Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 | /* thread.c - test nanokernel CPU and thread APIs */ /* * Copyright (c) 2012-2015 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* DESCRIPTION This module tests the following CPU and thread related routines: fiber_fiber_start(), task_fiber_start(), fiber_yield(), sys_thread_self_get(), sys_execution_context_type_get(), nano_cpu_idle(), irq_lock(), irq_unlock(), irq_offload(), nanoCpuExcConnect(), irq_enable(), irq_disable(), */ #include <tc_util.h> #include <nano_private.h> #include <arch/cpu.h> #include <irq_offload.h> #include <util_test_common.h> /* * Include board.h from platform to get IRQ number. * NOTE: Cortex-M3/M4 does not need IRQ numbers */ #if !defined(CONFIG_CPU_CORTEX_M3_M4) #include <board.h> #endif #define FIBER_STACKSIZE 384 #define FIBER_PRIORITY 4 #define THREAD_SELF_CMD 0 #define EXEC_CTX_TYPE_CMD 1 #define UNKNOWN_COMMAND -1 /* * Get the timer type dependent IRQ number. If timer type * is not defined in platform, generate an error */ #if defined(CONFIG_HPET_TIMER) #define TICK_IRQ CONFIG_HPET_TIMER_IRQ #elif defined(CONFIG_LOAPIC_TIMER) #define TICK_IRQ CONFIG_LOAPIC_TIMER_IRQ #elif defined(CONFIG_ALTERA_AVALON_TIMER) #define TICK_IRQ TIMER_0_IRQ #elif defined(CONFIG_ARCV2_TIMER) #define TICK_IRQ IRQ_TIMER0 #elif defined(CONFIG_CPU_CORTEX_M3_M4) /* * The Cortex-M3/M4 use the SYSTICK exception for the system timer, which is * not considered an IRQ by the irq_enable/Disable APIs. */ #else /* generate an error */ #error Timer type is not defined for this platform #endif /* Nios II doesn't have a power saving instruction, so nano_cpu_idle() * returns immediately */ #if !defined(CONFIG_NIOS2) #define HAS_POWERSAVE_INSTRUCTION #endif /* Divide-by-zero exception test here is x86-specific */ #if defined(CONFIG_X86) #define CONNECT_EXCEPTIONS 1 #endif typedef struct { int command; /* command to process */ int error; /* error value (if any) */ union { void *data; /* pointer to data to use or return */ int value; /* value to be passed or returned */ }; } ISR_INFO; typedef int (* disable_interrupt_func)(int); typedef void (* enable_interrupt_func)(int); #ifdef CONNECT_EXCEPTIONS static volatile int excHandlerExecuted; #endif static struct nano_sem wakeFiber; static struct nano_timer timer; static struct nano_sem reply_timeout; struct nano_fifo timeout_order_fifo; static void *timerData[1]; static int fiberDetectedError = 0; static char __stack fiberStack1[FIBER_STACKSIZE]; static char __stack fiberStack2[FIBER_STACKSIZE]; static int fiberEvidence = 0; static ISR_INFO isrInfo; /** * * @brief Handler to perform various actions from within an ISR context * * This routine is the ISR handler for _trigger_isrHandler(). It performs * the command requested in <isrInfo.command>. * * @return N/A */ void isr_handler(void *data) { ARG_UNUSED(data); switch (isrInfo.command) { case THREAD_SELF_CMD: isrInfo.data = (void *) sys_thread_self_get(); break; case EXEC_CTX_TYPE_CMD: isrInfo.value = sys_execution_context_type_get(); break; default: isrInfo.error = UNKNOWN_COMMAND; break; } } static void _trigger_isrHandler(void) { irq_offload(isr_handler, NULL); } #ifdef CONNECT_EXCEPTIONS /** * * @brief Divide by zero exception handler * * This handler is part of a test that is only interested in detecting the * error so that we know the exception connect code is working. It simply * adds 2 to the EIP to skip over the offending instruction: * f7 f9 idiv %ecx * thereby preventing the infinite loop of divide-by-zero errors which would * arise if control simply returns to that