Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/* Bosch BMI160 inertial measurement unit driver
 *
 * Copyright (c) 2016 Intel Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Datasheet:
 * http://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI160-DS000-07.pdf
 */

#include <init.h>
#include <sensor.h>
#include <spi.h>
#include <misc/byteorder.h>
#include <nanokernel.h>
#include <misc/__assert.h>

#include "sensor_bmi160.h"

struct bmi160_device_data bmi160_data;

static int bmi160_transceive(struct device *dev, uint8_t *tx_buf,
			     uint8_t tx_buf_len, uint8_t *rx_buf,
			     uint8_t rx_buf_len)
{
	struct bmi160_device_config *dev_cfg = dev->config->config_info;
	struct bmi160_device_data *bmi160 = dev->driver_data;
	struct spi_config spi_cfg;

	spi_cfg.config = SPI_WORD(8);
	spi_cfg.max_sys_freq = dev_cfg->spi_freq;

	if (spi_configure(bmi160->spi, &spi_cfg) < 0) {
		SYS_LOG_DBG("Cannot configure SPI bus.");
		return -EIO;
	}

	if (spi_slave_select(bmi160->spi, dev_cfg->spi_slave) < 0) {
		SYS_LOG_DBG("Cannot select slave.");
		return -EIO;
	}

	return spi_transceive(bmi160->spi, tx_buf, tx_buf_len,
			      rx_buf, rx_buf_len);
}

int bmi160_read(struct device *dev, uint8_t reg_addr,
		uint8_t *data, uint8_t len)
{
	uint8_t tx[3] = {0};

	tx[0] = reg_addr | (1 << 7);

	return bmi160_transceive(dev, tx, len, data, len);
}

int bmi160_byte_read(struct device *dev, uint8_t reg_addr,
		     uint8_t *byte)
{
	uint8_t rx_buf[2];

	if (bmi160_read(dev, reg_addr, rx_buf, 2) < 0) {
		return -EIO;
	}

	*byte = rx_buf[1];

	return 0;
}

static int bmi160_word_read(struct device *dev, uint8_t reg_addr,
			    uint16_t *word)
{
	union {
		uint8_t raw[3];
		struct {
			uint8_t dummy;
			uint16_t word;
		} __packed;
	} buf;

	if (bmi160_read(dev, reg_addr, buf.raw, 3) < 0) {
		return -EIO;
	}

	*word = sys_le16_to_cpu(buf.word);

	return 0;
}

int bmi160_byte_write(struct device *dev, uint8_t reg_addr, uint8_t byte)
{
	uint8_t tx_buf[2] = {reg_addr & 0x7F, byte};

	return bmi160_transceive(dev, tx_buf, 2, NULL, 0);
}

int bmi160_word_write(struct device *dev, uint8_t reg_addr, uint16_t word)
{
	uint8_t tx_buf[3] = {
		reg_addr & 0x7F,
		(uint8_t)(word & 0xff),
		(uint8_t)(word >> 8)
	};

	return bmi160_transceive(dev, tx_buf, 3, NULL, 0);
}

int bmi160_reg_field_update(struct device *dev, uint8_t reg_addr,
			    uint8_t pos, uint8_t mask, uint8_t val)
{
	uint8_t old_val;

	if (bmi160_byte_read(dev, reg_addr, &old_val) < 0) {
		return -EIO;
	}

	return  bmi160_byte_write(dev, reg_addr,
				  (old_val & ~mask) | ((val << pos) & mask));
}

static int bmi160_pmu_set(struct device *dev, union bmi160_pmu_status *pmu_sts)
{
	struct {
		uint8_t cmd;
		uint16_t delay_us; /* values taken from page 82 */
	} cmds[] = {
		{BMI160_CMD_PMU_MAG | pmu_sts->mag, 350},
		{BMI160_CMD_PMU_ACC | pmu_sts->acc, 3200},
		{BMI160_CMD_PMU_GYR | pmu_sts->gyr, 55000}
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(cmds); i++) {
		union bmi160_pmu_status sts;
		bool pmu_set = false;

		if (bmi160_byte_write(dev, BMI160_REG_CMD, cmds[i].cmd) < 0) {
			return -EIO;
		}

