Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 | /* * Copyright (c) 2016, Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * * @brief Public legacy kernel APIs. */ #ifndef _legacy__h_ #define _legacy__h_ #include <stdint.h> #include <errno.h> #include <limits.h> #include <misc/__assert.h> /* nanokernel/microkernel execution context types */ #define NANO_CTX_ISR (K_ISR) #define NANO_CTX_FIBER (K_COOP_THREAD) #define NANO_CTX_TASK (K_PREEMPT_THREAD) /* timeout special values */ #define TICKS_UNLIMITED (K_FOREVER) #define TICKS_NONE (K_NO_WAIT) /* microkernel object return codes */ #define RC_OK 0 #define RC_FAIL 1 #define RC_TIME 2 #define RC_ALIGNMENT 3 #define RC_INCOMPLETE 4 #define ANYTASK K_ANY /* end-of-list, mostly used for semaphore groups */ #define ENDLIST K_END /* pre-defined task groups */ #define K_TASK_GROUP_EXE 0x1 #define K_TASK_GROUP_SYS 0x2 #define K_TASK_GROUP_FPU 0x4 /* the following is for x86 architecture only */ #define K_TASK_GROUP_SSE 0x8 /* pipe amount of content to receive (0+, 1+, all) */ typedef enum { _0_TO_N = 0x0, _1_TO_N = 0x1, _ALL_N = 0x2, } K_PIPE_OPTION; #define kpriority_t uint32_t static inline int32_t _ticks_to_ms(int32_t ticks) { return (ticks == TICKS_UNLIMITED) ? K_FOREVER : __ticks_to_ms(ticks); } static inline int _error_to_rc(int err) { return err == 0 ? RC_OK : err == -EAGAIN ? RC_TIME : RC_FAIL; } static inline int _error_to_rc_no_timeout(int err) { return err == 0 ? RC_OK : RC_FAIL; } /* tasks/fibers/scheduler */ #define ktask_t k_tid_t #define nano_thread_id_t k_tid_t typedef void (*nano_fiber_entry_t)(int i1, int i2); typedef int nano_context_type_t; #define _MDEF_THREAD_DEFINE(name, stack_size, \ entry, p1, p2, p3, \ abort, prio, groups) \ char __noinit __stack _k_thread_obj_##name[stack_size]; \ struct _static_thread_data _k_thread_data_##name __aligned(4) \ __in_section(_static_thread_data, static, name) = \ _THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \ entry, p1, p2, p3, prio, 0, K_FOREVER, \ abort, groups) /** * @brief Define a private microkernel task. * * <b> Legacy API </b> * * This declares and initializes a private task. The new task * can be passed to the microkernel task functions. * * @param name Name of the task. * @param priority Priority of task. * @param entry Entry function. * @param stack_size Size of stack (in bytes) * @param groups Groups this task belong to. */ #define DEFINE_TASK(name, priority, entry, stack_size, groups) \ extern void entry(void); \ char __noinit __stack _k_thread_obj_##name[stack_size]; \ struct _static_thread_data _k_thread_data_##name __aligned(4) \ __in_section(_static_thread_data, static, name) = \ _THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \ entry, NULL, NULL, NULL, \ priority, 0, K_FOREVER, \ NULL, (uint32_t)(groups)); \ k_tid_t const name = (k_tid_t)_k_thread_obj_##name /** * @brief Return the ID of the currently executing thread. * * <b> Legacy API </b> * * This routine returns a pointer to the thread control block of the currently * executing thread. It is cast to a nano_thread_id_t for public use. * * @return The ID of the currently executing thread. */ static inline __deprecated nano_thread_id_t sys_thread_self_get(void) { return k_current_get(); } /** * @brief Cause the currently executing thread to busy wait. * * <b> Legacy API </b> * * This routine causes the current task or fiber to execute a "do nothing" * loop for a specified period of time. * * @warning This routine utilizes the system clock, so it must not be invoked * until the system clock is fully operational or while interrupts * are locked. * * @param usec_to_wait Number of microseconds to busy wait. * * @return N/A */ static inline __deprecated void sys_thread_busy_wait(uint32_t usec_to_wait) { k_busy_wait(usec_to_wait); } /** * @brief Return the type of the current execution context. * * <b> Legacy API </b> * * This routine returns the type of execution context currently executing. * * @return The type of the current execution context. * @retval NANO_CTX_ISR (0): executing an interrupt service routine. * @retval NANO_CTX_FIBER (1): current thread is a fiber. * @retval NANO_CTX_TASK (2): current thread is a task. */ extern __deprecated int sys_execution_context_type_get(void); /** * @brief Initialize and start a fiber. * * <b> Legacy API </b> * * This routine initializes and starts a fiber. It can be called from * either a fiber or a task. When this routine is called from a * task, the newly created fiber will start executing immediately. * * @internal * Given that this routine is _not_ ISR-callable, the following code is used * to differentiate between a task and fiber: * * if ((_kernel.current->flags & TASK) == TASK) * * Given that the _fiber_start() primitive is not considered real-time * performance critical, a runtime check to differentiate between a calling * task or fiber is performed to conserve footprint. * @endinternal * * @param stack Pointer to the stack space. * @param stack_size Stack size in bytes. * @param entry Fiber entry. * @param arg1 1st entry point parameter. * @param arg2 2nd entry point parameter. * @param prio The fiber's priority. * @param options Not used currently. * * @return nanokernel thread identifier */ static inline __deprecated nano_thread_id_t fiber_start(char *stack, unsigned stack_size, nano_fiber_entry_t entry, int arg1, int arg2, unsigned prio, unsigned options) { return k_thread_spawn(stack, stack_size, (k_thread_entry_t)entry, (void *)(intptr_t)arg1, (void *)(intptr_t)arg2, NULL, K_PRIO_COOP(prio), options, 0); } /** * @brief Initialize and start a fiber from a fiber. * * <b> Legacy API </b> * * Like fiber_start(), but may only be called from a fiber. * * @sa fiber_start */ #define fiber_fiber_start fiber_start /** * @brief Initialize and start a fiber from a task. * * <b> Legacy API </b> * * Like fiber_start(), but may only be called from a task. * * @sa fiber_start */ #define task_fiber_start fiber_start /** * @brief Fiber configuration structure. * * <b> Legacy API </b> * * Parameters such as stack size and fiber priority are often * user configurable. This structure makes it simple to specify such a * configuration. */ struct fiber_config { char *stack; unsigned stack_size; unsigned prio; }; /** * @brief Start a fiber based on a @ref fiber_config. * * <b> Legacy API </b> * * This routine can be called from either a fiber or a task. * * @param config Pointer to fiber configuration structure * @param entry Fiber entry. * @param arg1 1st entry point parameter. * @param arg2 2nd entry point parameter. * @param options Not used currently. * * @return thread ID */ #define fiber_start_config(config, entry, arg1, arg2, options) \ fiber_start(config->stack, config->stack_size, \ entry, arg1, arg2, \ config->prio, options) /** * @brief Start a fiber based on a @ref fiber_config, from fiber context. * * <b> Legacy API </b> * * Like fiber_start_config(), but may only be called from a fiber. * * @sa fiber_start_config() */ #define fiber_fiber_start_config fiber_start_config /** * @brief Start a fiber based on a @ref fiber_config, from task context. * * <b> Legacy API </b> * * Like fiber_start_config(), but may only be called from a task. * * @sa fiber_start_config() */ #define task_fiber_start_config fiber_start_config /** * @brief Start a fiber while delaying its execution. * * <b> Legacy API </b> * * @param stack Pointer to the stack space. * @param stack_size_in_bytes Stack size in bytes. * @param entry_point The fiber's entry point. * @param param1 1st entry point parameter. * @param param2 2nd entry point parameter. * @param priority The fiber's priority. * @param options Not used currently. * @param timeout_in_ticks Timeout duration in ticks. * * @return A handle potentially used to cancel the delayed start. */ static inline __deprecated nano_thread_id_t fiber_delayed_start(char *stack, unsigned int stack_size_in_bytes, nano_fiber_entry_t entry_point, int param1, int param2, unsigned int priority, unsigned int options, int32_t timeout_in_ticks) { return k_thread_spawn(stack, stack_size_in_bytes, (k_thread_entry_t)entry_point, (void *)(intptr_t)param1, (void *)(intptr_t)param2, NULL, K_PRIO_COOP(priority), options, _ticks_to_ms(timeout_in_ticks)); } /** * @brief Start a fiber while delaying its execution. * * <b> Legacy API </b> * * Like fiber_delayed_start(), but may only be called from a fiber. * * @sa fiber_delayed_start */ #define fiber_fiber_delayed_start fiber_delayed_start /** * @brief Start a fiber while delaying its execution. * * <b> Legacy API </b> * * Like fiber_delayed_start(), but may only be called from a task. * * @sa fiber_delayed_start */ #define task_fiber_delayed_start fiber_delayed_start /** * @brief Cancel a delayed fiber start. * * <b> Legacy API </b> * * @param handle The handle returned when starting the delayed fiber. * * @return N/A */ static inline __deprecated void fiber_delayed_start_cancel(nano_thread_id_t handle) { k_thread_cancel(handle); } /** * @brief Cancel a delayed fiber start from a fiber * * <b> Legacy API </b> * * Like fiber_delayed_start_cancel(), but may only be called from a fiber. * * @sa fiber_delayed_start_cancel */ #define fiber_fiber_delayed_start_cancel fiber_delayed_start_cancel /** * @brief Cancel a delayed fiber start from a task * * <b> Legacy API </b> * * Like fiber_delayed_start_cancel(), but may only be called from a fiber. * * @sa fiber_delayed_start_cancel */ #define task_fiber_delayed_start_cancel fiber_delayed_start_cancel /** * @brief Yield the current fiber. * * <b> Legacy API </b> * * Calling this routine results in the current fiber yielding to * another fiber of the same or higher priority. If there are no * other runnable fibers of the same or higher priority, the * routine will return immediately. * * This routine can only be called from a fiber. * * @return N/A */ static inline __deprecated void fiber_yield(void) { k_yield(); } /** * @brief Abort the currently executing fiber. * * <b> Legacy API </b> * * This routine aborts the currently executing fiber. An abort can occur * because of one of three reasons: * - The fiber has explicitly aborted itself by calling this routine. * - The fiber has implicitly aborted itself by returning from its entry point. * - The fiber has encountered a fatal exception. * * This routine can only be called from a fiber. * * @return N/A */ static inline __deprecated void fiber_abort(void) { k_thread_abort(k_current_get()); } extern void __deprecated _legacy_sleep(int32_t ticks); /** * @brief Put the current fiber to sleep. * * <b> Legacy API </b> * * This routine puts the currently running fiber to sleep * for the number of system ticks passed in the * @a timeout_in_ticks parameter. * * @param timeout_in_ticks Number of system ticks the fiber sleeps. * * @return N/A */ #define fiber_sleep _legacy_sleep /** * @brief Put the task to sleep. * * <b> Legacy API </b> * * This routine puts the currently running task to sleep for the number * of system ticks passed in the @a timeout_in_ticks parameter. * * @param timeout_in_ticks Number of system ticks the task sleeps. * * @warning A value of TICKS_UNLIMITED is considered invalid and may result in * unexpected behavior. * * @return N/A * * @sa TICKS_UNLIMITED */ #define task_sleep _legacy_sleep /** * @brief Wake the specified fiber from sleep * * <b> Legacy API </b> * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid * unnecessary overhead. * * @param fiber Identifies fiber to wake * * @return N/A */ static inline __deprecated void fiber_wakeup(nano_thread_id_t fiber) { k_wakeup(fiber); } /** * @brief Wake the specified fiber from sleep * * <b> Legacy API </b> * * Like fiber_wakeup(), but may only be called from an ISR. * * @sa fiber_wakeup */ #define isr_fiber_wakeup fiber_wakeup /** * @brief Wake the specified fiber from sleep * * <b> Legacy API </b> * * Like fiber_wakeup, but may only be called from a fiber. * * @sa fiber_wakeup */ #define fiber_fiber_wakeup fiber_wakeup /** * @brief Wake the specified fiber from sleep * * <b> Legacy API </b> * * Like fiber_wakeup, but may only be called from a task. * * @sa fiber_wakeup */ #define task_fiber_wakeup fiber_wakeup /** * @brief Yield the CPU to another task. * * <b> Legacy API </b> * * This routine yields the processor to the next-equal priority runnable * task. With task_yield(), the effect of round-robin scheduling is * possible. When no task of equal priority is runnable, no task switch * occurs, and the calling task resumes execution. * * @return N/A */ #define task_yield fiber_yield /** * @brief Set the priority of a task. * * <b> Legacy API </b> * * This routine changes the priority of the specified task. * * The call has immediate effect. When the calling task no longer is the * highest-priority runnable task, a task switch occurs. * * Priority can be assigned in the range 0 to 62, where 0 is the * highest priority. * * @param task Task whose priority is to be set. * @param prio New priority. * * @return N/A */ static inline __deprecated void task_priority_set(ktask_t task, kpriority_t prio) { k_thread_priority_set(task, (int)prio); } /** * @brief Set the entry point of a task. * * <b> Legacy API </b> * * This routine sets the entry point of a task to a given routine. It is * needed only when an entry point differs from what is set in the project * file. To have any effect, it must be called before task_start(), and it * cannot work with members of the EXE group or with any group that starts * automatically on application loading. * * The routine is executed when the task is started. * * @param task Task to operate on. * @param entry Entry point. * * @return N/A */ static inline __deprecated void task_entry_set(ktask_t task, void (*entry)(void)) { __ASSERT(0, "task_entry_set is unsupported"); ARG_UNUSED(task); ARG_UNUSED(entry); /* This is impractical to implement in the new kernel and there are * workarounds. * 1) Set entry point in MDEF files * 2) Set entry point in DEFINE_TASK macro * 3) Set entry point in k_thread_spawn() invocation */ } /** * @brief Install an abort handler. * * <b> Legacy API </b> * * This routine installs an abort handler for the calling task. * * The abort handler runs when the calling task is aborted by a _TaskAbort() * or task_group_abort() call. * * Each call to task_abort_handler_set() replaces the previously-installed * handler. * * To remove an abort handler, set the parameter to NULL as below: * task_abort_handler_set (NULL) * * @param handler Abort handler. * * @return N/A */ extern void __deprecated task_abort_handler_set(void (*handler)(void)); /** * @brief Process an "offload" request * * <b> Legacy API </b> * * The routine places the @a func into the work queue. This allows * the task to execute a routine uninterrupted by other tasks. * * Note: this routine can be invoked only from a task. * For the routine to work, the scheduler must be unlocked. * * @param func function to call * @param argp function arguments * * @return result of @a func call */ extern int __deprecated task_offload_to_fiber(int (*func)(), void *argp); /** * @brief Gets task identifier * * <b> Legacy API </b> * * @return identifier for current task */ static inline __deprecated ktask_t task_id_get(void) { return k_current_get(); } /** * @brief Gets task priority * * <b> Legacy API </b> * * @return priority of current task */ static inline __deprecated kpriority_t task_priority_get(void) { return (kpriority_t)(k_thread_priority_get(k_current_get())); } /** * @brief Abort a task * * <b> Legacy API </b> * * @param task Task to abort * * @return N/A */ static inline __deprecated void task_abort(ktask_t task) { k_thread_abort(task); } /** * @brief Suspend a task * * <b> Legacy API </b> * * @param task Task to suspend * * @return N/A */ static inline __deprecated void task_suspend(ktask_t task) { k_thread_suspend(task); } /** * @brief Resume a task * * <b> Legacy API </b> * * @param task Task to resume * * @return N/A */ static inline __deprecated void task_resume(ktask_t task) { k_thread_resume(task); } /** * @brief Start a task * * <b> Legacy API </b> * * @param task Task to start * * @return N/A */ extern void __deprecated task_start(ktask_t task); /** * @brief Set time-slicing period and scope * * <b> Legacy API </b> * * This routine controls how task time slicing is performed by the task * scheduler; it specifes the maximum time slice length (in ticks) and * the highest priority task level for which time slicing is performed. * * To enable time slicing, a non-zero time slice length must be specified. * The task scheduler then ensures that no executing task runs for more than * the specified number of ticks before giving other tasks of that priority * a chance to execute. (However, any task whose priority is higher than the * specified task priority level is exempted, and may execute as long as * desired without being pre-empted due to time slicing.) * * Time slicing limits only the maximum amount of time a task may continuously * execute. Once the scheduler selects a task for execution, there is no minimum * guaranteed time the task will execute before tasks of greater or equal * priority are scheduled. * * When the currently-executing task is the only one of that priority eligible * for execution, this routine has no effect; the task is immediately * rescheduled after the slice period expires. * * To disable timeslicing, call the API with both parameters set to zero. * * @param ticks Maximum time slice length in ticks * @param priority Highest priority task level for which time slicing is * performed * * @return N/A */ static inline void __deprecated sys_scheduler_time_slice_set(int32_t ticks, kpriority_t priority) { k_sched_time_slice_set(_ticks_to_ms(ticks), (int)priority); } extern void _k_thread_group_op(uint32_t groups, void (*func)(struct tcs *)); /** * @brief Get task groups for task * * <b> Legacy API </b> * * @return task groups associated with current task */ static inline __deprecated uint32_t task_group_mask_get(void) { extern uint32_t _k_thread_group_mask_get(struct tcs *thread); return _k_thread_group_mask_get(k_current_get()); } /** * @brief Get task groups for task * * <b> Legacy API </b> * * @return task groups associated with current task */ #define isr_task_group_mask_get task_group_mask_get /** * @brief Add task to task group(s) * * <b> Legacy API </b> * * @param groups Task Groups * * @return N/A */ static inline __deprecated void task_group_join(uint32_t groups) { extern void _k_thread_group_join(uint32_t groups, struct tcs *thread); _k_thread_group_join(groups, k_current_get()); } /** * @brief Remove task from task group(s) * * <b> Legacy API </b> * * @param groups Task Groups * * @return N/A */ static inline __deprecated void task_group_leave(uint32_t groups) { extern void _k_thread_group_leave(uint32_t groups, struct tcs *thread); _k_thread_group_leave(groups, k_current_get()); } /** * @brief Start one or more task groups * * <b> Legacy API </b> * * @param groups Task groups to start * * @return N/A */ static inline __deprecated void task_group_start(uint32_t groups) { extern void _k_thread_single_start(struct tcs *thread); return _k_thread_group_op(groups, _k_thread_single_start); } /** * @brief Suspend one or more task groups * * <b> Legacy API </b> * * @param groups Task groups to suspend * * @return N/A */ static inline __deprecated void task_group_suspend(uint32_t groups) { extern void _k_thread_single_suspend(struct tcs *thread); return _k_thread_group_op(groups, _k_thread_single_suspend); } /** * @brief Resume one or more task groups * * <b> Legacy API </b> * * @param groups Task groups to resume * * @return N/A */ static inline __deprecated void task_group_resume(uint32_t groups) { extern void _k_thread_single_resume(struct tcs *thread); return _k_thread_group_op(groups, _k_thread_single_resume); } /** * @brief Abort one or more task groups * * <b> Legacy API </b> * * @param groups Task groups to abort * * @return N/A */ static inline __deprecated void task_group_abort(uint32_t groups) { extern void _k_thread_single_abort(struct tcs *thread); return _k_thread_group_op(groups, _k_thread_single_abort); } /** * @brief Get task identifier * * <b> Legacy API </b> * * @return identifier for current task */ #define isr_task_id_get task_id_get /** * @brief Get task priority * * <b> Legacy API </b> * * @return priority of current task */ #define isr_task_priority_get task_priority_get /* mutexes */ #define kmutex_t struct k_mutex * /** * @brief Lock mutex. * * <b> Legacy API </b> * * This routine locks mutex @a mutex. When the mutex is locked by another task, * the routine will either wait until it becomes available, or until a specified * time limit is reached. * * A task is permitted to lock a mutex it has already locked; in such a case, * this routine immediately succeeds. * * @param mutex Mutex name. * @param timeout Determine the action to take when the mutex is already locked. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully locked mutex. * @retval RC_TIME Timed out while waiting for mutex. * @retval RC_FAIL Failed to immediately lock mutex when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_mutex_lock(kmutex_t mutex, int32_t timeout) { return _error_to_rc(k_mutex_lock(mutex, _ticks_to_ms(timeout))); } /** * @brief Unlock mutex. * * <b> Legacy API </b> * * This routine unlocks mutex @a mutex. The mutex must already be locked by the * requesting task. * * The mutex cannot be claimed by another task until it has been unlocked by * the requesting task as many times as it was locked by that task. * * @param mutex Mutex name. * * @return N/A */ static inline __deprecated void task_mutex_unlock(kmutex_t mutex) { k_mutex_unlock(mutex); } /** * @brief Define a private mutex. * * <b> Legacy API </b> * * @param name Mutex name. */ #define DEFINE_MUTEX(name) \ K_MUTEX_DEFINE(_k_mutex_obj_##name); \ struct k_mutex * const name = &_k_mutex_obj_##name /* semaphores */ #define nano_sem k_sem #define ksem_t struct k_sem * /** * @brief Initialize a nanokernel semaphore object. * * <b> Legacy API </b> * * This function initializes a nanokernel semaphore object structure. After * initialization, the semaphore count is 0. * * It can be called from either a fiber or task. * * @param sem Pointer to a nano_sem structure. * * @return N/A */ static inline __deprecated void nano_sem_init(struct nano_sem *sem) { k_sem_init(sem, 0, UINT_MAX); } /** * @brief Give a nanokernel semaphore. * * <b> Legacy API </b> * * This routine performs a "give" operation on a nanokernel sempahore object. * * It is also a convenience wrapper for the execution of context-specific * APIs and helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param sem Pointer to a nano_sem structure. * * @return N/A */ static inline __deprecated void nano_sem_give(struct nano_sem *sem) { k_sem_give(sem); } /** * @brief Give a nanokernel semaphore (no context switch). * * <b> Legacy API </b> * * Like nano_sem_give(), but may only be called from an ISR. A fiber * pending on the semaphore object will be made ready, but will NOT be * scheduled to execute. * * @param sem Pointer to a nano_sem structure. * * @sa nano_sem_give */ #define nano_isr_sem_give nano_sem_give /** * @brief Give a nanokernel semaphore (no context switch). * * <b> Legacy API </b> * * Like nano_sem_give(), but may only be called from a fiber. * * @param sem Pointer to a nano_sem structure. * * @sa nano_sem_give */ #define nano_fiber_sem_give nano_sem_give /** * @brief Give a nanokernel semaphore. * * <b> Legacy API </b> * * Like nano_sem_give(), but may only be called from a task. A fiber pending * on the semaphore object will be made ready, and will preempt the running * task immediately. * * @param sem Pointer to a nano_sem structure. * * @sa nano_sem_give */ #define nano_task_sem_give nano_sem_give /** * @brief Take a nanokernel semaphore, poll/pend if not available. * * <b> Legacy API </b> * * This routine performs a "give" operation on a nanokernel sempahore object. * * It is also a convenience wrapper for the execution of context-specific * APIs and is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param sem Pointer to a nano_sem structure. * @param timeout_in_ticks Determines the action to take when the semaphore is * unavailable. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing * out. * * @warning If it is to be called from the context of an ISR, then @a * timeout_in_ticks must be set to TICKS_NONE. * * @retval 1 When semaphore is available * @retval 0 Otherwise * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int nano_sem_take(struct nano_sem *sem, int32_t timeout_in_ticks) { int32_t ms = _ticks_to_ms(timeout_in_ticks); return k_sem_take((struct k_sem *)sem, ms) == 0 ? 1 : 0; } /** * @brief Take a nanokernel semaphore, fail if unavailable. * * <b> Legacy API </b> * * Like nano_sem_take(), but must only be called from an ISR with a timeout * of TICKS_NONE. * * @sa nano_sem_take */ #define nano_isr_sem_take nano_sem_take /** * @brief Take a nanokernel semaphore, wait or fail if unavailable. * * <b> Legacy API </b> * * Like nano_sem_take(), but may only be called from a fiber. * * @sa nano_sem_take */ #define nano_fiber_sem_take nano_sem_take /** * @brief Take a nanokernel semaphore, fail if unavailable. * * <b> Legacy API </b> * * Like nano_sem_take(), but may only be called from a task. * * @sa nano_sem_take */ #define nano_task_sem_take nano_sem_take /** * @brief Give semaphore from an ISR. * * <b> Legacy API </b> * * This routine gives semaphore @a sem from an ISR, rather than a task. * * @param sem Semaphore name. * * @return N/A */ #define isr_sem_give nano_sem_give /** * @brief Give semaphore from a fiber. * * <b> Legacy API </b> * * This routine gives semaphore @a sem from a fiber, rather than a task. * * @param sem Semaphore name. * * @return N/A */ #define fiber_sem_give nano_sem_give /** * @brief Give semaphore. * * <b> Legacy API </b> * * This routine gives semaphore @a sem. * * @param sem Semaphore name. * * @return N/A */ #define task_sem_give nano_sem_give /** * * @brief Take a semaphore or fail. * * <b> Legacy API </b> * * This routine takes the semaphore @a sem. If the semaphore's count is * zero the routine immediately returns a failure indication. * * @param sem Semaphore name. * @param timeout Determines the action to take when the semaphore is * unavailable. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully took semaphore * @retval RC_TIME Timed out while waiting for semaphore * @retval RC_FAIL Failed to immediately take semaphore when * @a timeout = TICKS_NONE * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_sem_take(ksem_t sem, int32_t timeout) { return _error_to_rc(k_sem_take(sem, _ticks_to_ms(timeout))); } /** * @brief Reset the semaphore's count. * * <b> Legacy API </b> * * This routine resets the count of the semaphore @a sem to zero. * * @param sem Semaphore name. * * @return N/A */ static inline __deprecated void task_sem_reset(ksem_t sem) { k_sem_reset(sem); } /** * @brief Read a semaphore's count. * * <b> Legacy API </b> * * This routine reads the current count of the semaphore @a sem. * * @param sem Semaphore name. * * @return Semaphore count. */ static inline __deprecated int task_sem_count_get(ksem_t sem) { return k_sem_count_get(sem); } /** * @brief Read a nanokernel semaphore's count. * * <b> Legacy API </b> * * This routine reads the current count of the semaphore @a sem. * * @param sem Pointer to a nano_sem structure. * * @return Semaphore count. */ static inline __deprecated int nano_sem_count_get(ksem_t sem) { return k_sem_count_get(sem); } #ifdef CONFIG_SEMAPHORE_GROUPS /* * @internal Take the first available semaphore * * Given a list of semaphore pointers, this routine will attempt to take one * of them, waiting up to a maximum of @a timeout ms to do so. The taken * semaphore is identified by @a sem (set to NULL on error). * * Be aware that the more semaphores specified in the group, the more stack * space is required by the waiting thread. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * @param sem Identifies the semaphore that was taken * @param timeout Number of milliseconds to wait if semaphores are unavailable, * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 A semaphore was successfully taken * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT) * @retval -EAGAIN Time out occurred while waiting for semaphore */ extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem, int32_t timeout); /* * @internal Give all the semaphores in the group * * This routine will give each semaphore in the array of semaphore pointers. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * * @return N/A */ extern void k_sem_group_give(struct k_sem *sem_array[]); /* * @internal Reset the count to zero on each semaphore in the array * * This routine resets the count of each semaphore in the group to zero. * Note that it does NOT have any impact on any thread that might have * been previously pending on any of the semaphores. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * * @return N/A */ extern void k_sem_group_reset(struct k_sem *sem_array[]); typedef ksem_t *ksemg_t; /** * @brief Wait for a semaphore from the semaphore group. * * <b> Legacy API </b> * * This routine waits for the @a timeout ticks to take a semaphore from the * semaphore group @a group. * * @param group Array of semaphore names - terminated by ENDLIST. * @param timeout Determines the action to take when the semaphore is * unavailable. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval Name of the semaphore that was taken if successful. * @retval ENDLIST Otherwise. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated ksem_t task_sem_group_take(ksemg_t group, int32_t timeout) { struct k_sem *sem; (void)k_sem_group_take(group, &sem, _ticks_to_ms(timeout)); return sem; } /** * @brief Give a group of semaphores. * * <b> Legacy API </b> * * This routine gives each semaphore in a semaphore group @a semagroup. * This method is faster than giving the semaphores individually, and * ensures that all the semaphores are given before any waiting tasks run. * * @param semagroup Array of semaphore names - terminated by ENDLIST. * * @return N/A */ static inline __deprecated void task_sem_group_give(ksemg_t group) { k_sem_group_give(group); } /** * @brief Reset a group of semaphores. * * <b> Legacy API </b> * * This routine resets the count for each semaphore in the sempahore group * @a semagroup to zero. This method is faster than resetting the semaphores * individually. * * @param semagroup Array of semaphore names - terminated by ENDLIST. * * @return N/A */ static inline __deprecated void task_sem_group_reset(ksemg_t group) { k_sem_group_reset(group); } #endif /** * @brief Define a private microkernel semaphore * * <b> Legacy API </b> * * @param name Semaphore name. */ #define DEFINE_SEMAPHORE(name) \ K_SEM_DEFINE(_k_sem_obj_##name, 0, UINT_MAX); \ struct k_sem * const name = &_k_sem_obj_##name /* workqueues */ #define nano_work k_work #define work_handler_t k_work_handler_t /** * A workqueue is a fiber that executes @ref nano_work items that are * queued to it. This is useful for drivers which need to schedule * execution of code which might sleep from ISR context. The actual * fiber identifier is not stored in the structure in order to save * space. */ #define nano_workqueue k_work_q /** * @brief An item which can be scheduled on a @ref nano_workqueue with a delay * * <b> Legacy API </b> */ #define nano_delayed_work k_delayed_work /** * @brief Initialize work item * * <b> Legacy API </b> * * @param work Work item to initialize * @param handler Handler to process work item * * @return N/A */ static inline void nano_work_init(struct nano_work *work, work_handler_t handler) { k_work_init(work, handler); } /** * @brief Submit a work item to a workqueue. * * <b> Legacy API </b> * * This procedure schedules a work item to be processed. * In the case where the work item has already been submitted and is pending * execution, calling this function will result in a no-op. In this case, the * work item must not be modified externally (e.g. by the caller of this * function), since that could cause the work item to be processed in a * corrupted state. * * @param wq Work queue * @param work Work item * * @return N/A */ static inline __deprecated void nano_work_submit_to_queue(struct nano_workqueue *wq, struct nano_work *work) { k_work_submit_to_queue(wq, work); } /** * @brief Start a new workqueue. * * <b> Legacy API </b> * * This routine can be called from either fiber or task context. * * @param wq Work queue * @param config Fiber configuration structure * * @return N/A */ static inline __deprecated void nano_workqueue_start(struct nano_workqueue *wq, const struct fiber_config *config) { k_work_q_start(wq, config->stack, config->stack_size, config->prio); } /** * @brief Start a new workqueue. * * <b> Legacy API </b> * * Call this from task context. * * @sa nano_workqueue_start */ #define nano_task_workqueue_start nano_workqueue_start /** * @brief Start a new workqueue. * * <b> Legacy API </b> * * Call this from fiber context. * * @sa nano_workqueue_start */ #define nano_fiber_workqueue_start nano_workqueue_start #if CONFIG_SYS_CLOCK_EXISTS /** * @brief Initialize delayed work * * <b> Legacy API </b> * * @param work Work item * @param handler Handler to process work item * * @return N/A */ static inline __deprecated void nano_delayed_work_init(struct nano_delayed_work *work, work_handler_t handler) { k_delayed_work_init(work, handler); } /** * @brief Submit a delayed work item to a workqueue. * * <b> Legacy API </b> * * This procedure schedules a work item to be processed after a delay. * Once the delay has passed, the work item is submitted to the work queue: * at this point, it is no longer possible to cancel it. Once the work item's * handler is about to be executed, the work is considered complete and can be * resubmitted. * * Care must be taken if the handler blocks or yield as there is no implicit * mutual exclusion mechanism. Such usage is not recommended and if necessary, * it should be explicitly done between the submitter and the handler. * * @param wq Workqueue to schedule the work item * @param work Delayed work item * @param ticks Ticks to wait before scheduling the work item * * @return 0 in case of success or negative value in case of error. */ static inline __deprecated int nano_delayed_work_submit_to_queue(struct nano_workqueue *wq, struct nano_delayed_work *work, int ticks) { return k_delayed_work_submit_to_queue(wq, work, _ticks_to_ms(ticks)); } /** * @brief Cancel a delayed work item * * <b> Legacy API </b> * * This procedure cancels a scheduled work item. If the work has been completed * or is idle, this will do nothing. The only case where this can fail is when * the work has been submitted to the work queue, but the handler has not run * yet. * * @param work Delayed work item to be canceled * * @return 0 in case of success or negative value in case of error. */ static inline __deprecated int nano_delayed_work_cancel(struct nano_delayed_work *work) { return k_delayed_work_cancel(work); } #endif /** * @brief Submit a work item to the system workqueue. * * <b> Legacy API </b> * * @ref nano_work_submit_to_queue * * When using the system workqueue it is not recommended to block or yield * on the handler since its fiber is shared system wide it may cause * unexpected behavior. */ static inline __deprecated void nano_work_submit(struct nano_work *work) { k_work_submit(work); } #if CONFIG_SYS_CLOCK_EXISTS /** * @brief Submit a delayed work item to the system workqueue. * * <b> Legacy API </b> * * @ref nano_delayed_work_submit_to_queue * * When using the system workqueue it is not recommended to block or yield * on the handler since its fiber is shared system wide it may cause * unexpected behavior. */ #define nano_delayed_work_submit(work, ticks) \ nano_delayed_work_submit_to_queue(&k_sys_work_q, work, ticks) #endif /* events */ #define kevent_t const struct k_alert * typedef int (*kevent_handler_t)(int event); /** * @brief Signal an event from an ISR. * * <b> Legacy API </b> * * This routine does @em not validate the specified event number. * * @param event Event to signal. * * @return N/A */ #define isr_event_send task_event_send /** * @brief Signal an event from a fiber. * * <b> Legacy API </b> * * This routine does @em not validate the specified event number. * * @param event Event to signal. * * @return N/A */ #define fiber_event_send task_event_send /** * @brief Set event handler request. * * <b> Legacy API </b> * * This routine specifies the event handler that runs in the context of the * microkernel server fiber when the associated event is signaled. Specifying * a non-NULL handler installs a new handler, while specifying a NULL event * handler removes the existing event handler. * * A new event handler cannot be installed if one already exists for that event. * The old handler must be removed first. However, the NULL event handler can be * replaced with itself. * * @param legacy_event Event upon which to register. * @param handler Function pointer to handler. * * @retval RC_FAIL If an event handler exists or the event number is invalid. * @retval RC_OK Otherwise. */ static inline __deprecated int task_event_handler_set(kevent_t legacy_event, kevent_handler_t handler) { struct k_alert *alert = (struct k_alert *)legacy_event; if ((alert->handler != NULL) && (handler != NULL)) { /* can't overwrite an existing event handler */ return RC_FAIL; } alert->handler = (k_alert_handler_t)handler; return RC_OK; } /** * @brief Signal an event request. * * <b> Legacy API </b> * * This routine signals the specified event from a task. If an event handler * is installed for that event, it will run. If no event handler is installed, * any task waiting on the event is released. * * @param legacy_event Event to signal. * * @retval RC_FAIL If the event number is invalid. * @retval RC_OK Otherwise. */ static inline __deprecated int task_event_send(kevent_t legacy_event) { k_alert_send((struct k_alert *)legacy_event); return RC_OK; } /** * @brief Test for an event request with timeout. * * <b> Legacy API </b> * * This routine tests an event to see if it has been signaled. * * @param legacy_event Event to test. * @param timeout Determines the action to take when the event has not yet * been signaled. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before * timing out. * * @retval RC_OK Successfully received signaled event * @retval RC_TIME Timed out while waiting for signaled event * @retval RC_FAIL Failed to immediately receive signaled event when * timeout = TICKS_NONE */ static inline __deprecated int task_event_recv(kevent_t legacy_event, int32_t timeout) { return _error_to_rc(k_alert_recv((struct k_alert *)legacy_event, _ticks_to_ms(timeout))); } /** * @brief Define a private microkernel event * * <b> Legacy API </b> * * This declares and initializes a private event. The new event * can be passed to the microkernel event functions. * * @param name Name of the event * @param event_handler Function to handle the event (can be NULL) */ #define DEFINE_EVENT(name, event_handler) \ K_ALERT_DEFINE(_k_event_obj_##name, event_handler, 1); \ struct k_alert * const name = &(_k_event_obj_##name) /* memory maps */ #define kmemory_map_t struct k_mem_slab * /** * @brief Allocate memory map block. * * <b> Legacy API </b> * * This routine allocates a block from memory map @a map, and saves the * block's address in the area indicated by @a mptr. When no block is available, * the routine waits until either one can be allocated, or until the specified * time limit is reached. * * @param map Memory map name. * @param mptr Pointer to memory block address area. * @param timeout Determines the action to take when the memory map is * exhausted. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully allocated memory block. * @retval RC_TIME Timed out while waiting for memory block. * @retval RC_FAIL Failed to immediately allocate memory block when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_mem_map_alloc(kmemory_map_t map, void **mptr, int32_t timeout) { return _error_to_rc(k_mem_slab_alloc(map, mptr, _ticks_to_ms(timeout))); } /** * @brief Return memory slab block. * * <b> Legacy API </b> * * This routine returns a block to the specified memory slab. * * @param m Memory slab name. * @param p Memory block address. * * @return N/A */ static inline __deprecated void task_mem_map_free(kmemory_map_t m, void **p) { k_mem_slab_free(m, p); } /** * @brief Read the number of used blocks in a memory map. * * <b> Legacy API </b> * * This routine returns the number of blocks in use for the memory map. * * @param map Memory map name. * * @return Number of used blocks. */ static inline __deprecated int task_mem_map_used_get(kmemory_map_t map) { return (int)k_mem_slab_num_used_get(map); } /** * @brief Define a private microkernel memory map. * * <b> Legacy API </b> * * @param name Memory map name. * @param map_num_blocks Number of blocks. * @param map_block_size Size of each block, in bytes. */ #define DEFINE_MEM_MAP(name, map_num_blocks, map_block_size) \ K_MEM_SLAB_DEFINE(_k_mem_map_obj_##name, map_block_size, \ map_num_blocks, 4); \ struct k_mem_slab *const name = &_k_mem_map_obj_##name /* memory pools */ #define k_block k_mem_block #define kmemory_pool_t struct k_mem_pool * #define pool_struct k_mem_pool /** * @brief Allocate memory pool block. * * <b> Legacy API </b> * * This routine allocates a block of at least @a reqsize bytes from memory pool * @a pool_id, and saves its information in block descriptor @a blockptr. When * no such block is available, the routine waits either until one can be * allocated, or until the specified time limit is reached. * * @param blockptr Pointer to block descriptor. * @param pool_id Memory pool name. * @param reqsize Requested block size, in bytes. * @param timeout Determines the action to take when the memory pool is * exhausted. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully allocated memory block * @retval RC_TIME Timed out while waiting for memory block * @retval RC_FAIL Failed to immediately allocate memory block when * @a timeout = TICKS_NONE * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_mem_pool_alloc(struct k_block *blockptr, kmemory_pool_t pool_id, int reqsize, int32_t timeout) { return _error_to_rc(k_mem_pool_alloc(pool_id, blockptr, reqsize, _ticks_to_ms(timeout))); } /** * @brief Return memory pool block. * * <b> Legacy API </b> * * This routine returns a block to the memory pool from which it was allocated. * * @param block Pointer to block descriptor. * * @return N/A */ static inline __deprecated void task_mem_pool_free(struct k_block *block) { k_mem_pool_free(block); } /** * @brief Defragment memory pool. * * <b> Legacy API </b> * * This routine concatenates unused blocks that can be merged in memory pool * @a p. * * Doing a full defragmentation of a memory pool before allocating a set * of blocks may be more efficient than having the pool do an implicit * partial defragmentation each time a block is allocated. * * @param pool Memory pool name. * * @return N/A */ static inline __deprecated void task_mem_pool_defragment(kmemory_pool_t pool) { k_mem_pool_defrag(pool); } /** * @brief Allocate memory * * <b> Legacy API </b> * * This routine provides traditional malloc semantics and is a wrapper on top * of microkernel pool alloc API. It returns an aligned memory address which * points to the start of a memory block of at least \p size bytes. * This memory comes from heap memory pool, consequently the app should * specify its intention to use a heap pool via the HEAP_SIZE keyword in * MDEF file, if it uses this API. * When not enough free memory is available in the heap pool, it returns NULL * * @param size Size of memory requested by the caller. * * @retval address of the block if successful otherwise returns NULL */ static inline __deprecated void *task_malloc(uint32_t size) { return k_malloc(size); } /** * @brief Free memory allocated through task_malloc * * <b> Legacy API </b> * * This routine provides traditional free semantics and is intended to free * memory allocated using task_malloc API. * * @param ptr pointer to be freed * * @return NA */ static inline __deprecated void task_free(void *ptr) { k_free(ptr); } /* message queues */ #define kfifo_t struct k_msgq * /** * @brief FIFO enqueue request. * * <b> Legacy API </b> * * This routine adds an item to the FIFO queue. When the FIFO is full, * the routine will wait either for space to become available, or until the * specified time limit is reached. * * @param queue FIFO queue. * @param data Pointer to data to add to queue. * @param timeout Determines the action to take when the FIFO is full. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully added item to FIFO. * @retval RC_TIME Timed out while waiting to add item to FIFO. * @retval RC_FAIL Failed to immediately add item to FIFO when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_fifo_put(kfifo_t queue, void *data, int32_t timeout) { return _error_to_rc(k_msgq_put(queue, data, _ticks_to_ms(timeout))); } /** * @brief FIFO dequeue request. * * <b> Legacy API </b> * * This routine fetches the oldest item from the FIFO queue. When the FIFO is * found empty, the routine will wait either until an item is added to the FIFO * queue or until the specified time limit is reached. * * @param queue FIFO queue. * @param data Pointer to storage location of the FIFO entry. * @param timeout Affects the action to take when the FIFO is empty. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully fetched item from FIFO. * @retval RC_TIME Timed out while waiting to fetch item from FIFO. * @retval RC_FAIL Failed to immediately fetch item from FIFO when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_fifo_get(kfifo_t queue, void *data, int32_t timeout) { return _error_to_rc(k_msgq_get(queue, data, _ticks_to_ms(timeout))); } /** * @brief Purge the FIFO of all its entries. * * <b> Legacy API </b> * * @param queue FIFO queue. * * @return RC_OK on purge. */ static inline __deprecated int task_fifo_purge(kfifo_t queue) { k_msgq_purge(queue); return RC_OK; } /** * @brief Query the number of FIFO entries. * * <b> Legacy API </b> * * @param queue FIFO queue. * * @return # of FIFO entries on query. */ static inline __deprecated int task_fifo_size_get(kfifo_t queue) { return queue->used_msgs; } /** * @brief Define a private microkernel FIFO. * * <b> Legacy API </b> * * This declares and initializes a private FIFO. The new FIFO * can be passed to the microkernel FIFO functions. * * @param name Name of the FIFO. * @param q_depth Depth of the FIFO. * @param q_width Width of the FIFO. */ #define DEFINE_FIFO(name, q_depth, q_width) \ K_MSGQ_DEFINE(_k_fifo_obj_##name, q_width, q_depth, 4); \ struct k_msgq * const name = &_k_fifo_obj_##name /* mailboxes */ #define kmbox_t struct k_mbox * struct k_msg { /** Mailbox ID */ kmbox_t mailbox; /** size of message (bytes) */ uint32_t size; /** information field, free for user */ uint32_t info; /** pointer to message data at sender side */ void *tx_data; /** pointer to message data at receiver */ void *rx_data; /** for async message posting */ struct k_block tx_block; /** sending task */ ktask_t tx_task; /** receiving task */ ktask_t rx_task; /** internal use only */ union { /** for 2-steps data transfer operation */ struct k_args *transfer; /** semaphore to signal when asynchr. call */ ksem_t sema; } extra; }; /** * @brief Send a message to a mailbox. * * <b> Legacy API </b> * * This routine sends a message to a mailbox and looks for a matching receiver. * * @param mbox Mailbox. * @param prio Priority of data transfer. * @param msg Pointer to message to send. * @param timeout Determines the action to take when there is no waiting * receiver. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @return RC_OK Successfully delivered message. * @return RC_TIME Timed out while waiting to deliver message. * @return RC_FAIL Failed to immediately deliver message when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ __deprecated int task_mbox_put(kmbox_t mbox, kpriority_t prio, struct k_msg *msg, int32_t timeout); /** * @brief Send a message asynchronously to a mailbox. * * <b> Legacy API </b> * * This routine sends a message to a mailbox and does not wait for a matching * receiver. No exchange header is returned to the sender. When the data * has been transferred to the receiver, the semaphore signaling is performed. * * @param mbox Mailbox to which to send message. * @param prio Priority of data transfer. * @param msg Pointer to message to send. * @param sema Semaphore to signal when transfer is complete. * * @return N/A */ __deprecated void task_mbox_block_put(kmbox_t mbox, kpriority_t prio, struct k_msg *msg, ksem_t sema); /** * @brief Get @b struct @b k_msg message header structure information from * * <b> Legacy API </b> * a mailbox and wait with timeout. * * @param mbox Mailbox. * @param msg Pointer to message. * @param timeout Determines the action to take when there is no waiting * receiver. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @return RC_OK Successfully received message. * @return RC_TIME Timed out while waiting to receive message. * @return RC_FAIL Failed to immediately receive message when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ __deprecated int task_mbox_get(kmbox_t mbox, struct k_msg *msg, int32_t timeout); /** * @brief Get message data. * * <b> Legacy API </b> * * Call this routine for one of two reasons: * 1. To transfer data when the call to @b task_mbox_get() yields an existing * field in the @b struct @b k_msg header structure. * 2. To wake up and release a transmitting task currently blocked from calling * @b task_mbox_put(). * * @param msg Message from which to get data. * * @return N/A */ __deprecated void task_mbox_data_get(struct k_msg *msg); /** * @brief Retrieve message data into a block, with time-limited waiting. * * <b> Legacy API </b> * * @param msg Message from which to get data. * @param block Block. * @param pool_id Memory pool name. * @param timeout Determines the action to take when no waiting sender exists. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successful retrieval of message data. * @retval RC_TIME Timed out while waiting to receive message data. * @retval RC_FAIL Failed to immediately receive message data when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ __deprecated int task_mbox_data_block_get(struct k_msg *msg, struct k_block *block, kmemory_pool_t pool_id, int32_t timeout); /** * @brief Define a private microkernel mailbox. * * <b> Legacy API </b> * * This routine declares and initializes a private mailbox. The new mailbox * can be passed to the microkernel mailbox functions. * * @param name Name of the mailbox */ #define DEFINE_MAILBOX(name) \ K_MBOX_DEFINE(_k_mbox_obj_##name); \ struct k_mbox * const name = &_k_mbox_obj_##name /* pipes */ #define kpipe_t struct k_pipe * /** * @brief Pipe write request. * * <b> Legacy API </b> * * Attempt to write data from a memory-buffer area to the * specified pipe with a timeout option. * * @param id Pipe ID. * @param buffer Buffer. * @param bytes_to_write Number of bytes to write. * @param bytes_written Pointer to number of bytes written. * @param options Pipe options. * @param timeout Determines the action to take when the pipe is already full. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully wrote data to pipe. * @retval RC_ALIGNMENT Data is improperly aligned. * @retval RC_INCOMPLETE Only some of the data was written to the pipe when * @a options = _ALL_N. * @retval RC_TIME Timed out while waiting to write to pipe. * @retval RC_FAIL Failed to immediately write to pipe when * @a timeout = TICKS_NONE * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_pipe_put(kpipe_t id, void *buffer, int bytes_to_write, int *bytes_written, K_PIPE_OPTION options, int32_t timeout) { size_t min_xfer = (size_t)options; __ASSERT((options == _0_TO_N) || (options == _1_TO_N) || (options == _ALL_N), "Invalid pipe option"); *bytes_written = 0; if (bytes_to_write == 0) { return RC_FAIL; } if ((options == _0_TO_N) && (timeout != K_NO_WAIT)) { return RC_FAIL; } if (options == _ALL_N) { min_xfer = bytes_to_write; } return _error_to_rc(k_pipe_put(id, buffer, bytes_to_write, (size_t *)bytes_written, min_xfer, _ticks_to_ms(timeout))); } /** * @brief Pipe read request. * * <b> Legacy API </b> * * Attempt to read data into a memory buffer area from the * specified pipe with a timeout option. * * @param id Pipe ID. * @param buffer Buffer. * @param bytes_to_read Number of bytes to read. * @param bytes_read Pointer to number of bytes read. * @param options Pipe options. * @param timeout Determines the action to take when the pipe is already full. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing out. * * @retval RC_OK Successfully read data from pipe. * @retval RC_ALIGNMENT Data is improperly aligned. * @retval RC_INCOMPLETE Only some of the data was read from the pipe when * @a options = _ALL_N. * @retval RC_TIME Timed out waiting to read from pipe. * @retval RC_FAIL Failed to immediately read from pipe when * @a timeout = TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated int task_pipe_get(kpipe_t id, void *buffer, int bytes_to_read, int *bytes_read, K_PIPE_OPTION options, int32_t timeout) { size_t min_xfer = (size_t)options; __ASSERT((options == _0_TO_N) || (options == _1_TO_N) || (options == _ALL_N), "Invalid pipe option"); *bytes_read = 0; if (bytes_to_read == 0) { return RC_FAIL; } if ((options == _0_TO_N) && (timeout != K_NO_WAIT)) { return RC_FAIL; } if (options == _ALL_N) { min_xfer = bytes_to_read; } return _error_to_rc(k_pipe_get(id, buffer, bytes_to_read, (size_t *)bytes_read, min_xfer, _ticks_to_ms(timeout))); } #if CONFIG_NUM_PIPE_ASYNC_MSGS > 0 /** * @brief Send a block of data asynchronously to a pipe * * <b> Legacy API </b> * * This routine asynchronously sends a message from the pipe specified by * @a id. Once all @a size bytes have been accepted by the pipe, it will * free the memory block @a block and give the semaphore @a sem (if specified). * * @param id Pipe ID. * @param block Memory block containing data to send * @param size Number of data bytes in memory block to send * @param sem Semaphore to signal upon completion * * @retval RC_OK Successfully sent data to the pipe. * @retval RC_FAIL Block size is zero */ static inline __deprecated int task_pipe_block_put(kpipe_t id, struct k_block block, int size, ksem_t sem) { if (size == 0) { return RC_FAIL; } k_pipe_block_put(id, &block, size, sem); return RC_OK; } #endif /* CONFIG_NUM_PIPE_ASYNC_MSGS > 0 */ /** * @brief Define a private microkernel pipe. * * <b> Legacy API </b> * * @param name Name of the pipe. * @param pipe_buffer_size Size of the pipe buffer (in bytes) */ #define DEFINE_PIPE(name, pipe_buffer_size) \ K_PIPE_DEFINE(_k_pipe_obj_##name, pipe_buffer_size, 4); \ struct k_pipe * const name = &_k_pipe_obj_##name #define nano_fifo k_fifo /** * @brief Initialize a nanokernel FIFO (fifo) object. * * <b> Legacy API </b> * * This function initializes a nanokernel FIFO (fifo) object * structure. * * It can be called from either a fiber or task. * * @param fifo FIFO to initialize. * * @return N/A */ static inline __deprecated void nano_fifo_init(struct nano_fifo *fifo) { k_fifo_init(fifo); } /* nanokernel fifos */ /** * @brief Add an element to the end of a FIFO. * * <b> Legacy API </b> * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * FIFO data items must be aligned on a 4-byte boundary, as the kernel reserves * the first 32 bits of each item for use as a pointer to the next data item in * the FIFO's link list. Each data item added to the FIFO must include and * reserve these first 32 bits. * * @param fifo FIFO on which to interact. * @param data Data to send. * * @return N/A */ static inline __deprecated void nano_fifo_put(struct nano_fifo *fifo, void *data) { k_fifo_put(fifo, data); } /** * @brief Add an element to the end of a FIFO from an ISR context. * * <b> Legacy API </b> * * Like nano_fifo_put(), but may only be called from an ISR. * * @sa nano_fifo_put */ #define nano_isr_fifo_put nano_fifo_put /** * @brief Add an element to the end of a FIFO from a fiber. * * <b> Legacy API </b> * * Like nano_fifo_put(), but may only be called from a fiber. * * @sa nano_fifo_put */ #define nano_fiber_fifo_put nano_fifo_put /** * @brief Add an element to the end of a FIFO. * * <b> Legacy API </b> * * Like nano_fifo_put(), but may only be called from a task. * * @sa nano_fifo_put */ #define nano_task_fifo_put nano_fifo_put #ifdef KERNEL /* XXX ztest layer redefines to a different function */ /** * @brief Atomically add a list of elements to the end of a FIFO. * * <b> Legacy API </b> * * This routine adds a list of elements in one shot to the end of a FIFO * object. If fibers are pending on the FIFO object, they become ready to run. * If this API is called from a task, the highest priority one will preempt the * running task once the put operation is complete. * * If enough fibers are waiting on the FIFO, the address of each element given * to fibers is returned to the waiting fiber. The remaining elements are * linked to the end of the list. * * The list must be a singly-linked list, where each element only has a pointer * to the next one. The list must be NULL-terminated. * * Unlike the fiber/ISR versions of this API which is not much different * conceptually than calling nano_fifo_put once for each element to queue, the * behaviour is indeed different for tasks. There is no context switch being * done for each element queued, so the task can enqueue all elements without * being interrupted by a fiber being woken up. * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param fifo FIFO on which to interact. * @param head head of singly-linked list * @param tail tail of singly-linked list * * @return N/A * * @sa nano_fifo_put_slist, nano_isr_fifo_put_list, nano_fiber_fifo_put_list, * nano_task_fifo_put_list */ static inline __deprecated void nano_fifo_put_list(struct nano_fifo *fifo, void *head, void *tail) { k_fifo_put_list(fifo, head, tail); } #else void nano_fifo_put_list(struct nano_fifo *fifo, void *head, void *tail); #endif /** * @brief Atomically add a list of elements to the end of a FIFO from an ISR. * * <b> Legacy API </b> * * Like nano_fifo_put_list(), but may only be called from an ISR. * * @sa nano_fifo_put_list */ #define nano_isr_fifo_put_list nano_fifo_put_list /** * * @brief Atomically add a list of elements to the end of a FIFO from a fiber. * * <b> Legacy API </b> * * Like nano_fifo_put_list(), but may only be called from a fiber. * * @sa nano_fifo_put_list */ #define nano_fiber_fifo_put_list nano_fifo_put_list /** * @brief Atomically add a list of elements to the end of a FIFO from a fiber. * * <b> Legacy API </b> * * Like nano_fifo_put_list(), but may only be called from a task. * * @sa nano_fifo_put_list */ #define nano_task_fifo_put_list nano_fifo_put_list /** * @brief Atomically add a list of elements to the end of a FIFO. * * <b> Legacy API </b> * * See nano_fifo_put_list for the description of the behaviour. * * It takes a pointer to a sys_slist_t object instead of the head and tail of a * custom singly-linked list. The sys_slist_t object is invalid afterwards and * must be re-initialized via sys_slist_init(). * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param fifo FIFO on which to interact. * @param list pointer to singly-linked list * * @return N/A * * @sa nano_fifo_put_list, nano_isr_fifo_put_slist, nano_fiber_fifo_put_slist, * nano_task_fifo_put_slist */ static inline __deprecated void nano_fifo_put_slist(struct nano_fifo *fifo, sys_slist_t *list) { k_fifo_put_slist(fifo, list); } /** * @brief Atomically add a list of elements to the end of a FIFO from an ISR. * * <b> Legacy API </b> * * Like nano_fifo_put_slist(), but may only be called from an ISR. * * @sa nano_fifo_put_slist */ #define nano_isr_fifo_put_slist nano_fifo_put_slist /** * @brief Atomically add a list of elements to the end of a FIFO from a fiber. * * <b> Legacy API </b> * * Like nano_fifo_put_slist(), but may only be called from a fiber. * * @sa nano_fifo_put_slist */ #define nano_fiber_fifo_put_slist nano_fifo_put_slist /** * @brief Atomically add a list of elements to the end of a FIFO from a fiber. * * Like nano_fifo_put_slist(), but may only be called from a fiber. * * @sa nano_fifo_put_slist */ #define nano_task_fifo_put_slist nano_fifo_put_slist #ifdef KERNEL /* ztest layer redefines to a different function */ /** * @brief Get an element from the head a FIFO. * * <b> Legacy API </b> * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * If no element is available, the function returns NULL. The first word in * the element contains invalid data because its memory location was used to * store a pointer to the next element in the linked list. * * @param fifo FIFO on which to interact. * @param timeout_in_ticks Affects the action taken should the FIFO be empty. * If TICKS_NONE, then return immediately. If TICKS_UNLIMITED, then wait as * long as necessary. Otherwise, wait up to the specified number of ticks * before timing out. * * @warning If it is to be called from the context of an ISR, then @a * timeout_in_ticks must be set to TICKS_NONE. * * @return Pointer to head element in the list when available. * NULL Otherwise. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated void *nano_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks) { return k_fifo_get((struct k_fifo *)fifo, _ticks_to_ms(timeout_in_ticks)); } #else void __deprecated *nano_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks); #endif /* KERNEL */ /** * @brief Get an element from the head of a FIFO from an ISR context. * * <b> Legacy API </b> * * Like nano_fifo_get(), but may only be called from an ISR with a timeout * of TICKS_NONE. * * @sa nano_fifo_get */ #define nano_isr_fifo_get nano_fifo_get /** * @brief Get an element from the head of a FIFO from a fiber. * * <b> Legacy API </b> * * Like nano_fifo_get(), but may only be called from a fiber. * * @sa nano_fifo_get */ #define nano_fiber_fifo_get nano_fifo_get /** * @brief Get an element from a FIFO's head that comes from a task, poll if * empty. * * <b> Legacy API </b> * * Like nano_fifo_get(), but may only be called from a task. * * @sa nano_fifo_get */ #define nano_task_fifo_get nano_fifo_get /* nanokernel lifos */ #define nano_lifo k_lifo /** * @brief Initialize a nanokernel linked list LIFO (lifo) object. * * <b> Legacy API </b> * * This function initializes a nanokernel system-level linked list LIFO * (lifo) object structure. * * It is called from either a fiber or task. * * @param lifo LIFO to initialize. * * @return N/A */ static inline __deprecated void nano_lifo_init(struct nano_lifo *lifo) { k_lifo_init(lifo); } /** * @brief Prepend an element to a LIFO. * * <b> Legacy API </b> * * This routine adds an element to the LIFOs' object head * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param lifo LIFO on which to put. * @param data Data to insert. * * @return N/A */ static inline __deprecated void nano_lifo_put(struct nano_lifo *lifo, void *data) { k_lifo_put(lifo, data); } /** * @brief Prepend an element to a LIFO without a context switch. * * <b> Legacy API </b> * * Like nano_lifo_put(), but may only be called from an ISR. A fiber * pending on the LIFO object will be made ready, but will NOT be scheduled * to execute. * * @sa nano_lifo_put */ #define nano_isr_lifo_put nano_lifo_put /** * @brief Prepend an element to a LIFO without a context switch. * * <b> Legacy API </b> * * Like nano_lifo_put(), but may only be called from a fiber. A fiber * pending on the LIFO object will be made ready, but will NOT be scheduled * to execute. * * @sa nano_lifo_put */ #define nano_fiber_lifo_put nano_lifo_put /** * @brief Add an element to the LIFO's linked list head. * * <b> Legacy API </b> * * Like nano_lifo_put(), but may only be called from a task. A fiber * pending on the LIFO object will be made ready, and will preempty the * running task immediately. * * @sa nano_lifo_put */ #define nano_task_lifo_put nano_lifo_put /** * @brief Get the first element from a LIFO. * * <b> Legacy API </b> * * This routine is a convenience wrapper for the execution of context-specific * APIs. It is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * @param lifo LIFO on which to receive. * @param timeout_in_ticks Affects the action taken should the LIFO be empty. * If TICKS_NONE, then return immediately. If TICKS_UNLIMITED, then wait as * long as necesssary. Otherwise wait up to the specified number of ticks * before timing out. * * @warning If it is to be called from the context of an ISR, then @a * timeout_in_ticks must be set to TICKS_NONE. * * @return Pointer to head element in the list when available. * NULL Otherwise. * * @sa TICKS_NONE, TICKS_UNLIMITED */ static inline __deprecated void *nano_lifo_get(struct nano_lifo *lifo, int32_t timeout_in_ticks) { return k_lifo_get((struct k_lifo *)lifo, _ticks_to_ms(timeout_in_ticks)); } /** * @brief Remove the first element from a LIFO linked list. * * <b> Legacy API </b> * * Like nano_lifo_get(), but may only be called from an ISR with a timeout * of TICKS_NONE. * * @sa nano_lifo_get */ #define nano_isr_lifo_get nano_lifo_get /** * @brief Prepend an element to a LIFO without a context switch. * * <b> Legacy API </b> * * Like nano_lifo_get(), but may only be called from a fiber. * * @sa nano_lifo_get */ #define nano_fiber_lifo_get nano_lifo_get /** * @brief Remove the first element from a LIFO linked list. * * <b> Legacy API </b> * * Like nano_lifo_get(), but may only be called from a task. * * @sa nano_lifo_get */ #define nano_task_lifo_get nano_lifo_get /* nanokernel stacks */ #define nano_stack k_stack /** * @brief Initialize a nanokernel stack object. * * <b> Legacy API </b> * * This function initializes a nanokernel stack object structure. * * It is called from either a fiber or a task. * * @return N/A */ static inline __deprecated void nano_stack_init(struct nano_stack *stack, uint32_t *data) { k_stack_init(stack, data, UINT_MAX); } /** * @brief Push data onto a stack. * * <b> Legacy API </b> * * This routine pushes a data item onto a stack object. It is a convenience * wrapper for the execution of context-specific APIs and is helpful when * the exact execution context is not known. However, it should be avoided * when the context is known up-front to avoid unnecessary overhead. * * @param stack Stack on which to interact. * @param data Data to push on stack. * * @return N/A */ static inline __deprecated void nano_stack_push(struct nano_stack *stack, uint32_t data) { k_stack_push(stack, data); } /** * @brief Push data onto a stack (no context switch). * * <b> Legacy API </b> * * Like nano_stack_push(), but may only be called from an ISR. A fiber that * pends on the stack object becomes ready but will NOT be scheduled to execute. * * @sa nano_stack_push */ #define nano_isr_stack_push nano_stack_push /** * @brief Push data onto a stack (no context switch). * * <b> Legacy API </b> * * Like nano_stack_push(), but may only be called from a fiber. A fiber that * pends on the stack object becomes ready but will NOT be scheduled to execute. * * @sa nano_stack_push */ #define nano_fiber_stack_push nano_stack_push /** * @brief Push data onto a nanokernel stack. * * <b> Legacy API </b> * * Like nano_stack_push(), but may only be called from a task. A fiber that * pends on the stack object becomes ready and preempts the running task * immediately. * * @sa nano_stack_push */ #define nano_task_stack_push nano_stack_push /** * @brief Pop data off a stack. * * <b> Legacy API </b> * * This routine pops the first data word from a nanokernel stack object. * It is a convenience wrapper for the execution of context-specific APIs * and is helpful when the exact execution context is not known. However, * it should be avoided when the context is known up-front to avoid unnecessary * overhead. * * When the stack is not empty, a data word is popped and copied to the * provided address @a data and a non-zero value is returned. When the routine * finds an empty stack, zero is returned. * * @param stack Stack on which to interact. * @param data Container for data to pop * @param timeout_in_ticks Determines the action to take when the FIFO * is empty. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * Otherwise, wait up to the specified number of ticks before timing * out. * * @retval 1 When data is popped from the stack. * @retval 0 Otherwise. */ static inline __deprecated int nano_stack_pop(struct nano_stack *stack, uint32_t *data, int32_t timeout_in_ticks) { return k_stack_pop((struct k_stack *)stack, data, _ticks_to_ms(timeout_in_ticks)) == 0 ? 1 : 0; } /** * @brief Pop data from a nanokernel stack. * * <b> Legacy API </b> * * Like nano_stack_pop(), but may only be called from an ISR. * * @sa nano_stack_pop */ #define nano_isr_stack_pop nano_stack_pop /** * @brief Pop data from a nanokernel stack. * * <b> Legacy API </b> * * Like nano_stack_pop(), but may only be called from a fiber. * * @sa nano_stack_pop */ #define nano_fiber_stack_pop nano_stack_pop /** * @brief Pop data from a nanokernel stack. * * <b> Legacy API </b> * * Like nano_stack_pop(), but may only be called from a task. * * @sa nano_stack_pop */ #define nano_task_stack_pop nano_stack_pop /* kernel clocks */ extern int32_t _ms_to_ticks(int32_t ms); /** * @brief Return the current system tick count. * * <b> Legacy API </b> * * @return The current system tick count. */ extern __deprecated int64_t sys_tick_get(void); /** * @brief Return the lower part of the current system tick count. * * <b> Legacy API </b> * * @return The current system tick count. */ extern __deprecated uint32_t sys_tick_get_32(void); /** * @brief Return number of ticks elapsed since a reference time. * * <b> Legacy API </b> * * @param reftime Reference time. * * @return The tick count since reference time; undefined for first invocation. */ extern __deprecated int64_t sys_tick_delta(int64_t *reftime); /** * * @brief Return 32-bit number of ticks since a reference time. * * <b> Legacy API </b> * * @param reftime Reference time. * * @return A 32-bit tick count since reference time. Undefined for first * invocation. */ extern __deprecated uint32_t sys_tick_delta_32(int64_t *reftime); /** * @brief Return a time stamp in high-resolution format. * * <b> Legacy API </b> * * This routine reads the counter register on the processor's high precision * timer device. This counter register increments at a relatively high rate * (e.g. 20 MHz), and is thus considered a high-resolution timer. This is * in contrast to sys_tick_get_32() which returns the value of the system * ticks variable. * * @return The current high-precision clock value. */ #define sys_cycle_get_32 k_cycle_get_32 /* microkernel timers */ #if (CONFIG_NUM_DYNAMIC_TIMERS > 0) #define CONFIG_NUM_TIMER_PACKETS CONFIG_NUM_DYNAMIC_TIMERS #define ktimer_t struct k_timer * /** * @brief Allocate a timer and return its object identifier. * * <b> Legacy API </b> * * @return timer identifier */ extern __deprecated ktimer_t task_timer_alloc(void); /** * @brief Deallocate a timer * * <b> Legacy API </b> * * This routine frees the resources associated with the timer. If a timer was * started, it has to be stopped using task_timer_stop() before it can be freed. * * @param timer Timer to deallocate. * * @return N/A */ extern __deprecated void task_timer_free(ktimer_t timer); /** * @brief Start or restart the specified low-resolution timer * * <b> Legacy API </b> * * This routine starts or restarts the specified low-resolution timer. * * Signals the semaphore after a specified number of ticks set by * @a duration expires. The timer repeats the expiration/signal cycle * each time @a period ticks elapses. * * Setting @a period to 0 stops the timer at the end of the initial delay. * If either @a duration or @a period is passed an invalid value * (@a duration <= 0, * @a period < 0), this kernel API acts like a * task_timer_stop(): if the allocated timer was still running (from a * previous call), it will be cancelled; if not, nothing will happen. * * @param timer Timer to start. * @param duration Initial delay in ticks. * @param period Repetition interval in ticks. * @param sema Semaphore to signal. * * @return N/A */ extern __deprecated void task_timer_start(ktimer_t timer, int32_t duration, int32_t period, ksem_t sema); /** * @brief Restart a timer * * <b> Legacy API </b> * * This routine restarts the timer specified by @a timer. The timer must * have previously been started by a call to task_timer_start(). * * @param timer Timer to restart. * @param duration Initial delay. * @param period Repetition interval. * * @return N/A */ static inline __deprecated void task_timer_restart(ktimer_t timer, int32_t duration, int32_t period) { k_timer_start(timer, _ticks_to_ms(duration), _ticks_to_ms(period)); } /** * @brief Stop a timer * * <b> Legacy API </b> * * This routine stops the specified timer. If the timer period has already * elapsed, the call has no effect. * * @param timer Timer to stop. * * @return N/A */ static inline __deprecated void task_timer_stop(ktimer_t timer) { k_timer_stop(timer); } #endif /* CONFIG_NUM_DYNAMIC_TIMERS > 0 */ /* nanokernel timers */ #define nano_timer k_timer /** * @brief Initialize a nanokernel timer object. * * <b> Legacy API </b> * * This function initializes a nanokernel timer object structure. * * It can be called from either a fiber or task. * * The @a data passed to this function is a pointer to a data structure defined * by the user. It contains data that the user wishes to store when initializing * the timer and recover when the timer expires. However, the first field of * this data structure must be a pointer reserved for the API's use that can be * overwritten by the API and, as such, should not contain user data. * * @param timer Timer. * @param data User Data. * * @return N/A */ static inline __deprecated void nano_timer_init(struct k_timer *timer, void *data) { k_timer_init(timer, NULL, NULL); timer->_legacy_data = data; } /** * @brief Start a nanokernel timer. * * <b> Legacy API </b> * * This routine starts a previously initialized nanokernel timer object. The * timer will expire in @a ticks system clock ticks. It is also a convenience * wrapper for the execution of context-specific APIs and is helpful when the * the exact execution context is not known. However, it should be avoided when * the context is known up-front to avoid unnecessary overhead. * * @param timer Timer. * @param ticks Number of ticks. * * @return N/A */ static inline __deprecated void nano_timer_start(struct nano_timer *timer, int ticks) { k_timer_start(timer, _ticks_to_ms(ticks), 0); } /** * @brief Start a nanokernel timer from an ISR. * * <b> Legacy API </b> * * Like nano_timer_start(), but may only be called from an ISR with a * timeout of TICKS_NONE. * * @sa nano_timer_start */ #define nano_isr_timer_start nano_timer_start /** * @brief Start a nanokernel timer from a fiber. * * <b> Legacy API </b> * * Like nano_timer_start(), but may only be called from a fiber. * * @sa nano_timer_start */ #define nano_fiber_timer_start nano_timer_start /** * @brief Start a nanokernel timer from a task. * * <b> Legacy API </b> * * Like nano_timer_start(), but may only be called from a task. * * @sa nano_timer_start */ #define nano_task_timer_start nano_timer_start /** * @brief Wait for a nanokernel timer to expire. * * <b> Legacy API </b> * * This routine checks if a previously started nanokernel timer object has * expired. It is also a convenience wrapper for the execution of context- * specific APIs. It is helpful when the exact execution context is not known. * However, it should be avoided when the context is known up-front to avoid * unnecessary overhead. * * @param timer Timer. * @param timeout_in_ticks Determines the action to take when the timer has * not expired. * For TICKS_NONE, return immediately. * For TICKS_UNLIMITED, wait as long as necessary. * * @retval Pointer to timer initialization data. * @retval NULL If timer not expired. * * @warning If called from an ISR, then @a timeout_in_ticks must be TICKS_NONE. * * @sa TICKS_NONE, TICKS_UNLIMITED */ extern __deprecated void *nano_timer_test(struct nano_timer *timer, int32_t timeout_in_ticks); /** * @brief Make the current ISR check for a timer expiry. * * <b> Legacy API </b> * * Like nano_timer_test(), but may only be called from an ISR with a timeout * of TICKS_NONE. * * @sa nano_timer_test */ #define nano_isr_timer_test nano_timer_test /** * @brief Make the current fiber check for a timer expiry. * * <b> Legacy API </b> * * Like nano_timer_test(), but may only be called from a fiber. * * @sa nano_timer_test */ #define nano_fiber_timer_test nano_timer_test /** * @brief Make the current task check for a timer expiry. * * <b> Legacy API </b> * * Like nano_timer_test(), but may only be called from a task. * * @sa nano_timer_test */ #define nano_task_timer_test nano_timer_test /** * @brief Stop a nanokernel timer * * <b> Legacy API </b> * * This routine stops a previously started nanokernel timer object. It is also * a convenience wrapper for the execution of context-specific APIs. It is * helpful when the exact execution context is not known. However, it should be * avoided when the context is known up-front to avoid unnecessary overhead. * * @param timer Timer to stop. * * @return N/A */ static inline __deprecated void nano_timer_stop(struct nano_timer *timer) { k_timer_stop(timer); } /** * @brief Stop a timer. * * <b> Legacy API </b> * * This routine stops the specified timer. If the timer period has already * elapsed, the call has no effect. * * @param timer Timer to stop. * * @return N/A */ #define task_timer_stop nano_timer_stop /** * @brief Stop a nanokernel timer from an ISR. * * <b> Legacy API </b> * * Like nano_timer_stop(), but may only be called from an ISR. * * @sa nano_timer_stop */ #define nano_isr_timer_stop nano_timer_stop /** * @brief Stop a nanokernel timer. * * <b> Legacy API </b> * * Like nano_timer_stop(), but may only be called from a fiber. * * @sa nano_timer_stop */ #define nano_fiber_timer_stop nano_timer_stop /** * @brief Stop a nanokernel timer from a task. * * <b> Legacy API </b> * * Like nano_timer_stop(), but may only be called from a task. * * @sa nano_timer_stop */ #define nano_task_timer_stop nano_timer_stop /** * @brief Get nanokernel timer remaining ticks. * * <b> Legacy API </b> * * This function returns the remaining ticks of the previously * started nanokernel timer object. * * @param timer Timer to query * * @return remaining ticks or 0 if the timer has expired */ static inline __deprecated int32_t nano_timer_ticks_remain(struct nano_timer *timer) { return _ms_to_ticks(k_timer_remaining_get(timer)); } #if CONFIG_X86 #if CONFIG_FP_SHARING #include <arch/cpu.h> /* floating point services */ #define USE_FP K_FP_REGS #define USE_SSE K_SSE_REGS /** * @brief Enable floating point hardware resources sharing * * <b> Legacy API </b> * * This routine dynamically enables the capability of a thread to share floating * point hardware resources. The same "floating point" options accepted by * fiber_fiber_start() are accepted by this API (i.e. USE_FP and USE_SSE). * * @param thread_id ID of thread that may share the floating point hardware * @param options USE_FP or USE_SSE * * @return N/A */ static inline __deprecated void fiber_float_enable(struct tcs *tcs, unsigned int options) { k_float_enable(tcs, options); } /** * @brief Enable floating point hardware resources sharing * * <b> Legacy API </b> * * This routine dynamically enables the capability of a thread to share * floating point hardware resources. The same "floating point" options * accepted by fiber_fiber_start() are accepted by this API * (i.e. USE_FP and USE_SSE). * * @param thread_id ID of thread that may share the floating point hardware * @param options USE_FP or USE_SSE * * @return N/A */ #define task_float_enable fiber_float_enable /** * @brief Disable floating point hardware resources sharing * * <b> Legacy API </b> * * This routine dynamically disables the capability of a thread to share * floating point hardware resources. The same "floating point" options * accepted by fiber_fiber_start() are accepted by this API * (i.e. USE_FP and USE_SSE). * * @param thread_id ID of thread that may not share the floating point hardware * * @return N/A */ static inline __deprecated void fiber_float_disable(struct tcs *tcs) { k_float_disable(tcs); } /** * @brief Enable floating point hardware resources sharing * * <b> Legacy API </b> * * This routine dynamically disables the capability of a thread to share * floating point hardware resources. The same "floating point" options * accepted by fiber_fiber_start() are accepted by this API * (i.e. USE_FP and USE_SSE). * * @param thread_id ID of thread that may not share the floating point hardware * * @return N/A */ #define task_float_disable fiber_float_disable #endif /* CONFIG_FP_SHARING */ #endif /* CONFIG_X86 */ #endif /* _legacy__h_ */ |