Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
 * Copyright (c) 2013-2015 Wind River Systems, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @file
 * @brief ARM Cortex-M systick device driver
 *
 * This module implements the kernel's CORTEX-M ARM's systick device driver.
 * It provides the standard kernel "system clock driver" interfaces.
 *
 * The driver utilizes systick to provide kernel ticks.
 *
 * \INTERNAL IMPLEMENTATION DETAILS
 * The systick device provides a 24-bit clear-on-write, decrementing,
 * wrap-on-zero counter. Only edge sensitive triggered interrupt is supported.
 *
 * \INTERNAL PACKAGING DETAILS
 * The systick device driver is part of the microkernel in both a monolithic
 * kernel system and a split kernel system; it is not included in the
 * nanokernel portion of a split kernel.
 *
 * The device driver is also part of a nanokernel-only system, but omits more
 * complex capabilities (such as tickless idle support) that are only used in
 * conjunction with a microkernel.
 */

#include <nanokernel.h>
#include <toolchain.h>
#include <sections.h>
#include <misc/__assert.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>

#ifdef CONFIG_MICROKERNEL

#include <microkernel.h>

extern struct nano_stack _k_command_stack;

#endif /* CONFIG_MICROKERNEL */

/* running total of timer count */
static uint32_t clock_accumulated_count;

/*
 * A board support package's board.h header must provide definitions for the
 * following constants:
 *
 *    CONFIG_SYSTICK_CLOCK_FREQ
 *
 * This is the sysTick input clock frequency.
 */

#include <board.h>

/*
 * When GDB_INFO is enabled, the handler installed in the vector table
 * (__systick), can be found in systick_gdb.s. In this case, the handler
 * in this file becomes _Systick() and will be called by __systick.
 */
#ifdef CONFIG_GDB_INFO
#define _TIMER_INT_HANDLER _real_timer_int_handler
#else
#define _TIMER_INT_HANDLER _timer_int_handler
#endif

#ifdef CONFIG_TICKLESS_IDLE
#define TIMER_MODE_PERIODIC 0 /* normal running mode */
#define TIMER_MODE_ONE_SHOT 1 /* emulated, since sysTick has 1 mode */

#define IDLE_NOT_TICKLESS 0 /* non-tickless idle mode */
#define IDLE_TICKLESS 1     /* tickless idle  mode */
#endif			    /* CONFIG_TICKLESS_IDLE */

#ifdef CONFIG_INT_LATENCY_BENCHMARK
extern uint32_t _hw_irq_to_c_handler_latency;
#endif

#ifdef CONFIG_SYS_POWER_MANAGEMENT
extern int32_t _NanoIdleValGet(void);
extern void _NanoIdleValClear(void);
extern void _sys_power_save_idle_exit(int32_t ticks);
#endif

#ifdef CONFIG_TICKLESS_IDLE
extern int32_t _sys_idle_elapsed_ticks;
#endif

#ifdef CONFIG_TICKLESS_IDLE
static uint32_t __noinit default_load_value; /* default count */
static uint32_t idle_original_count;
static uint32_t __noinit max_system_ticks;
static uint32_t idle_original_ticks;
static uint32_t __noinit max_load_value;
static uint32_t __noinit timer_idle_skew;
static unsigned char timer_mode = TIMER_MODE_PERIODIC;
static unsigned char idle_mode = IDLE_NOT_TICKLESS;
#endif /* CONFIG_TICKLESS_IDLE */

#if defined(CONFIG_TICKLESS_IDLE) || \
	defined(CONFIG_SYSTEM_CLOCK_DISABLE)

/**
 *
 * @brief Stop the timer
 *
 * This routine disables the systick counter.
 *
 * @return N/A
 */
static ALWAYS_INLINE void sysTickStop(void)
{
	union __stcsr reg;

	/*
	 * Disable the counter and its interrupt while preserving the
	 * remaining bits.
	 */
	reg.val = __scs.systick.stcsr.val;
	reg.bit.enable = 0;
	reg.bit.tickint = 0;
	__scs.systick.stcsr.val = reg.val;
}