		/*
		 * Cannot use a nano timer here since this is called from the
		 * init function and the timeouts were not initialized yet.
		 */
		sys_thread_busy_wait(cmds[i].delay_us);

		/* make sure the PMU_STATUS was set, though */
		do {
			if (bmi160_byte_read(dev, BMI160_REG_PMU_STATUS,
					       &sts.raw) < 0) {
				return -EIO;
			}

			if (i == 0) {
				pmu_set = (pmu_sts->mag == sts.mag);
			} else if (i == 1) {
				pmu_set = (pmu_sts->acc == sts.acc);
			} else {
				pmu_set = (pmu_sts->gyr == sts.gyr);
			}

		} while (!pmu_set);
	}

	/* set the undersampling flag for accelerometer */
	return bmi160_reg_field_update(dev, BMI160_REG_ACC_CONF,
				       BMI160_ACC_CONF_US, BMI160_ACC_CONF_US,
				       pmu_sts->acc != BMI160_PMU_NORMAL);
}

#if defined(CONFIG_BMI160_GYRO_ODR_RUNTIME) ||\
	defined(CONFIG_BMI160_ACCEL_ODR_RUNTIME)
/*
 * Output data rate map with allowed frequencies:
 * freq = freq_int + freq_milli / 1000
 *
 * Since we don't need a finer frequency resolution than milliHz, use uint16_t
 * to save some flash.
 */
struct {
	uint16_t freq_int;
	uint16_t freq_milli; /* User should convert to uHz before setting the
			      * SENSOR_ATTR_SAMPLING_FREQUENCY attribute.
			      */
} bmi160_odr_map[] = {
	{0,    0  }, {0,     780}, {1,     562}, {3,    120}, {6,   250},
	{12,   500}, {25,    0  }, {50,    0  }, {100,  0  }, {200, 0  },
	{400,  0  }, {800,   0  }, {1600,  0  }, {3200, 0  },
};

static int bmi160_freq_to_odr_val(uint16_t freq_int, uint16_t freq_milli)
{
	int i;

	/* An ODR of 0 Hz is not allowed */
	if (freq_int == 0 && freq_milli == 0) {
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(bmi160_odr_map); i++) {
		if (freq_int < bmi160_odr_map[i].freq_int ||
		    (freq_int == bmi160_odr_map[i].freq_int &&
		     freq_milli <= bmi160_odr_map[i].freq_milli)) {
			return i;
		}
	}

	return -EINVAL;
}
#endif

#if defined(CONFIG_BMI160_ACCEL_ODR_RUNTIME)
static int bmi160_acc_odr_set(struct device *dev, uint16_t freq_int,
			      uint16_t freq_milli)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;
	uint8_t odr = bmi160_freq_to_odr_val(freq_int, freq_milli);

	if (odr < 0) {
		return odr;
	}

	/* some odr values cannot be set in certain power modes */
	if ((bmi160->pmu_sts.acc == BMI160_PMU_NORMAL &&
	     odr < BMI160_ODR_25_2) ||
	    (bmi160->pmu_sts.acc == BMI160_PMU_LOW_POWER &&
	    odr < BMI160_ODR_25_32) || odr > BMI160_ODR_1600) {
		return -ENOTSUP;
	}

	return bmi160_reg_field_update(dev, BMI160_REG_ACC_CONF,
				       BMI160_ACC_CONF_ODR_POS,
				       BMI160_ACC_CONF_ODR_MASK,
				       odr);
}
#endif

static const struct bmi160_range bmi160_acc_range_map[] = {
	{2,	BMI160_ACC_RANGE_2G},
	{4,	BMI160_ACC_RANGE_4G},
	{8,	BMI160_ACC_RANGE_8G},
	{16,	BMI160_ACC_RANGE_16G},
};
#define BMI160_ACC_RANGE_MAP_SIZE	ARRAY_SIZE(bmi160_acc_range_map)

static const struct bmi160_range bmi160_gyr_range_map[] = {
	{2000,	BMI160_GYR_RANGE_2000DPS},
	{1000,	BMI160_GYR_RANGE_1000DPS},
	{500,	BMI160_GYR_RANGE_500DPS},
	{250,	BMI160_GYR_RANGE_250DPS},
	{125,	BMI160_GYR_RANGE_125DPS},
};
#define BMI160_GYR_RANGE_MAP_SIZE	ARRAY_SIZE(bmi160_gyr_range_map)

