Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief Kernel thread support * * This module provides general purpose thread support. */ #include <kernel.h> #include <toolchain.h> #include <sections.h> #include <kernel_structs.h> #include <misc/printk.h> #include <sys_clock.h> #include <drivers/system_timer.h> #include <ksched.h> #include <wait_q.h> extern struct _static_thread_data _static_thread_data_list_start[]; extern struct _static_thread_data _static_thread_data_list_end[]; #define _FOREACH_STATIC_THREAD(thread_data) \ for (struct _static_thread_data *thread_data = \ _static_thread_data_list_start; \ thread_data < _static_thread_data_list_end; \ thread_data++) #ifdef CONFIG_FP_SHARING static inline void _task_group_adjust(struct _static_thread_data *thread_data) { /* * set thread options corresponding to legacy FPU and SSE task groups * so thread spawns properly; EXE and SYS task groups need no adjustment */ if (thread_data->init_groups & K_TASK_GROUP_FPU) { thread_data->init_options |= K_FP_REGS; } #ifdef CONFIG_SSE if (thread_data->init_groups & K_TASK_GROUP_SSE) { thread_data->init_options |= K_SSE_REGS; } #endif /* CONFIG_SSE */ } #else #define _task_group_adjust(thread_data) do { } while (0) #endif /* CONFIG_FP_SHARING */ /* Legacy API */ int sys_execution_context_type_get(void) { if (k_is_in_isr()) return NANO_CTX_ISR; if (_current->base.prio < 0) return NANO_CTX_FIBER; return NANO_CTX_TASK; } int k_is_in_isr(void) { return _is_in_isr(); } /* * This function tags the current thread as essential to system operation. * Exceptions raised by this thread will be treated as a fatal system error. */ void _thread_essential_set(void) { _current->base.flags |= K_ESSENTIAL; } /* * This function tags the current thread as not essential to system operation. * Exceptions raised by this thread may be recoverable. * (This is the default tag for a thread.) */ void _thread_essential_clear(void) { _current->base.flags &= ~K_ESSENTIAL; } /* * This routine indicates if the current thread is an essential system thread. * * Returns non-zero if current thread is essential, zero if it is not. */ int _is_thread_essential(void) { return _current->base.flags & K_ESSENTIAL; } void k_busy_wait(uint32_t usec_to_wait) { /* use 64-bit math to prevent overflow when multiplying */ uint32_t cycles_to_wait = (uint32_t)( (uint64_t)usec_to_wait * (uint64_t)sys_clock_hw_cycles_per_sec / (uint64_t)USEC_PER_SEC ); uint32_t start_cycles = k_cycle_get_32(); for (;;) { uint32_t current_cycles = k_cycle_get_32(); /* this handles the rollover on an unsigned 32-bit value */ if ((current_cycles - start_cycles) >= cycles_to_wait) { break; } } } #ifdef CONFIG_THREAD_CUSTOM_DATA void k_thread_custom_data_set(void *value) { _current->custom_data = value; } void *k_thread_custom_data_get(void) { return _current->custom_data; } #endif /* CONFIG_THREAD_CUSTOM_DATA */ #if defined(CONFIG_THREAD_MONITOR) /* * Remove a thread from the kernel's list of active threads. */ void _thread_monitor_exit(struct k_thread *thread) { unsigned int key = irq_lock(); if (thread == _kernel.threads) { _kernel.threads = _kernel.threads->next_thread; } else { struct k_thread *prev_thread; prev_thread = _kernel.threads; while (thread != prev_thread->next_thread) { prev_thread = prev_thread->next_thread; } prev_thread->next_thread = thread->next_thread; } irq_unlock(key); } #endif /* CONFIG_THREAD_MONITOR */ /* * Common thread entry point function (used by all threads) * * This routine invokes the actual thread entry point function and passes * it three arguments. It also handles graceful termination of the thread * if the entry point function ever returns. * * This routine does not return, and is marked as such so the compiler won't * generate preamble code that is only used by functions that actually return. */ FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *), void *p1, void *p2, void *p3) { entry(p1, p2, p3); if (_is_thread_essential()) { _NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT, &_default_esf); } k_thread_abort(_current); /* * Compiler can't tell that k_thread_abort() won't return and issues a * warning unless we tell it that control never gets this far. */ CODE_UNREACHABLE; } static void start_thread(struct k_thread *thread) { int key = irq_lock(); /* protect kernel queues */ _mark_thread_as_started(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); if (_must_switch_threads()) { _Swap(key); return; } } irq_unlock(key); } static void schedule_new_thread(struct k_thread *thread, int32_t delay) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (delay == 0) { start_thread(thread); } else { int32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay); int key = irq_lock(); _add_thread_timeout(thread, NULL, ticks); irq_unlock(key); } #else ARG_UNUSED(delay); start_thread(thread); #endif } k_tid_t k_thread_spawn(char *stack, size_t stack_size, void (*entry)(void *, void *, void*), void *p1, void *p2, void *p3, int prio, uint32_t options, int32_t delay) { __ASSERT(!