Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | /* * Copyright (c) 2010-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Kernel semaphore object. * * The semaphores are of the 'counting' type, i.e. each 'give' operation will * increment the internal count by 1, if no fiber is pending on it. The 'init' * call initializes the count to 0. Following multiple 'give' operations, the * same number of 'take' operations can be performed without the calling fiber * having to pend on the semaphore, or the calling task having to poll. */ #include <kernel.h> #include <kernel_structs.h> #include <debug/object_tracing_common.h> #include <toolchain.h> #include <sections.h> #include <wait_q.h> #include <misc/dlist.h> #include <ksched.h> #include <init.h> #ifdef CONFIG_SEMAPHORE_GROUPS struct sem_desc { /* node in list of semaphores */ sys_dnode_t semg_node; /* thread waiting for semaphores */ struct k_thread *thread; /* semaphore on which to wait */ struct k_sem *sem; }; struct sem_thread { /* dummy thread, only the thread base */ struct _thread_base dummy; /* descriptor containing real thread , sem, and group info */ struct sem_desc desc; }; #endif extern struct k_sem _k_sem_list_start[]; extern struct k_sem _k_sem_list_end[]; struct k_sem *_trace_list_k_sem; #ifdef CONFIG_OBJECT_TRACING /* * Complete initialization of statically defined semaphores. */ static int init_sem_module(struct device *dev) { ARG_UNUSED(dev); struct k_sem *sem; for (sem = _k_sem_list_start; sem < _k_sem_list_end; sem++) { SYS_TRACING_OBJ_INIT(k_sem, sem); } return 0; } SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ void k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit) { __ASSERT(limit != 0, "limit cannot be zero"); sem->count = initial_count; sem->limit = limit; sys_dlist_init(&sem->wait_q); _INIT_OBJ_POLL_EVENT(sem); SYS_TRACING_OBJ_INIT(k_sem, sem); } #ifdef CONFIG_SEMAPHORE_GROUPS int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem, int32_t timeout) { unsigned int key; struct k_sem *item = *sem_array; int num = 0; __ASSERT(sem_array[0] != K_END, "Empty semaphore list"); key = irq_lock(); do { if (item->count > 0) { item->count--; /* Available semaphore found */ irq_unlock(key); *sem = item; return 0; } num++; item = sem_array[num]; } while (item != K_END); if (timeout == K_NO_WAIT) { irq_unlock(key); *sem = NULL; return -EBUSY; } struct sem_thread wait_objects[num]; int32_t priority = k_thread_priority_get(_current); sys_dlist_t list; sys_dlist_init(&list); _current->base.swap_data = &list; for (int i = 0; i < num; i++) { _init_thread_base(&wait_objects[i].dummy, priority, _THREAD_DUMMY, 0); sys_dlist_append(&list, &wait_objects[i].desc.semg_node); wait_objects[i].desc.thread = _current; wait_objects[i].desc.sem = sem_array[i]; _pend_thread((struct k_thread *)&wait_objects[i].dummy, &sem_array[i]->wait_q, timeout); } /* * Pend the current thread on a dummy wait queue, adding it _after_ all * the dummy threads on the _timeout_q, but expiring on the same tick, * which will cause it to be _prepended_ to the dummy threads. See * description of _add_timeout() for details. */ _wait_q_t wait_q; sys_dlist_init(&wait_q); _pend_current_thread(&wait_q, timeout); if (_Swap(key) != 0) { *sem = NULL; return -EAGAIN; } /* The accepted semaphore is the only one left on the list */ struct sem_desc *desc = (struct sem_desc *)sys_dlist_get(&list); *sem = desc->sem; return 0; } /* cancel all but specified semaphore in list if part of a semphore group */ static void handle_sem_group(struct k_sem *sem, struct sem_thread *sem_thread) { struct sem_desc *desc = NULL; sys_dlist_t *list; sys_dnode_t *node; sys_dnode_t *next; list = (sys_dlist_t *)sem_thread->desc.thread->base.swap_data; node = sys_dlist_peek_head(list); __ASSERT(node != NULL, ""); do { next = sys_dlist_peek_next(list, node); desc = (struct sem_desc *)node; sem_thread = CONTAINER_OF(desc, struct sem_thread, desc); struct k_thread *dummy = (struct k_thread *)&sem_thread->dummy; /* * This is tricky: due to the fact that the timeouts expiring * at the same time are queued in reverse order, we know that, * since the caller of this function has already verified that * the timeout of the real thread has not expired and since it * was queued after the dummy threads, causing it to be the * first to be unpended, that the timeouts of the dummy threads * have not expired. Thus, we do not have to handle the case * where the timeout of the dummy thread might have expired. */ _abort_thread_timeout(dummy); _unpend_thread(dummy); if (desc->sem != sem) { sys_dlist_remove(node); } node = next; } while (node != NULL); /* if node was not NULL, desc is not NULL: no need to check */ /* * As this code may be executed several times by a semaphore group give * operation, it is important to ensure that the attempt to ready the * master thread is done only once. */ if (!