#if defined(CONFIG_BMI160_ACCEL_RANGE_RUNTIME) ||\
	defined(CONFIG_BMI160_GYRO_RANGE_RUNTIME)
static int32_t bmi160_range_to_reg_val(uint16_t range,
				       const struct bmi160_range *range_map,
				       uint16_t range_map_size)
{
	int i;

	for (i = 0; i < range_map_size; i++) {
		if (range <= range_map[i].range) {
			return range_map[i].reg_val;
		}
	}

	return -EINVAL;
}
#endif

static int32_t bmi160_reg_val_to_range(uint8_t reg_val,
				       const struct bmi160_range *range_map,
				       uint16_t range_map_size)
{
	int i;

	for (i = 0; i < range_map_size; i++) {
		if (reg_val == range_map[i].reg_val) {
			return range_map[i].range;
		}
	}

	return -EINVAL;
}

int32_t bmi160_acc_reg_val_to_range(uint8_t reg_val)
{
	return bmi160_reg_val_to_range(reg_val, bmi160_acc_range_map,
				       BMI160_ACC_RANGE_MAP_SIZE);
}

int32_t bmi160_gyr_reg_val_to_range(uint8_t reg_val)
{
	return bmi160_reg_val_to_range(reg_val, bmi160_gyr_range_map,
				       BMI160_GYR_RANGE_MAP_SIZE);
}

static int bmi160_do_calibration(struct device *dev, uint8_t foc_conf)
{
	if (bmi160_byte_write(dev, BMI160_REG_FOC_CONF, foc_conf) < 0) {
		return -EIO;
	}

	if (bmi160_byte_write(dev, BMI160_REG_CMD, BMI160_CMD_START_FOC) < 0) {
		return -EIO;
	}

	sys_thread_busy_wait(250000); /* calibration takes a maximum of 250ms */

	return 0;
}

#if defined(CONFIG_BMI160_ACCEL_RANGE_RUNTIME)
static int bmi160_acc_range_set(struct device *dev, int32_t range)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;
	int32_t reg_val = bmi160_range_to_reg_val(range,
						  bmi160_acc_range_map,
						  BMI160_ACC_RANGE_MAP_SIZE);

	if (reg_val < 0) {
		return reg_val;
	}

	if (bmi160_byte_write(dev, BMI160_REG_ACC_RANGE, reg_val & 0xff) < 0) {
		return -EIO;
	}

	bmi160->scale.acc = BMI160_ACC_SCALE(range);

	return 0;
}
#endif

#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
/*
 * Accelerometer offset scale, taken from pg. 79, converted to micro m/s^2:
 *	3.9 * 9.80665 * 1000
 */
#define BMI160_ACC_OFS_LSB		38246
static int bmi160_acc_ofs_set(struct device *dev, enum sensor_channel chan,
			      const struct sensor_value *ofs)
{
	uint8_t reg_addr[] = {
		BMI160_REG_OFFSET_ACC_X,
		BMI160_REG_OFFSET_ACC_Y,
		BMI160_REG_OFFSET_ACC_Z
	};
	int i;
	int32_t ofs_u;
	int8_t reg_val;

	/* we need the offsets for all axis */
	if (chan != SENSOR_CHAN_ACCEL_ANY) {
		return -ENOTSUP;
	}

	for (i = 0; i < 3; i++, ofs++) {
		if (ofs->type != SENSOR_VALUE_TYPE_INT_PLUS_MICRO) {
			return -EINVAL;
		}