instruction. * * @return N/A */ void exc_divide_error_handler(NANO_ESF *pEsf) { pEsf->eip += 2; excHandlerExecuted = 1; /* provide evidence that the handler executed */ } #endif /** * * @brief Initialize nanokernel objects * * This routine initializes the nanokernel objects used in this module's tests. * * @return TC_PASS on success, TC_FAIL on failure */ int initNanoObjects(void) { nano_sem_init(&wakeFiber); nano_timer_init(&timer, timerData); nano_fifo_init(&timeout_order_fifo); #ifdef CONNECT_EXCEPTIONS nanoCpuExcConnect(IV_DIVIDE_ERROR, exc_divide_error_handler); #endif return TC_PASS; } #ifdef HAS_POWERSAVE_INSTRUCTION /** * * @brief Test the nano_cpu_idle() routine * * This tests the nano_cpu_idle() routine. The first thing it does is align to * a tick boundary. The only source of interrupts while the test is running is * expected to be the tick clock timer which should wake the CPU. Thus after * each call to nano_cpu_idle(), the tick count should be one higher. * * @return TC_PASS on success, TC_FAIL on failure */ int nano_cpu_idleTest(void) { int tick; /* current tick count */ int i; /* loop variable */ /* Align to a "tick boundary". */ tick = sys_tick_get_32(); while (tick == sys_tick_get_32()) { } tick = sys_tick_get_32(); for (i = 0; i < 5; i++) { /* Repeat the test five times */ nano_cpu_idle(); tick++; if (sys_tick_get_32() != tick) { return TC_FAIL; } } return TC_PASS; } #endif /** * * @brief A wrapper for irq_lock() * * @return irq_lock() return value */ int irq_lockWrapper(int unused) { ARG_UNUSED(unused); return irq_lock(); } /** * * @brief A wrapper for irq_unlock() * * @return N/A */ void irq_unlockWrapper(int imask) { irq_unlock(imask); } /** * * @brief A wrapper for irq_disable() * * @return <irq> */ int irq_disableWrapper(int irq) { irq_disable(irq); return irq; } /** * * @brief A wrapper for irq_enable() * * @return N/A */ void irq_enableWrapper(int irq) { irq_enable(irq); } /** * * @brief Test routines for disabling and enabling ints * * This routine tests the routines for disabling and enabling interrupts. These * include irq_lock() and irq_unlock(), irq_disable() and irq_enable(). * * @return TC_PASS on success, TC_FAIL on failure */ int nanoCpuDisableInterruptsTest(disable_interrupt_func disableRtn, enable_interrupt_func enableRtn, int irq) { unsigned long long count = 0; unsigned long long i = 0; int tick; int tick2; int imask; /* Align to a "tick boundary" */ tick = sys_tick_get_32(); while (sys_tick_get_32() == tick) { } tick++; while (sys_tick_get_32() == tick) { count++; } /* * Inflate <count> so that when we loop later, many ticks should have * elapsed during the loop. This later loop will not exactly match the * previous loop, but it should be close enough in structure that when * combined with the inflated count, many ticks will have passed. */ count <<= 4; imask = disableRtn(irq); tick = sys_tick_get_32(); for (i = 0; i < count; i++) { sys_tick_get_32(); } tick2 = sys_tick_get_32(); /* * Re-enable interrupts before returning (for both success and failure * cases). */ enableRtn(imask); if (tick2 != tick) { return TC_FAIL; } /* Now repeat with interrupts unlocked. */ for (i = 0; i < count; i++) { sys_tick_get_32(); } return (tick == sys_tick_get_32()) ? TC_FAIL : TC_PASS; } /** * * @brief Test the various nanoCtxXXX() routines from a task * * This routines tests the sys_thread_self_get() and * sys_execution_context_type_get() routines from both a task and an ISR (that * interrupted a task). Checking those routines with fibers are done * elsewhere. * * @return TC_PASS on success, TC_FAIL