Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
 * Copyright (c) 2016 RnDity Sp. z o.o.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief Driver for Reset & Clock Control of STM32F10x family processor.
 *
 * Based on reference manual:
 *   STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx
 *   advanced ARM ® -based 32-bit MCUs
 *
 * Chapter 8: Connectivity line devices: reset and clock control (RCC)
 */

#include <soc.h>
#include <soc_registers.h>
#include <clock_control.h>
#include <misc/util.h>
#include <clock_control/stm32_clock_control.h>

struct stm32f10x_rcc_data {
	uint8_t *base;
};

static inline int stm32f10x_clock_control_on(struct device *dev,
					     clock_control_subsys_t sub_system)
{
	struct stm32f10x_rcc_data *data = dev->driver_data;
	volatile struct stm32f10x_rcc *rcc =
		(struct stm32f10x_rcc *)(data->base);
	uint32_t subsys = POINTER_TO_UINT(sub_system);

	if (subsys > STM32F10X_CLOCK_APB2_BASE) {
		subsys &=  ~(STM32F10X_CLOCK_APB2_BASE);
		rcc->apb2enr |= subsys;
	} else {
		rcc->apb1enr |= subsys;
	}

	return 0;
}

static inline int stm32f10x_clock_control_off(struct device *dev,
					      clock_control_subsys_t sub_system)
{
	struct stm32f10x_rcc_data *data = dev->driver_data;
	volatile struct stm32f10x_rcc *rcc =
		(struct stm32f10x_rcc *)(data->base);
	uint32_t subsys = POINTER_TO_UINT(sub_system);

	if (subsys > STM32F10X_CLOCK_APB2_BASE) {
		subsys &= ~(STM32F10X_CLOCK_APB2_BASE);
		rcc->apb2enr &= ~subsys;
	} else {
		rcc->apb1enr &= ~subsys;
	}

	return 0;
}

/**
 * @brief helper for mapping a setting to register value
 */
struct regval_map {
	int val;
	int reg;
};

static int map_reg_val(const struct regval_map *map, size_t cnt, int val)
{
	for (int i = 0; i < cnt; i++) {
		if (map[i].val == val) {
			return map[i].reg;
		}
	}

	return 0;
}

/**
 * @brief map APB prescaler setting to register value
 */
static int apb_prescaler(int prescaler)
{
	if (prescaler == 0) {
		return STM32F10X_RCC_CFG_HCLK_DIV_0;
	}

	const struct regval_map map[] = {
		{0,	STM32F10X_RCC_CFG_HCLK_DIV_0},
		{2,	STM32F10X_RCC_CFG_HCLK_DIV_2},
		{4,	STM32F10X_RCC_CFG_HCLK_DIV_4},
		{8,	STM32F10X_RCC_CFG_HCLK_DIV_8},
		{16,	STM32F10X_RCC_CFG_HCLK_DIV_16},
	};

	return map_reg_val(map, ARRAY_SIZE(map), prescaler);
}

/**
 * @brief map AHB prescaler setting to register value
 */
static int ahb_prescaler(int prescaler)
{
	if (prescaler == 0) {
		return STM32F10X_RCC_CFG_SYSCLK_DIV_0;
	}

	const struct regval_map map[] = {
		{0,	STM32F10X_RCC_CFG_SYSCLK_DIV_0},
		{2,	STM32F10X_RCC_CFG_SYSCLK_DIV_2},
		{4,	STM32F10X_RCC_CFG_SYSCLK_DIV_4},
		{8,	STM32F10X_RCC_CFG_SYSCLK_DIV_8},
		{16,	STM32F10X_RCC_CFG_SYSCLK_DIV_16},
		{64,	STM32F10X_RCC_CFG_SYSCLK_DIV_64},
		{128,	STM32F10X_RCC_CFG_SYSCLK_DIV_128},
		{256,	STM32F10X_RCC_CFG_SYSCLK_DIV_256},
		{512,	STM32F10X_RCC_CFG_SYSCLK_DIV_512},
	};

	return map_reg_val(map, ARRAY_SIZE(map), prescaler);
}

/**
 * @brief select PREDIV division factor
 */
static int prediv_prescaler(int prescaler)
{
	if (prescaler == 0) {
		return STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_0;
	}

	const struct regval_map map[] = {
		{0,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_0},
		{2,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_2},
		{3,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_3},
		{4,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_4},
		{5,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_5},
		{6,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_6},
		{7,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_7},
		{8,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_8},
		{9,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_9},
		{10,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_10},
		{11,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_11},
		{12,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_12},
		{13,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_13},
		{14,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_14},
		{15,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_15},
		{16,	STM32F10X_CONN_LINE_RCC_CFGR2_PREDIV_DIV_16},
	};