		/* convert ofset to micro m/s^2 */
		ofs_u = ofs->val1 * 1000000ULL + ofs->val2;
		reg_val = ofs_u / BMI160_ACC_OFS_LSB;

		if (bmi160_byte_write(dev, reg_addr[i], reg_val) < 0) {
			return -EIO;
		}
	}

	/* activate accel HW compensation */
	return bmi160_reg_field_update(dev, BMI160_REG_OFFSET_EN,
				       BMI160_ACC_OFS_EN_POS,
				       BIT(BMI160_ACC_OFS_EN_POS), 1);
}

static int  bmi160_acc_calibrate(struct device *dev, enum sensor_channel chan,
				 const struct sensor_value *xyz_calib_value)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;
	uint8_t foc_pos[] = {
		BMI160_FOC_ACC_X_POS,
		BMI160_FOC_ACC_Y_POS,
		BMI160_FOC_ACC_Z_POS,
	};
	int i;
	uint8_t reg_val = 0;

	/* Calibration has to be done in normal mode. */
	if (bmi160->pmu_sts.acc != BMI160_PMU_NORMAL) {
		return -ENOTSUP;
	}

	/*
	 * Hardware calibration is done knowing the expected values on all axis.
	 */
	if (chan != SENSOR_CHAN_ACCEL_ANY) {
		return -ENOTSUP;
	}

	for (i = 0; i < 3; i++, xyz_calib_value++) {
		int32_t accel_g;
		uint8_t accel_val;

		accel_g = sensor_ms2_to_g(xyz_calib_value);
		if (accel_g == 0) {
			accel_val = 3;
		} else if (accel_g == 1) {
			accel_val = 1;
		} else if (accel_g == -1) {
			accel_val = 2;
		} else {
			accel_val = 0;
		}
		reg_val |= (accel_val << foc_pos[i]);
	}

	if (bmi160_do_calibration(dev, reg_val) < 0) {
		return -EIO;
	}

	/* activate accel HW compensation */
	return bmi160_reg_field_update(dev, BMI160_REG_OFFSET_EN,
				       BMI160_ACC_OFS_EN_POS,
				       BIT(BMI160_ACC_OFS_EN_POS), 1);
}

static int bmi160_acc_config(struct device *dev, enum sensor_channel chan,
			     enum sensor_attribute attr,
			     const struct sensor_value *val)
{
	switch (attr) {
#if defined(CONFIG_BMI160_ACCEL_RANGE_RUNTIME)
	case SENSOR_ATTR_FULL_SCALE:
		if (val->type != SENSOR_VALUE_TYPE_INT_PLUS_MICRO) {
			return -EINVAL;
		}

		return bmi160_acc_range_set(dev, sensor_ms2_to_g(val));
#endif
#if defined(CONFIG_BMI160_ACCEL_ODR_RUNTIME)
	case SENSOR_ATTR_SAMPLING_FREQUENCY:
		if (val->type != SENSOR_VALUE_TYPE_INT_PLUS_MICRO) {
			return -EINVAL;
		}

		return bmi160_acc_odr_set(dev, val->val1, val->val2 / 1000);
#endif
	case SENSOR_ATTR_OFFSET:
		return bmi160_acc_ofs_set(dev, chan, val);
	case SENSOR_ATTR_CALIB_TARGET:
		return bmi160_acc_calibrate(dev, chan, val);
#if defined(CONFIG_BMI160_TRIGGER)
	case SENSOR_ATTR_SLOPE_TH:
	case SENSOR_ATTR_SLOPE_DUR:
		return bmi160_acc_slope_config(dev, attr, val);
#endif
	default:
		SYS_LOG_DBG("Accel attribute not supported.");
		return -ENOTSUP;
	}

	return 0;
}
#endif /* !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND) */

#if defined(CONFIG_BMI160_GYRO_ODR_RUNTIME)
static int bmi160_gyr_odr_set(struct device *dev, uint16_t freq_int,
			      uint16_t freq_milli)
{
	uint8_t odr = bmi160_freq_to_odr_val(freq_int, freq_milli);

	if (odr < 0) {
		return odr;
	}

	if (odr < BMI160_ODR_25 || odr > BMI160_ODR_3200) {
		return -ENOTSUP;
	}

	return bmi160_reg_field_update(dev, BMI160_REG_GYR_CONF,
				       BMI160_GYR_CONF_ODR_POS,
				       BMI160_GYR_CONF_ODR_MASK,
				       odr);
}
#endif