_is_in_isr(), ""); struct k_thread *new_thread = (struct k_thread *)stack; _new_thread(stack, stack_size, entry, p1, p2, p3, prio, options); schedule_new_thread(new_thread, delay); return new_thread; } int k_thread_cancel(k_tid_t tid) { struct k_thread *thread = tid; int key = irq_lock(); if (_has_thread_started(thread) || !_is_thread_timeout_active(thread)) { irq_unlock(key); return -EINVAL; } _abort_thread_timeout(thread); _thread_monitor_exit(thread); irq_unlock(key); return 0; } static inline int is_in_any_group(struct _static_thread_data *thread_data, uint32_t groups) { return !!(thread_data->init_groups & groups); } void _k_thread_group_op(uint32_t groups, void (*func)(struct k_thread *)) { unsigned int key; __ASSERT(!_is_in_isr(), ""); _sched_lock(); /* Invoke func() on each static thread in the specified group set. */ _FOREACH_STATIC_THREAD(thread_data) { if (is_in_any_group(thread_data, groups)) { key = irq_lock(); func(thread_data->thread); irq_unlock(key); } } /* * If the current thread is still in a ready state, then let the * "unlock scheduler" code determine if any rescheduling is needed. */ if (_is_thread_ready(_current)) { k_sched_unlock(); return; } /* The current thread is no longer in a ready state--reschedule. */ key = irq_lock(); _sched_unlock_no_reschedule(); _Swap(key); } void _k_thread_single_start(struct k_thread *thread) { _mark_thread_as_started(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); } } void _k_thread_single_suspend(struct k_thread *thread) { if (_is_thread_ready(thread)) { _remove_thread_from_ready_q(thread); } _mark_thread_as_suspended(thread); } void k_thread_suspend(struct k_thread *thread) { unsigned int key = irq_lock(); _k_thread_single_suspend(thread); if (thread == _current) { _Swap(key); } else { irq_unlock(key); } } void _k_thread_single_resume(struct k_thread *thread) { _mark_thread_as_not_suspended(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); } } void k_thread_resume(struct k_thread *thread) { unsigned int key = irq_lock(); _k_thread_single_resume(thread); _reschedule_threads(key); } void _k_thread_single_abort(struct k_thread *thread) { if (thread->fn_abort != NULL) { thread->fn_abort(); } if (_is_thread_ready(thread)) { _remove_thread_from_ready_q(thread); } else { if (_is_thread_pending(thread)) { _unpend_thread(thread); } if (_is_thread_timeout_active(thread)) { _abort_thread_timeout(thread); } } _mark_thread_as_dead(thread); } void _init_static_threads(void) { unsigned int key; _FOREACH_STATIC_THREAD(thread_data) { _task_group_adjust(thread_data); _new_thread( thread_data->init_stack, thread_data->init_stack_size, thread_data->init_entry, thread_data->init_p1, thread_data->init_p2, thread_data->init_p3, thread_data->init_prio, thread_data->init_options); thread_data->thread->init_data = thread_data; } _sched_lock(); /* Start all (legacy) threads that are part of the EXE task group */ _k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start); /* * Non-legacy static threads may be started immediately or after a * previously specified delay. Even though the scheduler is locked, * ticks can still be delivered and processed. Lock interrupts so * that the countdown until execution begins from the same tick. * * Note that static threads defined using the legacy API have a * delay of K_FOREVER. */ key = irq_lock(); _FOREACH_STATIC_THREAD(thread_data) { if (thread_data->init_delay != K_FOREVER) { schedule_new_thread(thread_data->thread, thread_data->init_delay); } } irq_unlock(key); k_sched_unlock(); } void _init_thread_base(struct _thread_base *thread_base, int priority, uint32_t initial_state, unsigned int options) { /* k_q_node is initialized upon first insertion in a list */ thread_base->flags = options | initial_state; thread_base->prio = priority; thread_base->sched_locked = 0; /* swap_data does not need to be initialized */ _init_thread_timeout(thread_base); } uint32_t _k_thread_group_mask_get(struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; return thread_data->init_groups; } void _k_thread_group_join(uint32_t groups, struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; thread_data->init_groups |= groups; } void _k_thread_group_leave(uint32_t groups, struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; thread_data->init_groups &= groups; } /* legacy API */ void task_start(ktask_t task) { int key = irq_lock(); _k_thread_single_start(task); _reschedule_threads(key); } |