on failure */ int nanoCtxTaskTest(void) { nano_thread_id_t self_thread_id; TC_PRINT("Testing sys_thread_self_get() from an ISR and task\n"); self_thread_id = sys_thread_self_get(); isrInfo.command = THREAD_SELF_CMD; isrInfo.error = 0; _trigger_isrHandler(); if ((isrInfo.error != 0) || (isrInfo.data != (void *) self_thread_id)) { /* * Either the ISR detected an error, or the ISR context ID does not * match the interrupted task's thread ID. */ return TC_FAIL; } TC_PRINT("Testing sys_execution_context_type_get() from an ISR\n"); isrInfo.command = EXEC_CTX_TYPE_CMD; isrInfo.error = 0; _trigger_isrHandler(); if ((isrInfo.error != 0) || (isrInfo.value != NANO_CTX_ISR)) { return TC_FAIL; } TC_PRINT("Testing sys_execution_context_type_get() from a task\n"); if (sys_execution_context_type_get() != NANO_CTX_TASK) { return TC_FAIL; } return TC_PASS; } /** * * @brief Test the various context/thread routines from a fiber * * This routines tests the sys_thread_self_get() and * sys_execution_context_type_get() routines from both a fiber and an ISR (that * interrupted a fiber). Checking those routines with tasks are done * elsewhere. * * This routine may set <fiberDetectedError> to the following values: * 1 - if fiber ID matches that of the task * 2 - if thread ID taken during ISR does not match that of the fiber * 3 - sys_execution_context_type_get() when called from an ISR is not * NANO_TYPE_ISR * 4 - sys_execution_context_type_get() when called from a fiber is not * NANO_TYPE_FIBER * * @return TC_PASS on success, TC_FAIL on failure */ int nanoCtxFiberTest(nano_thread_id_t task_thread_id) { nano_thread_id_t self_thread_id; self_thread_id = sys_thread_self_get(); if (self_thread_id == task_thread_id) { fiberDetectedError = 1; return TC_FAIL; } isrInfo.command = THREAD_SELF_CMD; isrInfo.error = 0; _trigger_isrHandler(); if ((isrInfo.error != 0) || (isrInfo.data != (void *) self_thread_id)) { /* * Either the ISR detected an error, or the ISR context ID does not * match the interrupted fiber's thread ID. */ fiberDetectedError = 2; return TC_FAIL; } isrInfo.command = EXEC_CTX_TYPE_CMD; isrInfo.error = 0; _trigger_isrHandler(); if ((isrInfo.error != 0) || (isrInfo.value != NANO_CTX_ISR)) { fiberDetectedError = 3; return TC_FAIL; } if (sys_execution_context_type_get() != NANO_CTX_FIBER) { fiberDetectedError = 4; return TC_FAIL; } return TC_PASS; } /** * * @brief Entry point to the fiber's helper * * This routine is the entry point to the fiber's helper fiber. It is used to * help test the behaviour of the fiber_yield() routine. * * @param arg1 unused * @param arg2 unused * * @return N/A */ static void fiberHelper(int arg1, int arg2) { nano_thread_id_t self_thread_id; ARG_UNUSED(arg1); ARG_UNUSED(arg2); /* * This fiber starts off at a higher priority than fiberEntry(). Thus, it * should execute immediately. */ fiberEvidence++; /* Test that helper will yield to a fiber of equal priority */ self_thread_id = sys_thread_self_get(); self_thread_id->prio++; /* Lower priority to that of fiberEntry() */ fiber_yield(); /* Yield to fiber of equal priority */ fiberEvidence++; /* <fiberEvidence> should now be 2 */ } /** * * @brief Test the fiber_yield() routine * * This routine tests the fiber_yield() routine. It starts another fiber * (thus also testing fiber_fiber_start()) and checks that behaviour of * fiber_yield() against the cases of there being a higher priority fiber, * a lower priority fiber, and another fiber of equal priority. * * On error, it may set <fiberDetectedError> to one of the following values: * 10 - helper fiber ran prematurely * 11 - fiber_yield() did not yield to a higher priority fiber * 12 - fiber_yield() did not yield to an equal prioirty fiber * 13 - fiber_yield() yielded to a lower priority fiber * * @return TC_PASS on success, TC_FAIL on failure */ int fiber_yieldTest(void) { nano_thread_id_t self_thread_id; /* * Start a fiber of higher priority. Note that since the new fiber is * being started from a fiber, it will not automatically switch to the * fiber as it would if done from a task. */ self_thread_id = sys_thread_self_get(); fiberEvidence = 0; fiber_fiber_start(fiberStack2, FIBER_STACKSIZE, fiberHelper, 0, 0, FIBER_PRIORITY - 1, 0); if (fiberEvidence != 0) { /* ERROR! Helper spawned at higher */ fiberDetectedError = 10; /* priority ran prematurely. */ return TC_FAIL; } /* * Test that the fiber will yield to the higher priority helper. * <fiberEvidence> is still 0. */ fiber_yield(); if (fiberEvidence == 0) { /* ERROR! Did not yield to higher */ fiberDetectedError = 11; /* priority fiber. */ return TC_FAIL; } if (fiberEvidence > 1) { /* ERROR! Helper did not yield to */ fiberDetectedError = 12; /* equal priority fiber. */ return TC_FAIL; } /* * Raise the priority of fiberEntry(). Calling fiber_yield() should * not result in switching to the helper. */ self_thread_id->prio--; fiber_yield(); if (fiberEvidence != 1) { /* ERROR! Context switched to a lower */ fiberDetectedError = 13; /* priority fiber! */ return TC_FAIL; } /* * Block on <wakeFiber>. This will allow the helper fiber to complete. * The main task will wake this fiber. */ nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED); return TC_PASS; } /** * * @brief Entry point to fiber started by the task * * This routine is the entry point to the fiber started by the task. * * @param task_thread_id thread ID of the spawning task * @param arg1 unused * * @return N/A */ static void fiberEntry(int task_thread_id, int arg1) { int rv; ARG_UNUSED(arg1); fiberEvidence++; /* Prove to the task that the fiber has run */ nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED); rv = nanoCtxFiberTest((nano_thread_id_t) task_thread_id); if (rv != TC_PASS) { return; } /* Allow the task to print any messages before the next test runs */ nano_fiber_sem_take(&wakeFiber, TICKS_UNLIMITED); rv = fiber_yieldTest(); if (rv != TC_PASS) { return; } } /* * Timeout tests * * Test the fiber_sleep() API, as well as the fiber_delayed_start() ones. */ #include <tc_nano_timeout_common.h> struct timeout_order_data { void *link_in_fifo; int32_t timeout; int timeout_order; int q_order; }; struct timeout_order_data timeout_order_data[] = { {0, TIMEOUT(2), 2, 0}, {0, TIMEOUT(4), 4, 1}, {0, TIMEOUT(0), 0, 2}, {0, TIMEOUT(1), 1, 3}, {0, TIMEOUT(5), 5, 4}, {0, TIMEOUT(6), 6, 5}, {0, TIMEOUT(3), 3, 6}, }; #define NUM_TIMEOUT_FIBERS ARRAY_SIZE(timeout_order_data) static char __stack timeout_stacks[NUM_TIMEOUT_FIBERS][FIBER_STACKSIZE]; /* a fiber busy waits, then reports through a fifo */ static void test_fiber_busy_wait(int ticks, int unused) { ARG_UNUSED(unused); uint32_t usecs = ticks * sys_clock_us_per_tick; TC_PRINT(" fiber busy waiting for %d usecs (%d ticks)\n", usecs, ticks); sys_thread_busy_wait(usecs); TC_PRINT(" fiber busy waiting completed\n"); /* * Ideally the test should verify that the correct number of ticks * have elapsed. However, when run under QEMU the tick interrupt * may be processed on a very irregular basis, meaning that far * fewer than the expected number of ticks may occur for a given * number of clock cycles vs. what would ordinarily be expected. * * Consequently, the best we can do for now to