#if defined(CONFIG_BMI160_GYRO_RANGE_RUNTIME)
static int bmi160_gyr_range_set(struct device *dev, uint16_t range)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;
	int32_t reg_val = bmi160_range_to_reg_val(range,
						  bmi160_gyr_range_map,
						  BMI160_GYR_RANGE_MAP_SIZE);

	if (reg_val < 0) {
		return reg_val;
	}

	if (bmi160_byte_write(dev, BMI160_REG_GYR_RANGE, reg_val) < 0) {
		return -EIO;
	}

	bmi160->scale.gyr = BMI160_GYR_SCALE(range);

	return 0;
}
#endif

#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
/*
 * Gyro offset scale, taken from pg. 79, converted to micro rad/s:
 *		0.061 * (pi / 180) * 1000000, where pi = 3.141592
 */
#define BMI160_GYR_OFS_LSB		1065
static int bmi160_gyr_ofs_set(struct device *dev, enum sensor_channel chan,
			      const struct sensor_value *ofs)
{
	struct {
		uint8_t lsb_addr;
		uint8_t msb_pos;
	} ofs_desc[] = {
		{BMI160_REG_OFFSET_GYR_X, BMI160_GYR_MSB_OFS_X_POS},
		{BMI160_REG_OFFSET_GYR_Y, BMI160_GYR_MSB_OFS_Y_POS},
		{BMI160_REG_OFFSET_GYR_Z, BMI160_GYR_MSB_OFS_Z_POS},
	};
	int i;
	int32_t ofs_u;
	int16_t val;

	/* we need the offsets for all axis */
	if (chan != SENSOR_CHAN_GYRO_ANY) {
		return -ENOTSUP;
	}

	for (i = 0; i < 3; i++, ofs++) {
		/* convert offset to micro rad/s */
		ofs_u = ofs->val1 * 1000000ULL + ofs->val2;

		val = ofs_u / BMI160_GYR_OFS_LSB;

		/*
		 * The gyro offset is a 10 bit two-complement value. Make sure
		 * the passed value is within limits.
		 */
		if (val < -512 || val > 512) {
			return -EINVAL;
		}

		/* write the LSB */
		if (bmi160_byte_write(dev, ofs_desc[i].lsb_addr,
				      val & 0xff) < 0) {
			return -EIO;
		}

		/* write the MSB */
		if (bmi160_reg_field_update(dev, BMI160_REG_OFFSET_EN,
					    ofs_desc[i].msb_pos,
					    0x3 << ofs_desc[i].msb_pos,
					    (val >> 8) & 0x3) < 0) {
			return -EIO;
		}
	}

	/* activate gyro HW compensation */
	return bmi160_reg_field_update(dev, BMI160_REG_OFFSET_EN,
				       BMI160_GYR_OFS_EN_POS,
				       BIT(BMI160_GYR_OFS_EN_POS), 1);
}

static int bmi160_gyr_calibrate(struct device *dev, enum sensor_channel chan)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;

	/* Calibration has to be done in normal mode. */
	if (bmi160->pmu_sts.gyr != BMI160_PMU_NORMAL) {
		return -ENOTSUP;
	}

	if (bmi160_do_calibration(dev, BIT(BMI160_FOC_GYR_EN_POS)) < 0) {
		return -EIO;
	}

	/* activate gyro HW compensation */
	return bmi160_reg_field_update(dev, BMI160_REG_OFFSET_EN,
				       BMI160_GYR_OFS_EN_POS,
				       BIT(BMI160_GYR_OFS_EN_POS), 1);
}

static int bmi160_gyr_config(struct device *dev, enum sensor_channel chan,
			     enum sensor_attribute attr,
			     const struct sensor_value *val)
{
	switch (attr) {
#if defined(CONFIG_BMI160_GYRO_RANGE_RUNTIME)
	case SENSOR_ATTR_FULL_SCALE:
		if (val->type != SENSOR_VALUE_TYPE_INT_PLUS_MICRO) {
			return -EINVAL;
		}

		return bmi160_gyr_range_set(dev, sensor_rad_to_degrees(val));
#endif
#if defined(CONFIG_BMI160_GYRO_ODR_RUNTIME)
	case SENSOR_ATTR_SAMPLING_FREQUENCY:
		if (val->type != SENSOR_VALUE_TYPE_INT_PLUS_MICRO) {
			return -EINVAL;
		}

		return bmi160_gyr_odr_set(dev, val->val1, val->val2 / 1000);
#endif
	case SENSOR_ATTR_OFFSET:
		return bmi160_gyr_ofs_set(dev, chan, val);

	case SENSOR_ATTR_CALIB_TARGET:
		return bmi160_gyr_calibrate(dev, chan);

	default:
		SYS_LOG_DBG("Gyro attribute not supported.");
		return -ENOTSUP;
	}

	return 0;
}
#endif /* !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND) */

static int bmi160_attr_set(struct device *dev, enum sensor_channel chan,
		    enum sensor_attribute attr, const struct sensor_value *val)
{
	switch (chan) {
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
	case SENSOR_CHAN_GYRO_X:
	case SENSOR_CHAN_GYRO_Y:
	case SENSOR_CHAN_GYRO_Z:
	case SENSOR_CHAN_GYRO_ANY:
		return bmi160_gyr_config(dev, chan, attr, val);
#endif
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
	case SENSOR_CHAN_ACCEL_X:
	case SENSOR_CHAN_ACCEL_Y:
	case SENSOR_CHAN_ACCEL_Z:
	case SENSOR_CHAN_ACCEL_ANY:
		return bmi160_acc_config(dev, chan, attr, val);
#endif
	default:
		SYS_LOG_DBG("attr_set() not supported on this channel.");
		return -ENOTSUP;
	}

	return 0;
}

#if defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
#	define BMI160_SAMPLE_BURST_READ_ADDR	BMI160_REG_DATA_ACC_X
#else
#	define BMI160_SAMPLE_BURST_READ_ADDR	BMI160_REG_DATA_GYR_X
#endif
static int bmi160_sample_fetch(struct device *dev, enum sensor_channel chan)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;
	uint8_t tx[BMI160_BUF_SIZE] = {0};
	int i;

	tx[0] = BMI160_SAMPLE_BURST_READ_ADDR | (1 << 7);

	__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL);

	if (bmi160_transceive(dev, tx, BMI160_BUF_SIZE, bmi160->sample.raw,
			      BMI160_BUF_SIZE) < 0) {
		return -EIO;
	}

	/* convert samples to cpu endianness */
	for (i = 0; i < BMI160_SAMPLE_SIZE; i += 2) {
		uint16_t *sample =
			(uint16_t *) &bmi160->sample.raw[BMI160_DATA_OFS + i];

		*sample = sys_le16_to_cpu(*sample);
	}

	return 0;
}

static void bmi160_to_fixed_point(int16_t raw_val, uint16_t scale,
				  struct sensor_value *val)
{
	int32_t converted_val;

	val->type = SENSOR_VALUE_TYPE_INT_PLUS_MICRO;

	/*
	 * maximum converted value we can get is: max(raw_val) * max(scale)
	 *	max(raw_val) = +/- 2^15
	 *	max(scale) = 4785
	 *	max(converted_val) = 156794880 which is less than 2^31
	 */
	converted_val = raw_val * scale;
	val->val1 = converted_val / 1000000;
	val->val2 = converted_val % 1000000;
}

static void bmi160_channel_convert(enum sensor_channel chan,
				   uint16_t scale,
				   uint16_t *raw_xyz,
				   struct sensor_value *val)
{
	int i;
	uint8_t ofs_start, ofs_stop;

	switch (chan) {
	case SENSOR_CHAN_ACCEL_X:
	case SENSOR_CHAN_GYRO_X:
		ofs_start = ofs_stop = 0;
		break;
	case SENSOR_CHAN_ACCEL_Y:
	case SENSOR_CHAN_GYRO_Y:
		ofs_start = ofs_stop = 1;
		break;
	case SENSOR_CHAN_ACCEL_Z:
	case SENSOR_CHAN_GYRO_Z:
		ofs_start = ofs_stop = 2;
		break;
	default:
		ofs_start = 0; ofs_stop = 2;
		break;
	}

	for (i = ofs_start; i <= ofs_stop ; i++, val++) {
		bmi160_to_fixed_point(raw_xyz[i], scale, val);
	}
}

#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
static inline void bmi160_gyr_channel_get(struct device *dev,
					  enum sensor_channel chan,
					  struct sensor_value *val)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;

	bmi160_channel_convert(chan, bmi160->scale.gyr,
			       bmi160->sample.gyr, val);
}
#endif

#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
static inline void bmi160_acc_channel_get(struct device *dev,
					  enum sensor_channel chan,
					  struct sensor_value *val)
{
	struct bmi160_device_data *bmi160 = dev->driver_data;

	bmi160_channel_convert(chan, bmi160->scale.acc,
			       bmi160->sample.acc, val);
}
#endif

static int bmi160_temp_channel_get(struct device *dev, struct sensor_value *val)
{
	int16_t temp_raw = 0;
	int32_t temp_micro = 0;
	struct bmi160_device_data *bmi160 = dev->driver_data;

	if (bmi160->pmu_sts.raw == 0) {
		return -EINVAL;
	}

	if (bmi160_word_read(dev, BMI160_REG_TEMPERATURE0, &temp_raw) < 0) {
		return -EIO;
	}

	/* the scale is 1/2^9/LSB = 1953 micro degrees */
	temp_micro = BMI160_TEMP_OFFSET * 1000000ULL + temp_raw * 1953ULL;

	val->type = SENSOR_VALUE_TYPE_INT_PLUS_MICRO;
	val->val1 = temp_micro / 1000000ULL;
	val->val2 = temp_micro % 1000000ULL;

	return 0;
}

static int bmi160_channel_get(struct device *dev,
			      enum sensor_channel chan,
			      struct sensor_value *val)
{
	switch (chan) {
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
	case SENSOR_CHAN_GYRO_X:
	case SENSOR_CHAN_GYRO_Y:
	case SENSOR_CHAN_GYRO_Z:
	case SENSOR_CHAN_GYRO_ANY:
		bmi160_gyr_channel_get(dev, chan, val);
		return 0;
#endif
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
	case SENSOR_CHAN_ACCEL_X:
	case SENSOR_CHAN_ACCEL_Y:
	case SENSOR_CHAN_ACCEL_Z:
	case SENSOR_CHAN_ACCEL_ANY:
		bmi160_acc_channel_get(dev, chan, val);
		return 0;
#endif
	case SENSOR_CHAN_TEMP:
		return bmi160_temp_channel_get(dev, val);
	default:
		SYS_LOG_DBG("Channel not supported.");
		return -ENOTSUP;
	}

	return 0;
}

struct sensor_driver_api bmi160_api = {
	.attr_set = bmi160_attr_set,
#ifdef CONFIG_BMI160_TRIGGER
	.trigger_set = bmi160_trigger_set,
#endif
	.sample_fetch = bmi160_sample_fetch,
	.channel_get = bmi160_channel_get,
};

int bmi160_init(struct device *dev)
{
	struct bmi160_device_config *cfg = dev->config->config_info;
	struct bmi160_device_data *bmi160 = dev->driver_data;
	uint8_t val = 0;
	int32_t acc_range, gyr_range;

	bmi160->spi = device_get_binding((char *)cfg->spi_port);
	if (!bmi160->spi) {
		SYS_LOG_DBG("SPI master controller not found: %d.",
			    bmi160->spi);
		return -EINVAL;
	}

	/* reboot the chip */
	if (bmi160_byte_write(dev, BMI160_REG_CMD, BMI160_CMD_SOFT_RESET) < 0) {
		SYS_LOG_DBG("Cannot reboot chip.");
		return -EIO;
	}

	sys_thread_busy_wait(1000);

	/* do a dummy read from 0x7F to activate SPI */
	if (bmi160_byte_read(dev, 0x7F, &val) < 0) {
		SYS_LOG_DBG("Cannot read from 0x7F..");
		return -EIO;
	}

	sys_thread_busy_wait(100);

	if (bmi160_byte_read(dev, BMI160_REG_CHIPID, &val) < 0) {
		SYS_LOG_DBG("Failed to read chip id.");
		return -EIO;
	}

	if (val != BMI160_CHIP_ID) {
		SYS_LOG_DBG("Unsupported chip detected (0x%x)!", val);
		return -ENODEV;
	}

	/* set default PMU for gyro, accelerometer */
	bmi160->pmu_sts.gyr = BMI160_DEFAULT_PMU_GYR;
	bmi160->pmu_sts.acc = BMI160_DEFAULT_PMU_ACC;
	/* compass not supported, yet */
	bmi160->pmu_sts.mag = BMI160_PMU_SUSPEND;

	/*
	 * The next command will take around 100ms (contains some necessary busy
	 * waits), but we cannot do it in a separate fiber since we need to
	 * guarantee the BMI is up and running, befoare the app's main() is
	 * called.
	 */
	if (bmi160_pmu_set(dev, &bmi160->pmu_sts) < 0) {
		SYS_LOG_DBG("Failed to set power mode.");
		return -EIO;
	}

	/* set accelerometer default range */
	if (bmi160_byte_write(dev, BMI160_REG_ACC_RANGE,
				BMI160_DEFAULT_RANGE_ACC) < 0) {
		SYS_LOG_DBG("Cannot set default range for accelerometer.");
		return -EIO;
	}

	acc_range = bmi160_acc_reg_val_to_range(BMI160_DEFAULT_RANGE_ACC);

	bmi160->scale.acc = BMI160_ACC_SCALE(acc_range);

	/* set gyro default range */
	if (bmi160_byte_write(dev, BMI160_REG_GYR_RANGE,
			      BMI160_DEFAULT_RANGE_GYR) < 0) {
		SYS_LOG_DBG("Cannot set default range for gyroscope.");
		return -EIO;
	}

	gyr_range = bmi160_gyr_reg_val_to_range(BMI160_DEFAULT_RANGE_GYR);

	bmi160->scale.gyr = BMI160_GYR_SCALE(gyr_range);

	if (bmi160_reg_field_update(dev, BMI160_REG_ACC_CONF,
				    BMI160_ACC_CONF_ODR_POS,
				    BMI160_ACC_CONF_ODR_MASK,
				    BMI160_DEFAULT_ODR_ACC) < 0) {
		SYS_LOG_DBG("Failed to set accel's default ODR.");
		return -EIO;
	}

	if (bmi160_reg_field_update(dev, BMI160_REG_GYR_CONF,
				    BMI160_GYR_CONF_ODR_POS,
				    BMI160_GYR_CONF_ODR_MASK,
				    BMI160_DEFAULT_ODR_GYR) < 0) {
		SYS_LOG_DBG("Failed to set gyro's default ODR.");
		return -EIO;
	}

#ifdef CONFIG_BMI160_TRIGGER
	if (bmi160_trigger_mode_init(dev) < 0) {
		SYS_LOG_DBG("Cannot set up trigger mode.");
		return -EINVAL;
	}
#endif

	dev->driver_api = &bmi160_api;

	return 0;
}

struct bmi160_device_config bmi160_config = {
	.spi_port = CONFIG_BMI160_SPI_PORT_NAME,
	.spi_freq = CONFIG_BMI160_SPI_BUS_FREQ,
	.spi_slave = CONFIG_BMI160_SLAVE,
#if defined(CONFIG_BMI160_TRIGGER) && defined(CONFIG_BMI160_TRIGGER_SOURCE_GPIO)
	.gpio_port = CONFIG_BMI160_GPIO_DEV_NAME,
	.int_pin = CONFIG_BMI160_GPIO_PIN_NUM,
#endif
};

DEVICE_INIT(bmi160, CONFIG_BMI160_NAME, bmi160_init, &bmi160_data,
	    &bmi160_config, NANOKERNEL, CONFIG_BMI160_INIT_PRIORITY);