Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | /* * Copyright (c) 2013-2014 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief ARM CORTEX-M3 interrupt management * * * Interrupt management: enabling/disabling and dynamic ISR * connecting/replacing. SW_ISR_TABLE_DYNAMIC has to be enabled for * connecting ISRs at runtime. */ #include <nanokernel.h> #include <arch/cpu.h> #include <misc/__assert.h> #include <toolchain.h> #include <sections.h> #include <sw_isr_table.h> #include <irq.h> extern void __reserved(void); /** * * @brief Enable an interrupt line * * Enable the interrupt. After this call, the CPU will receive interrupts for * the specified <irq>. * * @return N/A */ void _arch_irq_enable(unsigned int irq) { _NvicIrqEnable(irq); } /** * * @brief Disable an interrupt line * * Disable an interrupt line. After this call, the CPU will stop receiving * interrupts for the specified <irq>. * * @return N/A */ void _arch_irq_disable(unsigned int irq) { _NvicIrqDisable(irq); } /** * @brief Return IRQ enable state * * @param irq IRQ line * @return interrupt enable state, true or false */ int _arch_irq_is_enabled(unsigned int irq) { return _NvicIsIrqEnabled(irq); } /** * @internal * * @brief Set an interrupt's priority * * The priority is verified if ASSERT_ON is enabled. The maximum number * of priority levels is a little complex, as there are some hardware * priority levels which are reserved: three for various types of exceptions, * and possibly one additional to support zero latency interrupts. * * @return N/A */ void _irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags) { /* Hardware priority levels 0 and 1 reserved for Kernel use. * So we add 2 to the requested priority level. If we support * ZLI, 2 is also reserved so we add 3. */ #if CONFIG_ZERO_LATENCY_IRQS #define IRQ_PRIORITY_OFFSET 3 /* If we have zero latency interrupts, that makes priority level 2 * a case with special semantics; it is not masked by irq_lock(). * Our policy is to express priority levels with special properties * via flags */ if (flags & IRQ_ZERO_LATENCY) { prio = 2; } else { prio += IRQ_PRIORITY_OFFSET; } #else #define IRQ_PRIORITY_OFFSET 2 ARG_UNUSED(flags); prio += IRQ_PRIORITY_OFFSET; #endif /* The last priority level is also used by PendSV exception, but * allow other interrupts to use the same level, even if it ends up * affecting performance (can still be useful on systems with a * reduced set of priorities, like Cortex-M0/M0+). */ __ASSERT(prio <= ((1 << CONFIG_NUM_IRQ_PRIO_BITS) - 1), "invalid priority %d! values must be less than %d\n", prio - IRQ_PRIORITY_OFFSET, (1 << CONFIG_NUM_IRQ_PRIO_BITS) - (IRQ_PRIORITY_OFFSET)); _NvicIrqPrioSet(irq, _EXC_PRIO(prio)); } /** * * @brief Spurious interrupt handler * * Installed in all dynamic interrupt slots at boot time. Throws an error if * called. * * See __reserved(). * * @return N/A */ void _irq_spurious(void *unused) { ARG_UNUSED(unused); __reserved(); } |