#endif /* CONFIG_TICKLESS_IDLE || CONFIG_SYSTEM_CLOCK_DISABLE */

#ifdef CONFIG_TICKLESS_IDLE

/**
 *
 * @brief Start the timer
 *
 * This routine enables the systick counter.
 *
 * @return N/A
 */
static ALWAYS_INLINE void sysTickStart(void)
{
	union __stcsr reg;

	/*
	 * Enable the counter, its interrupt and set the clock source to be
	 * the system clock while preserving the remaining bits.
	 */
	reg.val =
		__scs.systick.stcsr.val; /* countflag is cleared by this read */
	reg.bit.enable = 1;
	reg.bit.tickint = 1;
	reg.bit.clksource = 1;
	__scs.systick.stcsr.val = reg.val;
}

/**
 *
 * @brief Get the current counter value
 *
 * This routine gets the value from the timer's current value register.  This
 * value is the 'time' remaining to decrement before the timer triggers an
 * interrupt.
 *
 * @return the current counter value
 */
static ALWAYS_INLINE uint32_t sysTickCurrentGet(void)
{
	return __scs.systick.stcvr;
}

/**
 *
 * @brief Get the reload/countdown value
 *
 * This routine returns the value from the reload value register.
 *
 * @return the counter's initial count/wraparound value
 */
static ALWAYS_INLINE uint32_t sysTickReloadGet(void)
{
	return __scs.systick.strvr;
}

#endif /* CONFIG_TICKLESS_IDLE */

/**
 *
 * @brief Set the reload/countdown value
 *
 * This routine sets value from which the timer will count down and also
 * sets the timer's current value register to zero.
 * Note that the value given is assumed to be valid (i.e., count < (1<<24)).
 *
 * @return N/A
 */
static ALWAYS_INLINE void sysTickReloadSet(
	uint32_t count /* count from which timer is to count down */
	)
{
	/*
	 * Write the reload value and clear the current value in preparation
	 * for enabling the timer.
	 * The countflag in the control/status register is also cleared by
	 * this operation.
	 */
	__scs.systick.strvr = count;
	__scs.systick.stcvr = 0; /* also clears the countflag */
}

/**
 *
 * @brief System clock tick handler
 *
 * This routine handles the system clock tick interrupt. A TICK_EVENT event
 * is pushed onto the microkernel stack.
 *
 * The symbol for this routine is either _timer_int_handler (for normal
 * system operation) or _real_timer_int_handler (when GDB_INFO is enabled).
 *
 * @return N/A
 */
void _TIMER_INT_HANDLER(void *unused)
{
	ARG_UNUSED(unused);

#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
	extern void _sys_k_event_logger_interrupt(void);
	_sys_k_event_logger_interrupt();
#endif


#ifdef CONFIG_INT_LATENCY_BENCHMARK
	uint32_t value = __scs.systick.val;
	uint32_t delta = __scs.systick.reload - value;

	if (_hw_irq_to_c_handler_latency > delta) {
		/* keep the lowest value observed */
		_hw_irq_to_c_handler_latency = delta;
	}
#endif

#ifdef CONFIG_SYS_POWER_MANAGEMENT
	int32_t numIdleTicks;

	/*
	 * All interrupts are disabled when handling idle wakeup.
	 * For tickless idle, this ensures that the calculation and programming
	 * of
	 * the device for the next timer deadline is not interrupted.
	 * For non-tickless idle, this ensures that the clearing of the kernel
	 * idle
	 * state is not interrupted.
	 * In each case, _sys_power_save_idle_exit is called with interrupts
	 * disabled.
	 */
	__asm__(" cpsid i"); /* PRIMASK = 1 */

#ifdef CONFIG_TICKLESS_IDLE
	/*
	 * If this a wakeup from a completed tickless idle or after
	 *  _timer_idle_exit has processed a partial idle, return
	 *  to the normal tick cycle.
	 */
	if (timer_mode == TIMER_MODE_ONE_SHOT) {
		sysTickStop();
		sysTickReloadSet(default_load_value);
		sysTickStart();
		timer_mode = TIMER_MODE_PERIODIC;
	}