test busy waiting is * to invoke the API and verify that it returns. (If it takes way * too long, or never returns, the main test task may be able to * time out and report an error.) */ nano_fiber_sem_give(&reply_timeout); } /* a fiber sleeps and times out, then reports through a fifo */ static void test_fiber_sleep(int timeout, int arg2) { int64_t orig_ticks = sys_tick_get(); TC_PRINT(" fiber sleeping for %d ticks\n", timeout); fiber_sleep(timeout); TC_PRINT(" fiber back from sleep\n"); if (!is_timeout_in_range(orig_ticks, timeout)) { return; } nano_fiber_sem_give(&reply_timeout); } /* a fiber is started with a delay, then it reports that it ran via a fifo */ void delayed_fiber(int num, int unused) { struct timeout_order_data *data = &timeout_order_data[num]; ARG_UNUSED(unused); TC_PRINT(" fiber (q order: %d, t/o: %d) is running\n", data->q_order, data->timeout); nano_fiber_fifo_put(&timeout_order_fifo, data); } static int test_timeout(void) { int32_t timeout; int rv; int ii; struct timeout_order_data *data; /* test sys_thread_busy_wait() */ TC_PRINT("Testing sys_thread_busy_wait()\n"); timeout = 2; task_fiber_start(timeout_stacks[0], FIBER_STACKSIZE, test_fiber_busy_wait, (int)timeout, 0, FIBER_PRIORITY, 0); rv = nano_task_sem_take(&reply_timeout, timeout + 2); if (!rv) { rv = TC_FAIL; TC_ERROR(" *** task timed out waiting for sys_thread_busy_wait()\n"); return TC_FAIL; } /* test fiber_sleep() */ TC_PRINT("Testing fiber_sleep()\n"); timeout = 5; task_fiber_start(timeout_stacks[0], FIBER_STACKSIZE, test_fiber_sleep, (int)timeout, 0, FIBER_PRIORITY, 0); rv = nano_task_sem_take(&reply_timeout, timeout + 5); if (!rv) { rv = TC_FAIL; TC_ERROR(" *** task timed out waiting for fiber on fiber_sleep().\n"); return TC_FAIL; } /* test fiber_delayed_start() without cancellation */ TC_PRINT("Testing fiber_delayed_start() without cancellation\n"); for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) { (void)task_fiber_delayed_start(timeout_stacks[ii], FIBER_STACKSIZE, delayed_fiber, ii, 0, 5, 0, timeout_order_data[ii].timeout); } for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) { data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS); if (!data) { TC_ERROR(" *** timeout while waiting for delayed fiber\n"); return TC_FAIL; } if (data->timeout_order != ii) { TC_ERROR(" *** wrong delayed fiber ran (got %d, expected %d)\n", data->timeout_order, ii); return TC_FAIL; } TC_PRINT(" got fiber (q order: %d, t/o: %d) as expected\n", data->q_order, data->timeout); } /* ensure no more fibers fire */ data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS); if (data) { TC_ERROR(" *** got something on the fifo, but shouldn't have...\n"); return TC_FAIL; } /* test fiber_delayed_start() with cancellation */ TC_PRINT("Testing fiber_delayed_start() with cancellations\n"); int cancellations[] = {0, 3, 4, 6}; int num_cancellations = ARRAY_SIZE(cancellations); int next_cancellation = 0; nano_thread_id_t delayed_fibers[NUM_TIMEOUT_FIBERS]; for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) { delayed_fibers[ii] = task_fiber_delayed_start(timeout_stacks[ii], FIBER_STACKSIZE, delayed_fiber, ii, 0, 5, 0, timeout_order_data[ii].timeout); } for (ii = 0; ii < NUM_TIMEOUT_FIBERS; ii++) { int jj; if (ii == cancellations[next_cancellation]) { TC_PRINT(" cancelling [q order: %d, t/o: %d, t/o order: %d]\n", timeout_order_data[ii].q_order, timeout_order_data[ii].timeout, ii); for (jj = 0; jj < NUM_TIMEOUT_FIBERS; jj++) { if (timeout_order_data[jj].timeout_order == ii) { break; } } task_fiber_delayed_start_cancel(delayed_fibers[jj]); ++next_cancellation; continue; } data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TEN_INTERVALS); if (!data) { TC_ERROR(" *** timeout while waiting for delayed fiber\n"); return TC_FAIL; } if (data->timeout_order != ii) { TC_ERROR(" *** wrong delayed fiber ran (got %d, expected %d)\n", data->timeout_order, ii); return TC_FAIL; } TC_PRINT(" got (q order: %d, t/o: %d, t/o order %d) as expected\n", data->q_order, data->timeout); } if (num_cancellations != next_cancellation) { TC_ERROR(" *** wrong number of cancellations (expected %d, got %d\n", num_cancellations, next_cancellation); return TC_FAIL; } /* ensure no more fibers fire */ data = nano_task_fifo_get(&timeout_order_fifo, TIMEOUT_TWO_INTERVALS); if (data) { TC_ERROR(" *** got something on the fifo, but shouldn't have...\n"); return TC_FAIL; } return TC_PASS; } /** * * @brief Entry point to timer tests * * This is the entry point to the CPU and thread tests. * * @return N/A */ void main(void) { int rv; /* return value from tests */ TC_START("Test Nanokernel CPU and thread routines"); TC_PRINT("Initializing nanokernel objects\n"); rv = initNanoObjects(); if (rv != TC_PASS) { goto doneTests; } #ifdef HAS_POWERSAVE_INSTRUCTION TC_PRINT("Testing nano_cpu_idle()\n"); rv = nano_cpu_idleTest(); if (rv != TC_PASS) { goto doneTests; } #endif TC_PRINT("Testing interrupt locking and unlocking\n"); rv = nanoCpuDisableInterruptsTest(irq_lockWrapper, irq_unlockWrapper, -1); if (rv != TC_PASS) { goto doneTests; } #ifdef TICK_IRQ /* Disable interrupts coming from the timer. */ TC_PRINT("Testing irq_disable() and irq_enable()\n"); rv = nanoCpuDisableInterruptsTest(irq_disableWrapper, irq_enableWrapper, TICK_IRQ); if (rv != TC_PASS) { goto doneTests; } #endif rv = nanoCtxTaskTest(); if (rv != TC_PASS) { goto doneTests; } TC_PRINT("Spawning a fiber from a task\n"); fiberEvidence = 0; task_fiber_start(fiberStack1, FIBER_STACKSIZE, fiberEntry, (int) sys_thread_self_get(), 0, FIBER_PRIORITY, 0); if (fiberEvidence != 1) { rv = TC_FAIL; TC_ERROR(" - fiber did not execute as expected!\n"); goto doneTests; } /* * The fiber ran, now wake it so it can test sys_thread_self_get and * sys_execution_context_type_get. */ TC_PRINT("Fiber to test sys_thread_self_get() and sys_execution_context_type_get\n"); nano_task_sem_give(&wakeFiber); if (fiberDetectedError != 0) { rv = TC_FAIL; TC_ERROR(" - failure detected in fiber; fiberDetectedError = %d\n", fiberDetectedError); goto doneTests; } TC_PRINT("Fiber to test fiber_yield()\n"); nano_task_sem_give(&wakeFiber); if (fiberDetectedError != 0) { rv = TC_FAIL; TC_ERROR(" - failure detected in fiber; fiberDetectedError = %d\n", fiberDetectedError); goto doneTests; } nano_task_sem_give(&wakeFiber); rv = test_timeout(); if (rv != TC_PASS) { goto doneTests; } #ifdef CONNECT_EXCEPTIONS /* * Test divide by zero exception handler. * * WARNING: This code has been very carefully crafted so that it does * what it is supposed to. Both "error" and "excHandlerExecuted" must be * volatile to prevent the compiler from issuing a "divide by zero" * warning (since otherwise in knows "excHandlerExecuted" is zero), * and to ensure the compiler issues the two byte "idiv" instruction * that the exception handler is designed to deal with. */ volatile int error; /* used to create a divide by zero error */ TC_PRINT("Verifying exception handler installed\n"); excHandlerExecuted = 0; error = error / excHandlerExecuted; TC_PRINT("excHandlerExecuted: %d\n", excHandlerExecuted); rv = (excHandlerExecuted == 1) ? TC_PASS : TC_FAIL; #endif doneTests: TC_END_RESULT(rv); TC_END_REPORT(rv); } |