	return map_reg_val(map, ARRAY_SIZE(map), prescaler);
}

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_MULTIPLIER
/**
 * @brief map PLL multiplier setting to register value
 */
static int pllmul(int mul)
{
	/* x4	-> 0x2
	 * x5	-> 0x3
	 * x6	-> 0x4
	 * x7	-> 0x5
	 * x8	-> 0x6
	 * x9	-> 0x7
	 * x6.5	-> 0xd
	 */
	if (mul == 13) {
	/* ToDo: do something with 6.5 multiplication */
		return 0xd;
	} else {
		return mul - 2;
	}
}
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_MULTIPLIER */
#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL2_MULTIPLIER
static int pll2mul(int mul)
{
	/* x8	-> 0x6
	 * x9	-> 0x7
	 * x10	-> 0x8
	 * x11	-> 0x9
	 * x12	-> 0xa
	 * x13	-> 0xb
	 * x14	-> 0xc
	 * x16	-> 0xe
	 * x20	-> 0xf
	 */
	if (mul == 20) {
		return 0xf;
	} else {
		return mul - 2;
	}
}
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL2_MULTIPLIER */

static uint32_t get_ahb_clock(uint32_t sysclk)
{
	/* AHB clock is generated based on SYSCLK  */
	uint32_t sysclk_div =
		CONFIG_CLOCK_STM32F10X_CONN_LINE_AHB_PRESCALER;

	if (sysclk_div == 0) {
		sysclk_div = 1;
	}

	return sysclk / sysclk_div;
}

static uint32_t get_apb_clock(uint32_t ahb_clock, uint32_t prescaler)
{
	if (prescaler == 0) {
		prescaler = 1;
	}

	return ahb_clock / prescaler;
}

static
int stm32f10x_clock_control_get_subsys_rate(struct device *clock,
					    clock_control_subsys_t sub_system,
					    uint32_t *rate)
{
	ARG_UNUSED(clock);

	uint32_t subsys = POINTER_TO_UINT(sub_system);
	uint32_t prescaler =
		CONFIG_CLOCK_STM32F10X_CONN_LINE_APB1_PRESCALER;
	/* assumes SYSCLK is SYS_CLOCK_HW_CYCLES_PER_SEC */
	uint32_t ahb_clock =
		get_ahb_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);

	if (subsys > STM32F10X_CLOCK_APB2_BASE) {
		prescaler =
			CONFIG_CLOCK_STM32F10X_CONN_LINE_APB2_PRESCALER;
	}

	*rate = get_apb_clock(ahb_clock, prescaler);

	return 0;
}

static const struct clock_control_driver_api stm32f10x_clock_control_api = {
	.on = stm32f10x_clock_control_on,
	.off = stm32f10x_clock_control_off,
	.get_rate = stm32f10x_clock_control_get_subsys_rate,
};

/**
 * @brief setup embedded flash controller
 *
 * Configure flash access time latency depending on SYSCLK.
 */
static inline void setup_flash(void)
{
	volatile struct stm32f10x_flash *flash =
		(struct stm32f10x_flash *)(FLASH_R_BASE);

	if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC <= 24000000) {
		flash->acr.bit.latency = STM32F10X_FLASH_LATENCY_0;
	} else if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC <= 48000000) {
		flash->acr.bit.latency = STM32F10X_FLASH_LATENCY_1;
	} else if (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC <= 72000000) {
		flash->acr.bit.latency = STM32F10X_FLASH_LATENCY_2;
	}
}

static int stm32f10x_clock_control_init(struct device *dev)
{
	struct stm32f10x_rcc_data *data = dev->driver_data;
	volatile struct stm32f10x_rcc *rcc =
		(struct stm32f10x_rcc *)(data->base);
	/* SYSCLK source defaults to HSI */
	int sysclk_src = STM32F10X_RCC_CFG_SYSCLK_SRC_HSI;
	uint32_t hpre =
		ahb_prescaler(CONFIG_CLOCK_STM32F10X_CONN_LINE_AHB_PRESCALER);
	uint32_t ppre1 =
		apb_prescaler(CONFIG_CLOCK_STM32F10X_CONN_LINE_APB1_PRESCALER);
	uint32_t ppre2 =
		apb_prescaler(CONFIG_CLOCK_STM32F10X_CONN_LINE_APB2_PRESCALER);
#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_MULTIPLIER
	uint32_t pll_mul =
		pllmul(CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_MULTIPLIER);
#endif	/* CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_MULTIPLIER */
#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL2_MULTIPLIER
	uint32_t pll2mul =
		pllmul(CLOCK_STM32F10X_CONN_LINE_PLL2_MULTIPLIER);
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL2_MULTIPLIER */
#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV1
	uint32_t prediv1 =
		prediv_prescaler(CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV1);
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV1 */
#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV2
	uint32_t prediv2 =
		prediv_prescaler(CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV2);
#endif /* CLOCK_STM32F10X_CONN_LINE_PREDIV2 */

	/* disable PLLs */
	rcc->cr.bit.pllon = 0;
	rcc->cr.bit.pll2on = 0;
	rcc->cr.bit.pll3on = 0;
	/* disable HSE */
	rcc->cr.bit.hseon = 0;

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_HSE_BYPASS
	/* HSE is disabled, HSE bypass can be enabled*/
	rcc->cr.bit.hsebyp = 1;
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_HSE_BYPASS */

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_SRC_HSI
	/* enable HSI clock */
	rcc->cr.bit.hsion = 1;
	/* this should end after one test */
	while (rcc->cr.bit.hsirdy != 1) {
	}

	/* HSI oscillator clock / 2 selected as PLL input clock */
	rcc->cfgr.bit.pllsrc = STM32F10X_RCC_CFG_PLL_SRC_HSI;
#endif	/* CONFIG_CLOCK_STM32F10X_PLL_SRC_HSI */

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_SRC_PREDIV1

	/* wait for to become ready */
	rcc->cr.bit.hseon = 1;
	while (rcc->cr.bit.hserdy != 1) {
	}

	rcc->cfgr2.bit.prediv1 = prediv1;

	/* Clock from PREDIV1 selected as PLL input clock */
	rcc->cfgr.bit.pllsrc = STM32F10X_RCC_CFG_PLL_SRC_PREDIV1;

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV1_SRC_HSE
	/* HSE oscillator clock selected as PREDIV1 clock entry */
	rcc->cfgr2.bit.prediv1src = STM32F10X_RCC_CFG2_PREDIV1_SRC_HSE;
#else
	/* PLL2 selected as PREDIV1 clock entry */
	rcc->cfgr2.bit.prediv1src = STM32F10X_RCC_CFG2_PREDIV1_SRC_PLL2;

	rcc->cfgr2.bit.prediv2 = prediv2;
	rcc->cfgr2.bit.pll2mul = pll2mul;

#endif	/* CONFIG_CLOCK_STM32F10X_CONN_LINE_PREDIV1_SRC_HSE */
#endif	/* CONFIG_CLOCK_STM32F10X_CONN_LINE_PLL_SRC_PREDIV1 */

	/* setup AHB prescaler */
	rcc->cfgr.bit.hpre = hpre;

	/* setup APB1, must not exceed 36MHz */
	rcc->cfgr.bit.ppre1 = ppre1;

	/* setup APB2  */
	rcc->cfgr.bit.ppre2 = ppre2;

#ifdef CONFIG_CLOCK_STM32F10X_CONN_LINE_SYSCLK_SRC_HSI
	/* enable HSI clock */
	rcc->cr.bit.hsion = 1;
	/* this should end after one test */
	while (rcc->cr.bit.hsirdy != 1) {
	}
	sysclk_src = STM32F10X_RCC_CFG_SYSCLK_SRC_HSI;
#elif defined(CONFIG_CLOCK_STM32F10X_SYSCLK_SRC_HSE)
	/* enable HSE clock */
	rcc->cr.bit.hseon = 1;
	/* wait for to become ready */
	while (rcc->cr.bit.hserdy != 1) {
	}
	sysclk_src = STM32F10X_RCC_CFG_SYSCLK_SRC_HSE;
#elif defined(CONFIG_CLOCK_STM32F10X_CONN_LINE_SYSCLK_SRC_PLLCLK)
	/* setup PLL multiplication (PLL must be disabled) */
	rcc->cfgr.bit.pllmul = pll_mul;

	/* enable PLL */
	rcc->cr.bit.pllon = 1;

	/* wait for PLL to become ready */
	while (rcc->cr.bit.pllrdy != 1) {
	}

	sysclk_src = STM32F10X_RCC_CFG_SYSCLK_SRC_PLL;
#endif /* CONFIG_CLOCK_STM32F10X_CONN_LINE_SYSCLK_SRC_HSI */

	/* configure flash access latency before SYSCLK source
	 * switch
	 */
	setup_flash();

	/* set SYSCLK clock value */
	rcc->cfgr.bit.sw = sysclk_src;

	/* wait for SYSCLK to switch the source */
	while (rcc->cfgr.bit.sws != sysclk_src) {
	}

	return 0;
}

static struct stm32f10x_rcc_data stm32f10x_rcc_data = {
	.base = (uint8_t *)RCC_BASE,
};

/* FIXME: move prescaler/multiplier defines into device config */

/**
 * @brief RCC device, note that priority is intentionally set to 1 so
 * that the device init runs just after SOC init
 */
DEVICE_AND_API_INIT(rcc_stm32f10x, STM32_CLOCK_CONTROL_NAME,
		    &stm32f10x_clock_control_init,
		    &stm32f10x_rcc_data, NULL,
		    PRE_KERNEL_1,
		    CONFIG_CLOCK_CONTROL_STM32F10X_CONN_LINE_DEVICE_INIT_PRIORITY,
		    &stm32f10x_clock_control_api);