	/* set the number of elapsed ticks and announce them to the kernel */

	if (idle_mode == IDLE_TICKLESS) {
		/* tickless idle completed without interruption */
		idle_mode = IDLE_NOT_TICKLESS;
		_sys_idle_elapsed_ticks =
			idle_original_ticks + 1; /* actual # of idle ticks */
		_sys_clock_tick_announce();
	} else {
		/*
		 * Increment the tick because _timer_idle_exit does not
		 * account for the tick due to the timer interrupt itself.
		 * Also, if not in tickless mode, _sys_idle_elapsed_ticks will be 0.
		 */
		_sys_idle_elapsed_ticks++;

		/*
		 * If we transition from 0 elapsed ticks to 1 we need to
		 * announce the
		 * tick event to the microkernel. Other cases will be covered by
		 * _timer_idle_exit.
		 */

		if (_sys_idle_elapsed_ticks == 1) {
			_sys_clock_tick_announce();
		}
	}

	/* accumulate total counter value */
	clock_accumulated_count += default_load_value * _sys_idle_elapsed_ticks;
#else  /* !CONFIG_TICKLESS_IDLE */
	/*
	 * No tickless idle:
	 * Update the total tick count and announce this tick to the kernel.
	 */
	clock_accumulated_count += sys_clock_hw_cycles_per_tick;

	_sys_clock_tick_announce();
#endif /* CONFIG_TICKLESS_IDLE */

	numIdleTicks = _NanoIdleValGet(); /* get # of idle ticks requested */

	if (numIdleTicks) {
		_NanoIdleValClear(); /* clear kernel idle setting */

		/*
		 * Complete idle processing.
		 * Note that for tickless idle, nothing will be done in
		 * _timer_idle_exit.
		 */
		_sys_power_save_idle_exit(numIdleTicks);
	}

	__asm__(" cpsie i"); /* re-enable interrupts (PRIMASK = 0) */

#else /* !CONFIG_SYS_POWER_MANAGEMENT */

	/* accumulate total counter value */
	clock_accumulated_count += sys_clock_hw_cycles_per_tick;

	/*
	 * one more tick has occurred -- don't need to do anything special since
	 * timer is already configured to interrupt on the following tick
	 */
	_sys_clock_tick_announce();

#endif /* CONFIG_SYS_POWER_MANAGEMENT */

	extern void _ExcExit(void);
	_ExcExit();
}

#ifdef CONFIG_TICKLESS_IDLE

/**
 *
 * @brief Initialize the tickless idle feature
 *
 * This routine initializes the tickless idle feature by calculating the
 * necessary hardware-specific parameters.
 *
 * Note that the maximum number of ticks that can elapse during a "tickless idle"
 * is limited by <default_load_value>.  The larger the value (the lower the
 * tick frequency), the fewer elapsed ticks during a "tickless idle".
 * Conversely, the smaller the value (the higher the tick frequency), the
 * more elapsed ticks during a "tickless idle".
 *
 * @return N/A
 */
static void sysTickTicklessIdleInit(void)
{
	/* enable counter, disable interrupt and set clock src to system clock
	 */
	union __stcsr stcsr = {.bit = {1, 0, 1, 0, 0, 0} };

	volatile uint32_t dummy; /* used to help determine the 'skew time' */

	/* store the default reload value (which has already been set) */
	default_load_value = sysTickReloadGet();

	/* calculate the max number of ticks with this 24-bit H/W counter */
	max_system_ticks = 0x00ffffff / default_load_value;

	/* determine the associated load value */
	max_load_value = max_system_ticks * default_load_value;

