummy_conversion = ADC_NONE_DUMMY,
#endif
	};

static struct adc_config adc_config_dev = {
		.reg_base = PERIPH_ADDR_BASE_ADC,
		.reg_irq_mask = SCSS_REGISTER_BASE + INT_SS_ADC_IRQ_MASK,
		.reg_err_mask = SCSS_REGISTER_BASE + INT_SS_ADC_ERR_MASK,
#ifdef CONFIG_ADC_DW_SERIAL
		.out_mode     = 0,
#elif CONFIG_ADC_DW_PARALLEL
		.out_mode     = 1,
#endif
#ifdef CONFIG_ADC_DW_SINGLESHOT
		.seq_mode = 0,
#elif CONFIG_ADC_DW_REPETITIVE
		.seq_mode = 1,
#endif
#ifdef CONFIG_ADC_DW_RISING_EDGE
		.capture_mode = 0,
#elif CONFIG_ADC_DW_FALLING_EDGE
		.capture_mode = 1,
#endif
		.sample_width = CONFIG_ADC_DW_SAMPLE_WIDTH,
		.clock_ratio  = CONFIG_ADC_DW_CLOCK_RATIO,
		.serial_dly   = CONFIG_ADC_DW_SERIAL_DELAY,
		.config_func  = adc_config_irq,
	};

DEVICE_AND_API_INIT(adc_dw, CONFIG_ADC_0_NAME, &adc_dw_init,
		    &adc_info_dev, &adc_config_dev,
		    POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
		    &api_funcs);

static void adc_config_irq(void)
{
	IRQ_CONNECT(IRQ_ADC_IRQ, CONFIG_ADC_0_IRQ_PRI, adc_dw_rx_isr,
		    DEVICE_GET(adc_dw), 0);
	irq_enable(IRQ_ADC_IRQ);

	IRQ_CONNECT(IRQ_ADC_ERR, CONFIG_ADC_0_IRQ_PRI,
		    adc_dw_err_isr, DEVICE_GET(adc_dw), 0);
	irq_enable(IRQ_ADC_ERR);
}
#endif