_is_thread_ready(desc->thread)) { _abort_thread_timeout(desc->thread); _mark_thread_as_not_pending(desc->thread); if (_is_thread_ready(desc->thread)) { _add_thread_to_ready_q(desc->thread); } } _set_thread_return_value(desc->thread, 0); } #else #define handle_sem_group(sem, thread) 0 #endif /* returns 1 if a reschedule must take place, 0 otherwise */ static inline int handle_poll_event(struct k_sem *sem) { #ifdef CONFIG_POLL uint32_t state = K_POLL_STATE_SEM_AVAILABLE; return sem->poll_event ? _handle_obj_poll_event(&sem->poll_event, state) : 0; #else return 0; #endif } static inline void increment_count_up_to_limit(struct k_sem *sem) { sem->count += (sem->count != sem->limit); } /* returns 1 if _Swap() will need to be invoked, 0 otherwise */ static int do_sem_give(struct k_sem *sem) { #ifdef CONFIG_SEMAPHORE_GROUPS struct k_thread *thread = NULL; again: thread = _find_first_thread_to_unpend(&sem->wait_q, thread); if (!thread) { increment_count_up_to_limit(sem); return handle_poll_event(sem); } if (unlikely(_is_thread_dummy(thread))) { /* * The awakened thread is a dummy struct sem_thread and thus * was involved in a semaphore group operation. */ struct sem_thread *sem_thread = (struct sem_thread *)thread; struct k_thread *real_thread = sem_thread->desc.thread; /* * This is an extremely tricky way of handling the fact that * the current sem_give might have happened from an ISR while * the timeout handling code is running, going through the list * of expired timeouts. * * We have to be able to handle all timeouts on a * k_sem_group_take operation as one. We do that by checking if * the timeout of the real thread has expired or not. We can do * this, because of the way the timeouts are queued in the * kernel's timeout_q: timeouts expiring on the same tick are * queued in the _reverse_ order that they arrive. It is done * this way to save time with interrupts locked. By knowing * this, and by adding the real thread _last_ to the timeout_q, * we know that it is queued _before_ all the dummy threads * from the k_sem_group_take operation. This allows us to check * that, if the real thread's timeout has not expired, then all * dummy threads' timeouts have not expired either. If the real * thread's timeout has expired, then the dummy threads' * timeouts will expire or have expired already during the * current handling of timeouts, and the timeout code will take * care of signalling the waiter that its operation has * timedout. In that case, we look for the next thread not part * of the same k_sem_group_take operation to give it the * semaphore. */ if (_is_thread_timeout_expired(real_thread)) { goto again; } /* * Do not dequeue the dummy thread: that will be done when * looping through the list of dummy waiters in * handle_sem_group(). */ handle_sem_group(sem, sem_thread); } else { _unpend_thread(thread); (void)_abort_thread_timeout(thread); _ready_thread(thread); _set_thread_return_value(thread, 0); } #else struct k_thread *thread = _unpend_first_thread(&sem->wait_q); if (!thread) { increment_count_up_to_limit(sem); return handle_poll_event(sem); } (void)_abort_thread_timeout(thread); _ready_thread(thread); _set_thread_return_value(thread, 0); #endif return !_is_in_isr() && _must_switch_threads(); } /* * This function is meant to be called only by * _sys_event_logger_put_non_preemptible(), which itself is really meant to be * called only by _sys_k_event_logger_context_switch(), used within a context * switch to log the event. * * WARNING: * It must be called with interrupts already locked. * It cannot be called for a sempahore part of a group. */ void _sem_give_non_preemptible(struct k_sem *sem) { struct k_thread *thread; thread = _unpend_first_thread(&sem->wait_q); if (!thread) { increment_count_up_to_limit(sem); return; } _abort_thread_timeout(thread); _ready_thread(thread); _set_thread_return_value(thread, 0); } #ifdef CONFIG_SEMAPHORE_GROUPS void k_sem_group_give(struct k_sem *sem_array[]) { int swap_needed = 0; unsigned int key; __ASSERT(sem_array[0] != K_END, "Empty semaphore list"); key = irq_lock(); for (int i = 0; sem_array[i] != K_END; i++) { swap_needed |= do_sem_give(sem_array[i]); } if (swap_needed) { _Swap(key); } else { irq_unlock(key); } } void k_sem_group_reset(struct k_sem *sem_array[]) { unsigned int key; key = irq_lock(); for (int i = 0; sem_array[i] != K_END; i++) { sem_array[i]->count = 0; } irq_unlock(key); } #endif void k_sem_give(struct k_sem *sem) { unsigned int key; key = irq_lock(); if (do_sem_give(sem)) { _Swap(key); } else { irq_unlock(key); } } int k_sem_take(struct k_sem *sem, int32_t timeout) { __ASSERT(!_is_in_isr() || timeout == K_NO_WAIT, ""); unsigned int key = irq_lock(); if (likely(sem->count > 0)) { sem->count--; irq_unlock(key); return 0; } if (timeout == K_NO_WAIT) { irq_unlock(key); return -EBUSY; } _pend_current_thread(&sem->wait_q, timeout); return _Swap(key); } |