	/*
	 * Calculate the skew from switching the timer in and out of idle mode.
	 * The following sequence is emulated:
	 *    1. Stop the timer.
	 *    2. Read the current counter value.
	 *    3. Calculate the new/remaining counter reload value.
	 *    4. Load the new counter value.
	 *    5. Set the timer mode to periodic/one-shot.
	 *    6. Start the timer.
	 *
	 * The timer must be running for this to work, so enable the
	 * systick counter without generating interrupts, using the processor
	 *clock.
	 * Note that the reload value has already been set by the caller.
	 */

	__scs.systick.stcsr.val |= stcsr.val;
	__asm__(" isb"); /* ensure the timer is started before reading */

	timer_idle_skew = sysTickCurrentGet(); /* start of skew time */

	__scs.systick.stcsr.val |= stcsr.val; /* normally sysTickStop() */

	dummy = sysTickCurrentGet(); /* emulate sysTickReloadSet() */

	/* emulate calculation of the new counter reload value */
	if ((dummy == 1) || (dummy == default_load_value)) {
		dummy = max_system_ticks - 1;
		dummy += max_load_value - default_load_value;
	} else {
		dummy = dummy - 1;
		dummy += dummy * default_load_value;
	}

	/* _sysTickStart() without interrupts */
	__scs.systick.stcsr.val |= stcsr.val;

	timer_mode = TIMER_MODE_PERIODIC;

	/* skew time calculation for down counter (assumes no rollover) */
	timer_idle_skew -= sysTickCurrentGet();

	/* restore the previous sysTick state */
	sysTickStop();
	sysTickReloadSet(default_load_value);
}

/**
 *
 * @brief Place the system timer into idle state
 *
 * Re-program the timer to enter into the idle state for the given number of
 * ticks. It is set to a "one shot" mode where it will fire in the number of
 * ticks supplied or the maximum number of ticks that can be programmed into
 * hardware. A value of -1 will result in the maximum number of ticks.
 *
 * @return N/A
 */
void _timer_idle_enter(int32_t ticks /* system ticks */
				)
{
	sysTickStop();

	/*
	 * We're being asked to have the timer fire in "ticks" from now. To
	 * maintain accuracy we must account for the remaining time left in the
	 * timer. So we read the count out of it and add it to the requested
	 * time out
	 */
	idle_original_count = sysTickCurrentGet() - timer_idle_skew;

	if ((ticks == -1) || (ticks > max_system_ticks)) {
		/*
		 * We've been asked to fire the timer so far in the future that
		 * the required count value would not fit in the 24-bit reload
		 * register.
		 * Instead, we program for the maximum programmable interval
		 * minus one system tick to prevent overflow when the left over
		 * count read earlier is added.
		 */
		idle_original_count += max_load_value - default_load_value;
		idle_original_ticks = max_system_ticks - 1;
	} else {
		/*
		 * leave one tick of buffer to have to time react when coming
		 * back
		 */
		idle_original_ticks = ticks - 1;
		idle_original_count += idle_original_ticks * default_load_value;
	}

	/*
	 * Set timer to virtual "one shot" mode - sysTick does not have multiple
	 * modes, so the reload value is simply changed.
	 */
	timer_mode = TIMER_MODE_ONE_SHOT;
	idle_mode = IDLE_TICKLESS;
	sysTickReloadSet(idle_original_count);
	sysTickStart();
}

/**
 *
 * @brief Handling of tickless idle when interrupted
 *
 * The routine, called by _sys_power_save_idle_exit, is responsible for taking
 * the timer out of idle mode and generating an interrupt at the next
 * tick interval.  It is expected that interrupts have been disabled.
 *
 * Note that in this routine, _sys_idle_elapsed_ticks must be zero because the
 * ticker has done its work and consumed all the ticks. This has to be true
 * otherwise idle mode wouldn't have been entered in the first place.
 *
 * @return N/A
 */
void _timer_idle_exit(void)
{
	uint32_t count; /* timer's current count register value */

	if (timer_mode == TIMER_MODE_PERIODIC) {
		/*
		 * The timer interrupt handler is handling a completed tickless
		 * idle
		 * or this has been called by mistake; there's nothing to do
		 * here.
		 */
		return;
	}

	sysTickStop();

