/*
* Copyright (c) 2016 Open-RnD Sp. z o.o.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @brief Driver for UART port on STM32F10x family processor.
*
* Based on reference manual:
* STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx
* advanced ARM ® -based 32-bit MCUs
*
* Chapter 27: Universal synchronous asynchronous receiver
* transmitter (USART)
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <misc/__assert.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <clock_control.h>
#include <sections.h>
#include <clock_control/stm32_clock_control.h>
#include "uart_stm32.h"
/* convenience defines */
#define DEV_CFG(dev) \
((const struct uart_stm32_config * const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct uart_stm32_data * const)(dev)->driver_data)
#define UART_STRUCT(dev) \
((volatile struct uart_stm32 *)(DEV_CFG(dev))->uconf.base)
/**
* @brief set baud rate
*
*/
static void set_baud_rate(struct device *dev, uint32_t rate)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
struct uart_stm32_data *data = DEV_DATA(dev);
const struct uart_stm32_config *cfg = DEV_CFG(dev);
uint32_t div, mantissa, fraction;
uint32_t clock;
/* Baud rate is controlled through BRR register. The values
* written into the register depend on the clock driving the
* peripheral. Ask clock_control for the current clock rate of
* our peripheral.
*/
#ifdef CONFIG_SOC_SERIES_STM32F1X
clock_control_get_rate(data->clock, cfg->clock_subsys, &clock);
#elif CONFIG_SOC_SERIES_STM32F4X
clock_control_get_rate(data->clock,
(clock_control_subsys_t *)&cfg->pclken, &clock);
#endif
/* baud rate calculation:
*
* baud rate = f_clk / (16 * usartdiv)
*
* Example (STM32F10x, USART1, PCLK2 @ 36MHz, 9600bps):
*
* f_clk == PCLK2,
* usartdiv = 234.375,
* mantissa = 234,
* fraction = 6 (0.375 * 16)
*/
div = clock / rate;
mantissa = div >> 4;
fraction = div & 0xf;
uart->brr.bit.mantissa = mantissa;
uart->brr.bit.fraction = fraction;
}
static int uart_stm32_poll_in(struct device *dev, unsigned char *c)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
/* check if RXNE is set */
if (!uart->sr.bit.rxne) {
return -1;
}
/* read character */
*c = (unsigned char)uart->dr.bit.dr;
return 0;
}
static unsigned char uart_stm32_poll_out(struct device *dev,
unsigned char c)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
/* wait for TXE to be set */
while (!uart->sr.bit.txe) {
}
uart->dr.bit.dr = c;
return c;
}
static inline void __uart_stm32_get_clock(struct device *dev)
{
struct uart_stm32_data *ddata = dev->driver_data;
struct device *clk =
device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clk);
ddata->clock = clk;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_stm32_fifo_fill(struct device *dev, const uint8_t *tx_data,
int size)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
size_t num_tx = 0;
/* FIXME: DMA maybe? */
while ((size - num_tx > 0) && (uart->sr.bit.txe)) {
uart->dr.bit.dr = tx_data[num_tx++];
}
return num_tx;
}
static int uart_stm32_fifo_read(struct device *dev, uint8_t *rx_data,
const int size)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
size_t num_rx = 0;
while ((size - num_rx > 0) && (uart->sr.bit.rxne)) {
rx_data[num_rx++] = (uint8_t) uart->dr.bit.dr;
}
return num_rx;
}
static void uart_stm32_irq_tx_enable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr1.bit.txeie = 1;
}
static void uart_stm32_irq_tx_disable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr1.bit.txeie = 0;
}
static int uart_stm32_irq_tx_ready(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
return uart->sr.bit.txe;
}
static int uart_stm32_irq_tx_empty(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
return uart->sr.bit.txe;
}
static void uart_stm32_irq_rx_enable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr1.bit.rxneie = 1;
}
static void uart_stm32_irq_rx_disable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr1.bit.rxneie = 0;
}
static int uart_stm32_irq_rx_ready(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
return uart->sr.bit.rxne;
}
static void uart_stm32_irq_err_enable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr3.bit.eie = 1;
}
static void uart_stm32_irq_err_disable(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
uart->cr3.bit.eie = 0;
}
static int uart_stm32_irq_is_pending(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
return uart->sr.bit.rxne || uart->sr.bit.txe;
}
static int uart_stm32_irq_update(struct device *dev)
{
return 1;
}
static void uart_stm32_irq_callback_set(struct device *dev,
uart_irq_callback_t cb)
{
struct uart_stm32_data *data = DEV_DATA(dev);
data->user_cb = cb;
}
static void uart_stm32_isr(void *arg)
{
struct device *dev = arg;
struct uart_stm32_data *data = DEV_DATA(dev);
if (data->user_cb) {
data->user_cb(dev);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_driver_api uart_stm32_driver_api = {
.poll_in = uart_stm32_poll_in,
.poll_out = uart_stm32_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_stm32_fifo_fill,
.fifo_read = uart_stm32_fifo_read,
.irq_tx_enable = uart_stm32_irq_tx_enable,
.irq_tx_disable = uart_stm32_irq_tx_disable,
.irq_tx_ready = uart_stm32_irq_tx_ready,
.irq_tx_empty = uart_stm32_irq_tx_empty,
.irq_rx_enable = uart_stm32_irq_rx_enable,
.irq_rx_disable = uart_stm32_irq_rx_disable,
.irq_rx_ready = uart_stm32_irq_rx_ready,
.irq_err_enable = uart_stm32_irq_err_enable,
.irq_err_disable = uart_stm32_irq_err_disable,
.irq_is_pending = uart_stm32_irq_is_pending,
.irq_update = uart_stm32_irq_update,
.irq_callback_set = uart_stm32_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_stm32_init(struct device *dev)
{
volatile struct uart_stm32 *uart = UART_STRUCT(dev);
struct uart_stm32_data *data = DEV_DATA(dev);
const struct uart_stm32_config *cfg = DEV_CFG(dev);
__uart_stm32_get_clock(dev);
/* enable clock */
#ifdef CONFIG_SOC_SERIES_STM32F1X
clock_control_on(data->clock, cfg->clock_subsys);
#elif CONFIG_SOC_SERIES_STM32F4X
clock_control_on(data->clock, (clock_control_subsys_t *)&cfg->pclken);
#endif
/* FIXME: hardcoded, clear stop bits */
uart->cr2.bit.stop = 0;
uart->cr1.val = 0;
/* FIXME: hardcoded, 8n1 */
uart->cr1.bit.m = 0;
uart->cr1.bit.pce = 0;
/* FIXME: hardcoded, disable hardware flow control */
uart->cr3.bit.ctse = 0;
uart->cr3.bit.rtse = 0;
set_baud_rate(dev, data->baud_rate);
/* enable TX/RX */
uart->cr1.bit.te = 1;
uart->cr1.bit.re = 1;
/* enable */
uart->cr1.bit.ue = 1;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
cfg->uconf.irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_UART_STM32_PORT_0
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_0(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_0 = {
.uconf = {
.base = (uint8_t *)USART1_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_0,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_SOC_SERIES_STM32F1X
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART1),
#elif CONFIG_SOC_SERIES_STM32F4X
.pclken = { .bus = STM32F4X_CLOCK_BUS_APB2,
.enr = STM32F4X_CLOCK_ENABLE_USART1 },
#endif /* CONFIG_SOC_SERIES_STM32FX */
};
static struct uart_stm32_data uart_stm32_dev_data_0 = {
.baud_rate = CONFIG_UART_STM32_PORT_0_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_stm32_0, CONFIG_UART_STM32_PORT_0_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_0, &uart_stm32_dev_cfg_0,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_0(struct device *dev)
{
#ifdef CONFIG_SOC_SERIES_STM32F1X
#define PORT_0_IRQ STM32F1_IRQ_USART1
#elif CONFIG_SOC_SERIES_STM32F4X
#define PORT_0_IRQ STM32F4_IRQ_USART1
#endif
IRQ_CONNECT(PORT_0_IRQ,
CONFIG_UART_STM32_PORT_0_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_0),
0);
irq_enable(PORT_0_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_0 */
#ifdef CONFIG_UART_STM32_PORT_1
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_1 = {
.uconf = {
.base = (uint8_t *)USART2_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_1,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_SOC_SERIES_STM32F1X
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART2),
#elif CONFIG_SOC_SERIES_STM32F4X
.pclken = { .bus = STM32F4X_CLOCK_BUS_APB1,
.enr = STM32F4X_CLOCK_ENABLE_USART2 },
#endif /* CONFIG_SOC_SERIES_STM32FX */
};
static struct uart_stm32_data uart_stm32_dev_data_1 = {
.baud_rate = CONFIG_UART_STM32_PORT_1_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_stm32_1, CONFIG_UART_STM32_PORT_1_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_1, &uart_stm32_dev_cfg_1,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_1(struct device *dev)
{
#ifdef CONFIG_SOC_SERIES_STM32F1X
#define PORT_1_IRQ STM32F1_IRQ_USART2
#elif CONFIG_SOC_SERIES_STM32F4X
#define PORT_1_IRQ STM32F4_IRQ_USART2
#endif
IRQ_CONNECT(PORT_1_IRQ,
CONFIG_UART_STM32_PORT_1_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_1),
0);
irq_enable(PORT_1_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_1 */
#ifdef CONFIG_UART_STM32_PORT_2
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static const struct uart_stm32_config uart_stm32_dev_cfg_2 = {
.uconf = {
.base = (uint8_t *)USART3_ADDR,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = uart_stm32_irq_config_func_2,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
},
#ifdef CONFIG_SOC_SERIES_STM32F1X
.clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART3),
#elif CONFIG_SOC_SERIES_STM32F4X
.clock_subsys = UINT_TO_POINTER(STM32F40X_CLOCK_SUBSYS_USART3),
#endif /* CONFIG_SOC_SERIES_STM32F4X */
};
static struct uart_stm32_data uart_stm32_dev_data_2 = {
.baud_rate = CONFIG_UART_STM32_PORT_2_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_stm32_2, CONFIG_UART_STM32_PORT_2_NAME,
&uart_stm32_init,
&uart_stm32_dev_data_2, &uart_stm32_dev_cfg_2,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_stm32_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_stm32_irq_config_func_2(struct device *dev)
{
#ifdef CONFIG_SOC_SERIES_STM32F1X
#define PORT_2_IRQ STM32F1_IRQ_USART3
#elif CONFIG_SOC_SERIES_STM32F4X
#define PORT_2_IRQ STM32F4_IRQ_USART3
#endif
IRQ_CONNECT(PORT_2_IRQ,
CONFIG_UART_STM32_PORT_2_IRQ_PRI,
uart_stm32_isr, DEVICE_GET(uart_stm32_2),
0);
irq_enable(PORT_2_IRQ);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#endif /* CONFIG_UART_STM32_PORT_2 */