	/* timer is in idle mode, adjust the ticks expired */

	count = sysTickCurrentGet();

	if ((count == 0) || (__scs.systick.stcsr.bit.countflag)) {
		/*
		 * The timer expired and/or wrapped around. Re-set the timer to
		 * its default value and mode.
		 */
		sysTickReloadSet(default_load_value);
		timer_mode = TIMER_MODE_PERIODIC;

		/*
		 * Announce elapsed ticks to the microkernel. Note we are
		 * guaranteed
		 * that the timer ISR will execute before the tick event is
		 * serviced,
		 * so _sys_idle_elapsed_ticks is adjusted to account for it.
		 */
		_sys_idle_elapsed_ticks = idle_original_ticks - 1;
		_sys_clock_tick_announce();
	} else {
		uint32_t elapsed;   /* elapsed "counter time" */
		uint32_t remaining; /* remaining "counter time" */

		elapsed = idle_original_count - count;

		remaining = elapsed % default_load_value;

		/* ensure that the timer will interrupt at the next tick */

		if (remaining == 0) {
			/*
			 * Idle was interrupted on a tick boundary. Re-set the
			 * timer to
			 * its default value and mode.
			 */
			sysTickReloadSet(default_load_value);
			timer_mode = TIMER_MODE_PERIODIC;
		} else if (count > remaining) {
			/*
			 * There is less time remaining to the next tick
			 * boundary than
			 * time left for idle. Leave in "one shot" mode.
			 */
			sysTickReloadSet(remaining);
		}

		_sys_idle_elapsed_ticks = elapsed / default_load_value;

		if (_sys_idle_elapsed_ticks) {
			_sys_clock_tick_announce();
		}
	}

	idle_mode = IDLE_NOT_TICKLESS;
	sysTickStart();
}

#endif /* CONFIG_TICKLESS_IDLE */

/**
 *
 * @brief Initialize and enable the system clock
 *
 * This routine is used to program the systick to deliver interrupts at the
 * rate specified via the 'sys_clock_us_per_tick' global variable.
 *
 * @return 0
 */
int _sys_clock_driver_init(struct device *device)
{
	/* enable counter, interrupt and set clock src to system clock */
	union __stcsr stcsr = {.bit = {1, 1, 1, 0, 0, 0} };

	ARG_UNUSED(device);

	/*
	 * Determine the reload value to achieve the configured tick rate.
	 */

	/* systick supports 24-bit H/W counter */
	__ASSERT(sys_clock_hw_cycles_per_tick <= (1 << 24),
		 "sys_clock_hw_cycles_per_tick too large");
	sysTickReloadSet(sys_clock_hw_cycles_per_tick - 1);

#ifdef CONFIG_TICKLESS_IDLE

	/* calculate hardware-specific parameters for tickless idle */

	sysTickTicklessIdleInit();

#endif /* CONFIG_TICKLESS_IDLE */

	_ScbExcPrioSet(_EXC_SYSTICK, _EXC_IRQ_DEFAULT_PRIO);

	__scs.systick.stcsr.val = stcsr.val;

	return 0;
}

/**
 *
 * @brief Read the platform's timer hardware
 *
 * This routine returns the current time in terms of timer hardware clock
 * cycles.
 *
 * @return up counter of elapsed clock cycles
 *
 * \INTERNAL WARNING
 * systick counter is a 24-bit down counter which is reset to "reload" value
 * once it reaches 0.
 */
uint32_t sys_cycle_get_32(void)
{
	return clock_accumulated_count + (__scs.systick.strvr - __scs.systick.stcvr);
}

#ifdef CONFIG_SYSTEM_CLOCK_DISABLE

/**
 *
 * @brief Stop announcing ticks into the kernel
 *
 * This routine disables the systick so that timer interrupts are no
 * longer delivered.
 *
 * @return N/A
 */
void sys_clock_disable(void)
{
	unsigned int key; /* interrupt lock level */

	key = irq_lock();

	/* disable the systick counter and systick interrupt */

	sysTickStop();

	irq_unlock(key);
}

#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */