Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 | /* spi_k64.c - Driver implementation for K64 SPI controller */ /* * Copyright (c) 2015-2016 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Portions of this file are derived from material that is * Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <errno.h> #include <nanokernel.h> #include <arch/cpu.h> #include <misc/__assert.h> #define SYS_LOG_LEVEL SYS_LOG_SPI_LEVEL #include <misc/sys_log.h> #include <board.h> #include <init.h> #include <sys_io.h> #include <limits.h> #include <power.h> #include <spi.h> #include <spi/spi_k64.h> #include "spi_k64_priv.h" /* SPI protocol frequency = K64 bus clock frequency, in hz */ #define SPI_K64_PROTOCOL_FREQ (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / \ CONFIG_K64_BUS_CLOCK_DIVIDER) /* SPI protocol period, in ns */ #define SPI_K64_PROTOCOL_PERIOD_NS (NSEC_PER_SEC/SPI_K64_PROTOCOL_FREQ) /* # of possible SPI baud rate and delay prescaler and scaler values */ #define SPI_K64_NUM_PRESCALERS 4 #define SPI_K64_NUM_SCALERS 16 /* * SPI baud rate prescaler and scaler values, indexed by the clocking and timing * attribute register (CTAR) parameters CTAR[PBR] and CTAR[BR], respectively. */ static const uint32_t baud_rate_prescaler[] = { 2, 3, 5, 7 }; static const uint32_t baud_rate_scaler[] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; /* * SPI delay prescaler and scaler values, indexed by clocking and timing * attribute register (CTAR) parameter pairs: * CTAR[PCSSCK]/CTAR[CSSCK] for the PCS to SCK delay, * CTAR[PASC]/CTAR[ASC] for the after SCK delay, and * CTAR[PDT]/CTAR[DT] for the after transfer delay. */ static const uint32_t delay_prescaler[] = { 1, 3, 5, 7 }; static const uint32_t delay_scaler[] = { 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 }; /** * @brief Halt SPI module operation. * @param dev Pointer to the device structure for the driver instance * @return None. */ static inline void spi_k64_halt(struct device *dev) { struct spi_k64_config *info = dev->config->config_info; /* Ensure module operation is stopped */ sys_set_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_HALT_BIT); while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) { SYS_LOG_DBG("SPI Controller dev %p is running. Waiting for " "Halt.\n", dev); } } /** * @brief Enable SPI module operation. * @param dev Pointer to the device structure for the driver instance * @return None. */ static inline void spi_k64_start(struct device *dev) { struct spi_k64_config *info = dev->config->config_info; /* Allow module operation */ sys_clear_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_HALT_BIT); } /** * @brief Set a SPI baud rate nearest to the desired rate, without exceeding it. * @param baud_rate The desired baud rate. * @param ctar_ptr Pointer to clocking and timing attribute storage. * @return The calculated baud rate or 0 if an error occurred. */ static uint32_t spi_k64_set_baud_rate(uint32_t baud_rate, uint32_t *ctar_ptr) { /* * The 'volatile' attribute is added to some of the variables in this * function to prevent bad code generation by gcc toolchains for ARM * when an optimization setting above -O0 is used. * * Specifically, a register is loaded with the constant 0 and is used as * the divisor in a following divide instruction, resulting in a * divide-by-zero exception. * This issue has been seen with gcc versions 4.8.1 and 5.2.0. */ /* prescaler values,CTAR[PBR] */ uint32_t prescaler; volatile uint32_t best_prescaler; /* scaler values, CTAR[BR] */ uint32_t scaler; volatile uint32_t best_scaler; /* doubler values,CTAR[DBR]-1 */ uint32_t dbr, best_dbr; /* baud rate */ uint32_t calc_baud_rate; volatile uint32_t best_baud_rate; /* calculated differences */ uint32_t diff, min_diff; min_diff = 0xFFFFFFFFU; best_dbr = 1; /* * Master mode is assumed. * * Find the combination of prescaler, scaler and doubler factors that * results in the baud rate closest to the requested value, without * exceeding it. */ SYS_LOG_DBG("spi_k64_set_baud_rate - "); /* * Initialize the prescaler and scaler to their maximum values to calculate * the minimum baud rate and check if it is greater than the desired rate. */ best_prescaler = SPI_K64_NUM_PRESCALERS - 1; best_scaler = SPI_K64_NUM_SCALERS - 1; best_baud_rate = SPI_K64_PROTOCOL_PERIOD_NS / (baud_rate_prescaler[best_prescaler] * baud_rate_prescaler[best_scaler]); if (best_baud_rate > baud_rate) { SYS_LOG_DBG("ERROR : Minimum baud rate %d is greater than " "desired rate %d\n", best_baud_rate, baud_rate); return 0; } /* * Note that no further combinations are checked if the calculated baud rate * equals the requested baud rate. */ for (prescaler = 0; (prescaler < SPI_K64_NUM_PRESCALERS) && min_diff; prescaler++) { for (scaler = 0; (scaler < SPI_K64_NUM_SCALERS) && min_diff; scaler++) { for (dbr = 1; (dbr < 3) && min_diff; dbr++) { calc_baud_rate = ((SPI_K64_PROTOCOL_FREQ * dbr) / (baud_rate_prescaler[prescaler] * baud_rate_scaler[scaler])); /* ensure the rate will not exceed the one requested */ if (baud_rate >= calc_baud_rate) { diff = baud_rate - calc_baud_rate; if (min_diff > diff) { /* a better match was found */ min_diff = diff; best_prescaler = prescaler; best_scaler = scaler; best_baud_rate = calc_baud_rate; best_dbr = dbr; } } } } } /* save the best baud rate dbr, prescaler and scaler */ *ctar_ptr = *ctar_ptr | SPI_K64_CTAR_DBR_SET(best_dbr - 1) | SPI_K64_CTAR_PBR_SET(best_prescaler) | best_scaler; /* return the actual baud rate */ SYS_LOG_DBG("%d bps desired, %d bps set\n", baud_rate, best_baud_rate); return best_baud_rate; } /** * @brief Set the specified delay nearest to the desired value, but not lower. * @param delay_id The delay identifier. * @param delay_ns The desired delay value, in ns. * @param ctar_ptr Pointer to clocking and timing attribute storage. * @return The calculated delay or 0 if an error occurred. */ static uint32_t spi_k64_set_delay(enum spi_k64_delay_id delay_id, uint32_t delay_ns, uint32_t *ctar_ptr) { /* * The 'volatile' attribute is added to some of the variables in this * function to prevent bad code generation by gcc toolchains for ARM * when an optimization setting above -O0 is used. * * Specifically, a register is loaded with the constant 0 and is used as * the divisor in a following divide instruction, resulting in a * divide-by-zero exception. * This issue has been seen with gcc versions 4.8.1 and 5.2.0. */ uint32_t prescaler; /* prescaler values */ volatile uint32_t best_prescaler; uint32_t scaler; /* scaler values */ volatile uint32_t best_scaler; uint32_t calc_delay; /* delay values */ volatile uint32_t best_delay; uint32_t diff, min_diff; /* difference values */ SYS_LOG_DBG("spi_k64_set_delay - "); /* * This function can calculate the clocking and timing attribute register * (CTAR) values for: * - PCS to SCK delay prescaler (PCSSCK) and scaler (CSSCK), * - After SCK delay prescaler (PASC) and scaler (ASC), or * - Delay after transfer prescaler (PDT) and scaler (DT). */ if ((delay_id != DELAY_PCS_TO_SCK) && (delay_id != DELAY_AFTER_SCK) && (delay_id != DELAY_AFTER_XFER)) { SYS_LOG_DBG("ERROR : Unknown delay type %d\n", delay_id); return 0; } /* * Initialize the prescaler and scaler to their maximum values to calculate * the maximum delay and check if it is less than the desired delay. */ best_prescaler = SPI_K64_NUM_PRESCALERS - 1; best_scaler = SPI_K64_NUM_SCALERS - 1; best_delay = SPI_K64_PROTOCOL_PERIOD_NS * delay_prescaler[best_prescaler] * delay_scaler[best_scaler]; if (best_delay < delay_ns) { SYS_LOG_DBG("ERROR : Maximum delay %d does meet desired minimum" " of %d\n", best_delay, delay_ns); return 0; } min_diff = 0xFFFFFFFFU; /* * Check if the minimum delay (prescaler value = 1, scaler value = 2) is * greater than the desired delay. If so, set the prescaler and scaler to * their associated minimum in the CTAR (0). */ calc_delay = SPI_K64_PROTOCOL_PERIOD_NS * 2; if (calc_delay >= delay_ns) { best_prescaler = 0; best_scaler = 0; min_diff = 0; /* skip remaining calculations */ } /* * Note that no further combinations are checked if the calculated delay * equals the requested delay. */ for (prescaler = 0; (prescaler < SPI_K64_NUM_PRESCALERS) && min_diff; prescaler++) { for (scaler = 0; (scaler < SPI_K64_NUM_SCALERS) && min_diff; scaler++) { calc_delay = SPI_K64_PROTOCOL_PERIOD_NS * delay_prescaler[prescaler] * delay_scaler[scaler]; /* ensure the delay is at least as long as the one requested */ if (calc_delay >= delay_ns) { diff = calc_delay - delay_ns; if (min_diff > diff) { /* a better match was found */ min_diff = diff; best_prescaler = prescaler; best_scaler = scaler; best_delay = calc_delay; } } } } /* save the best delay prescaler and scaler */ switch (delay_id) { case DELAY_PCS_TO_SCK: *ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PCSSCK_SET(best_prescaler) | SPI_K64_CTAR_CSSCK_SET(best_scaler); SYS_LOG_DBG("DELAY_PCS_TO_SCK: "); break; case DELAY_AFTER_SCK: *ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PASC_SET(best_prescaler) | SPI_K64_CTAR_ASC_SET(best_scaler); SYS_LOG_DBG("DELAY_AFTER_SCK: "); break; case DELAY_AFTER_XFER: *ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PDT_SET(best_prescaler) | SPI_K64_CTAR_DT_SET(best_scaler); SYS_LOG_DBG("DELAY_AFTER_XFER: "); break; default: break; } /* return the actual delay */ SYS_LOG_DBG("%d delay desired, %d delay set\n", delay_ns, best_delay); return best_delay; } /** * @brief Configure the SPI host controller for operating against slaves * @param dev Pointer to the device structure for the driver instance * @param config Pointer to the application provided configuration * * @return 0 if successful, another DEV_* code otherwise. */ static int spi_k64_configure(struct device *dev, struct spi_config *config) { struct spi_k64_config *info = dev->config->config_info; struct spi_k64_data *spi_data = dev->driver_data; uint32_t flags = config->config; uint32_t mcr; /* mode configuration attributes, for MCR */ uint32_t ctar = 0; /* clocking and timing attributes, for CTAR */ uint32_t frame_sz; /* frame size, in bits */ SYS_LOG_DBG("spi_k64_configure: dev %p (regs @ 0x%x), ", dev, info->regs); SYS_LOG_DBG("config 0x%x, freq 0x%x", config->config, config->max_sys_freq); /* Disable transfer operations during configuration */ spi_k64_halt(dev); /* * Set the common configuration: * Master mode, normal SPI transfers, PCS strobe disabled, * Rx overflow data ignored, PCSx inactive low signal, Doze disabled, * Rx/Tx FIFOs enabled. * * Also, keep transfers disabled. */ mcr = SPI_K64_MCR_MSTR | SPI_K64_MCR_HALT; /* Set PCSx signal polarities and continuous SCK, as requested */ mcr |= (SPI_K64_MCR_PCSIS_SET(SPI_PCS_POL_GET(flags)) | SPI_K64_MCR_CONT_SCKE_SET(SPI_CONT_SCK_GET(flags))); sys_write32(mcr, (info->regs + SPI_K64_REG_MCR)); /* Set clocking and timing parameters */ /* SCK polarity and phase, and bit order of data */ if (flags & SPI_MODE_CPOL) { ctar |= SPI_K64_CTAR_CPOL; } if (flags & SPI_MODE_CPHA) { ctar |= SPI_K64_CTAR_CPHA; } if (flags & SPI_TRANSFER_MASK) { ctar |= SPI_K64_CTAR_LSBFE; } /* * Frame size is limited to 16 bits (vs. 8 bit value in struct spi_config), * programmed as: (frame_size - 1) */ frame_sz = SPI_WORD_SIZE_GET(flags); if (frame_sz > SPI_K64_WORD_SIZE_MAX) { return -ENOTSUP; } spi_data->frame_sz = frame_sz; ctar |= (SPI_K64_CTAR_FRMSZ_SET(frame_sz - 1)); /* Set baud rate and signal timing parameters (delays) */ if (spi_k64_set_baud_rate(config->max_sys_freq, &ctar) == 0) { return -ENOTSUP; } /* * Set signal timing parameters (delays): * - PCS to SCK delay is set to the minimum, CTAR[PCSSCK] = CTAR[CSSCK] = 0; * - After SCK delay is set to at least half of the baud rate period, * (using the combination of CTAR[PASC] and CTAR[ASC]); and * - Delay after transfer is set to the minimum, CTAR[PDT] = CTAR[DT] = 0. */ if (spi_k64_set_delay(DELAY_AFTER_SCK, (NSEC_PER_SEC / 2) / config->max_sys_freq, &ctar) == 0) { return -ENOTSUP; } SYS_LOG_DBG("spi_k64_configure: MCR: 0x%x CTAR0: 0x%x\n", mcr, ctar); sys_write32(ctar, (info->regs + SPI_K64_REG_CTAR0)); /* Initialize Tx/Rx parameters */ spi_data->tx_buf = spi_data->rx_buf = NULL; spi_data->tx_buf_len = spi_data->rx_buf_len = 0; /* Store continuous slave/PCS signal selection mode */ spi_data->cont_pcs_sel = SPI_CONT_PCS_GET(flags); return 0; } /** * @brief Select a slave to transmit data to. * * @param dev Pointer to the device structure for the driver instance * @param slave An integer identifying the slave, where the bit values denote: * 0 - Negate the associated PCS signal * 1 - Assert the associated PCS signal * * Note: The polarity of each PCS signal is defined by the Peripheral Chip * Select inactive state setting, MCR[PCSIS], determined by the configuration * data parameter to spi_configure()/spi_k64_configure(). * * @return 0 if successful, another DEV_* code otherwise. */ static int spi_k64_slave_select(struct device *dev, uint32_t slave) { struct spi_k64_data *spi_data = dev->driver_data; /* * Note that the number of valid PCS signals differs for each * K64 SPI module: * - SPI0 uses PCS0-5; * - SPI1 uses PCS0-3; * - SPI2 uses PCS0-1; */ SYS_LOG_DBG("spi_k64_slave_select: slave 0x%x selected for dev %p\n", (uint8_t)slave, dev); spi_data->pcs = (uint8_t)slave; return 0; } /** * @brief Read and/or write a defined amount of data through an SPI driver * * @param dev Pointer to the device structure for the driver instance * @param tx_buf Memory buffer that data should be transferred from * @param tx_buf_len Size of the memory buffer available for reading from * @param rx_buf Memory buffer that data should be transferred to * @param rx_buf_len Size of the memory buffer available for writing to * * @return 0 if successful, another DEV_* code otherwise. */ static int spi_k64_transceive(struct device *dev, const void *tx_buf, uint32_t tx_buf_len, void *rx_buf, uint32_t rx_buf_len) { struct spi_k64_config *info = dev->config->config_info; struct spi_k64_data *spi_data = dev->driver_data; uint32_t int_config; /* interrupt configuration */ SYS_LOG_DBG("spi_k64_transceive: dev %p, Tx buf %p, ", dev, tx_buf); SYS_LOG_DBG("Tx len %u, Rx buf %p, Rx len %u\n", tx_buf_len, rx_buf, rx_buf_len); #ifdef CONFIG_SPI_DEBUG __ASSERT(!((tx_buf_len && (tx_buf == NULL)) || (rx_buf_len && (rx_buf == NULL))), "spi_k64_transceive: ERROR - NULL buffer"); #endif /* Check Tx FIFO status */ if (tx_buf_len && ((sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TFFF) == 0)) { SYS_LOG_DBG("spi_k64_transceive: Tx FIFO is already full\n"); return -EBUSY; } /* Set buffers info */ spi_data->tx_buf = tx_buf; spi_data->tx_buf_len = tx_buf_len; spi_data->rx_buf = rx_buf; spi_data->rx_buf_len = rx_buf_len; /* enable transfer operations - must be done before enabling interrupts */ spi_k64_start(dev); /* * Enable interrupts: * - Transmit FIFO Fill (Tx FIFO not full); and/or * - Receive FIFO Drain (Rx FIFO not empty); * * Note: DMA requests are not supported. */ int_config = sys_read32(info->regs + SPI_K64_REG_RSER); if (tx_buf_len) { int_config |= SPI_K64_RSER_TFFF_RE; } if (rx_buf_len) { int_config |= SPI_K64_RSER_RFDF_RE; } sys_write32(int_config, (info->regs + SPI_K64_REG_RSER)); /* wait for transfer to complete */ device_sync_call_wait(&spi_data->sync_info); /* check completion status */ if (spi_data->error) { spi_data->error = 0; return -EIO; } return 0; } /** * @brief SPI module data push (write) operation. * @param dev Pointer to the device structure for the driver instance * @return None. */ static void spi_k64_push_data(struct device *dev) { struct spi_k64_config *info = dev->config->config_info; struct spi_k64_data *spi_data = dev->driver_data; uint32_t data; #ifdef CONFIG_SPI_DEBUG uint32_t cnt = 0; /* # of bytes pushed */ #endif SYS_LOG_DBG("spi_k64_push_data - "); do { /* initial status already checked by spi_k64_isr() */ if (spi_data->tx_buf && (spi_data->tx_buf_len > 0)) { if (spi_data->frame_sz > CHAR_BIT) { /* get 2nd byte with frame sizes larger than 8 bits */ data = (uint32_t)(*(uint16_t *)(spi_data->tx_buf)); spi_data->tx_buf += 2; spi_data->tx_buf_len -= 2; #ifdef CONFIG_SPI_DEBUG cnt += 2; #endif } else { data = (uint32_t)(*(spi_data->tx_buf)); spi_data->tx_buf++; spi_data->tx_buf_len--; #ifdef CONFIG_SPI_DEBUG cnt++; #endif } /* Write data to the selected slave */ if (spi_data->cont_pcs_sel && (spi_data->tx_buf_len == 0)) { /* clear continuous PCS enabling in the last frame */ sys_write32((data | SPI_K64_PUSHR_PCS_SET(spi_data->pcs)), (info->regs + SPI_K64_REG_PUSHR)); } else { sys_write32((data | SPI_K64_PUSHR_PCS_SET(spi_data->pcs) | SPI_K64_PUSHR_CONT_SET(spi_data->cont_pcs_sel)), (info->regs + SPI_K64_REG_PUSHR)); } /* Clear interrupt */ sys_write32(SPI_K64_SR_TFFF, (info->regs + SPI_K64_REG_SR)); } else { /* Nothing more to push */ break; } } while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TFFF); SYS_LOG_DBG("pushed: %d\n", cnt); } /** * @brief SPI module data pull (read) operation. * @param dev Pointer to the device structure for the driver instance * @return None. */ static void spi_k64_pull_data(struct device *dev) { struct spi_k64_config *info = dev->config->config_info; struct spi_k64_data *spi_data = dev->driver_data; uint16_t data; #ifdef CONFIG_SPI_DEBUG uint32_t cnt = 0; /* # of bytes pulled */ #endif SYS_LOG_DBG("spi_k64_pull_data - "); do { /* initial status already checked by spi_k64_isr() */ if (spi_data->rx_buf && spi_data->rx_buf_len > 0) { data = (uint16_t)sys_read32(info->regs + SPI_K64_REG_POPR); if (spi_data->frame_sz > CHAR_BIT) { /* store 2nd byte with frame sizes larger than 8 bits */ *((uint16_t *)(spi_data->rx_buf)) = data; spi_data->rx_buf += 2; spi_data->rx_buf_len -= 2; #ifdef CONFIG_SPI_DEBUG cnt += 2; #endif } else { *(spi_data->rx_buf) = (uint8_t)data; spi_data->rx_buf++; spi_data->rx_buf_len--; #ifdef CONFIG_SPI_DEBUG cnt++; #endif } /* Clear interrupt */ sys_write32(SPI_K64_SR_RFDF, (info->regs + SPI_K64_REG_SR)); } else { /* No buffer to store data to */ break; } } while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_RFDF); SYS_LOG_DBG("pulled: %d\n", cnt); } /** * @brief Complete SPI module data transfer operations. * @param dev Pointer to the device structure for the driver instance * @param error Error condition (0 = no error, otherwise an error occurred) * @return None. */ static void spi_k64_complete(struct device *dev, uint32_t error) { struct spi_k64_data *spi_data = dev->driver_data; struct spi_k64_config *info = dev->config->config_info; uint32_t int_config; /* interrupt configuration */ if (error) { SYS_LOG_DBG("spi_k64_complete - ERROR condition\n"); goto complete; } /* Check for a completed transfer */ if (spi_data->tx_buf && (spi_data->tx_buf_len == 0) && !spi_data->rx_buf) { /* disable Tx interrupts */ int_config = sys_read32(info->regs + SPI_K64_REG_RSER); int_config &= ~SPI_K64_RSER_TFFF_RE; sys_write32(int_config, (info->regs + SPI_K64_REG_RSER)); } else if (spi_data->rx_buf && (spi_data->rx_buf_len == 0) && !spi_data->tx_buf) { /* disable Rx interrupts */ int_config = sys_read32(info->regs + SPI_K64_REG_RSER); int_config &= ~SPI_K64_RSER_RFDF_RE; sys_write32(int_config, (info->regs + SPI_K64_REG_RSER)); } else if (spi_data->tx_buf && spi_data->tx_buf_len == 0 && spi_data->rx_buf && spi_data->rx_buf_len == 0) { /* disable Tx, Rx interrupts */ int_config = sys_read32(info->regs + SPI_K64_REG_RSER); int_config &= ~(SPI_K64_RSER_TFFF_RE | SPI_K64_RSER_RFDF_RE); sys_write32(int_config, (info->regs + SPI_K64_REG_RSER)); } else { return; } complete: spi_data->tx_buf = spi_data->rx_buf = NULL; spi_data->tx_buf_len = spi_data->rx_buf_len = 0; /* Disable transfer operations */ spi_k64_halt(dev); /* Save status */ spi_data->error = error; /* Signal completion */ device_sync_call_complete(&spi_data->sync_info); } /** * @brief SPI module interrupt handler. * @param arg Pointer to the device structure for the driver instance * @return None. */ void spi_k64_isr(void *arg) { struct device *dev = arg; struct spi_k64_config *info = dev->config->config_info; uint32_t error = 0; uint32_t status; status = sys_read32(info->regs + SPI_K64_REG_SR); SYS_LOG_DBG("spi_k64_isr: dev %p, status 0x%x\n", dev, status); if (status & (SPI_K64_SR_RFOF | SPI_K64_SR_TFUF)) { /* Unrecoverable error: Rx overflow, Tx underflow */ error = 1; } else { if (status & SPI_K64_SR_TFFF) { spi_k64_push_data(dev); } if (status & SPI_K64_SR_RFDF) { spi_k64_pull_data(dev); } } /* finish processing, if data transfer is complete */ spi_k64_complete(dev, error); } static struct spi_driver_api k64_spi_api = { .configure = spi_k64_configure, .slave_select = spi_k64_slave_select, .transceive = spi_k64_transceive, }; int spi_k64_init(struct device *dev) { struct spi_k64_config *info = dev->config->config_info; struct spi_k64_data *data = dev->driver_data; uint32_t mcr; /* Enable module clocking */ sys_set_bit(info->clk_gate_reg, info->clk_gate_bit); /* * Ensure module operation is stopped and enabled before writing anything * more to the registers. * (Clear MCR[MDIS] and set MCR[HALT].) */ SYS_LOG_DBG("halt\n"); mcr = SPI_K64_MCR_HALT; sys_write32(mcr, (info->regs + SPI_K64_REG_MCR)); while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) { SYS_LOG_DBG("SPI Controller dev %p is running. Waiting for " "Halt.\n", dev); } /* Clear Tx and Rx FIFOs */ mcr |= (SPI_K64_MCR_CLR_RXF | SPI_K64_MCR_CLR_TXF); SYS_LOG_DBG("fifo clr\n"); sys_write32(mcr, (info->regs + SPI_K64_REG_MCR)); /* Set master mode */ mcr = SPI_K64_MCR_MSTR | SPI_K64_MCR_HALT; SYS_LOG_DBG("master mode\n"); sys_write32(mcr, (info->regs + SPI_K64_REG_MCR)); /* Disable SPI module interrupt generation */ SYS_LOG_DBG("irq disable\n"); sys_write32(0, (info->regs + SPI_K64_REG_RSER)); /* Clear status */ SYS_LOG_DBG("status clr\n"); sys_write32((SPI_K64_SR_RFDF | SPI_K64_SR_RFOF | SPI_K64_SR_TFUF | SPI_K64_SR_EOQF | SPI_K64_SR_TCF), (info->regs + SPI_K64_REG_SR)); /* Set up the synchronous call mechanism */ device_sync_call_init(&data->sync_info); /* Configure and enable SPI module IRQs */ info->config_func(); irq_enable(info->irq); /* * Enable Rx overflow interrupt generation. * Note that Tx underflow is only generated when in slave mode. */ SYS_LOG_DBG("rxfifo overflow enable\n"); sys_write32(SPI_K64_RSER_RFOF_RE, (info->regs + SPI_K64_REG_RSER)); SYS_LOG_DBG("K64 SPI Driver initialized on device: %p\n", dev); /* operation remains disabled (MCR[HALT] = 1)*/ return 0; } #ifdef CONFIG_DEVICE_POWER_MANAGEMENT /** * @brief Suspend SPI host controller operations. * @param dev Pointer to the device structure for the driver instance * @param pm_policy The power management policy to enact on the device * @return 0 if successful, a negative errno value otherwise. */ static int spi_k64_suspend(struct device *dev, int pm_policy) { struct spi_k64_config *info = dev->config->config_info; SYS_LOG_DBG("spi_k64_suspend: %p\n", dev); if (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) return -EBUSY; /* disable module */ sys_set_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_MDIS_BIT); irq_disable(info->irq); return 0; } /** * @brief Resume SPI host controller operations. * @param dev Pointer to the device structure for the driver instance * @param pm_policy The power management policy from which the device is * returning * @return 0 if successful, a negative errno value otherwise. */ static int spi_k64_resume(struct device *dev, int pm_policy) { struct spi_k64_config *info = dev->config->config_info; SYS_LOG_DBG("spi_k64_resume: %p\n", dev); /* enable module */ sys_clear_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_MDIS_BIT); irq_enable(info->irq); return 0; } #endif DEFINE_DEVICE_PM_OPS(spi, spi_k64_suspend, spi_k64_resume); /* system bindings */ #ifdef CONFIG_SPI_K64_0 void spi_config_0_irq(void); struct spi_k64_data spi_k64_data_port_0; struct spi_k64_config spi_k64_config_0 = { .regs = SPI_K64_0_BASE_ADDR, .clk_gate_reg = SPI_K64_0_CLK_GATE_REG_ADDR, .clk_gate_bit = SPI_K64_0_CLK_GATE_REG_BIT, .irq = SPI_K64_0_IRQ, .config_func = spi_config_0_irq }; DEVICE_AND_API_INIT_PM(spi_k64_port_0, CONFIG_SPI_K64_0_DEV_NAME, spi_k64_init, DEVICE_PM_OPS_GET(spi), &spi_k64_data_port_0, &spi_k64_config_0, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &k64_spi_api); void spi_config_0_irq(void) { IRQ_CONNECT(SPI_K64_0_IRQ, CONFIG_SPI_K64_0_PRI, spi_k64_isr, DEVICE_GET(spi_k64_port_0), 0); } #endif /* CONFIG_SPI_K64_0 */ #ifdef CONFIG_SPI_K64_1 void spi_config_1_irq(void); struct spi_k64_data spi_k64_data_port_1; struct spi_k64_config spi_k64_config_1 = { .regs = SPI_K64_1_BASE_ADDR, .clk_gate_reg = SPI_K64_1_CLK_GATE_REG_ADDR, .clk_gate_bit = SPI_K64_1_CLK_GATE_REG_BIT, .irq = SPI_K64_1_IRQ, .config_func = spi_config_1_irq }; DEVICE_AND_API_INIT_PM(spi_k64_port_1, CONFIG_SPI_K64_1_DEV_NAME, spi_k64_init, DEVICE_PM_OPS_GET(spi), &spi_k64_data_port_1, &spi_k64_config_1, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &k64_spi_api); void spi_config_1_irq(void) { IRQ_CONNECT(SPI_K64_1_IRQ, CONFIG_SPI_K64_1_PRI, spi_k64_isr, DEVICE_GET(spi_k64_port_1), 0); } #endif /* CONFIG_SPI_K64_1 */ #ifdef CONFIG_SPI_K64_2 void spi_config_2_irq(void); struct spi_k64_data spi_k64_data_port_2; struct spi_k64_config spi_k64_config_2 = { .regs = SPI_K64_2_BASE_ADDR, .clk_gate_reg = SPI_K64_2_CLK_GATE_REG_ADDR, .clk_gate_bit = SPI_K64_2_CLK_GATE_REG_BIT, .irq = SPI_K64_2_IRQ, .config_func = spi_config_2_irq }; DEVICE_AND_API_INIT_PM(spi_k64_port_2, CONFIG_SPI_K64_2_DEV_NAME, spi_k64_init, DEVICE_PM_OPS_GET(spi), &spi_k64_data_port_2, &spi_k64_config_2, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &k64_spi_api); void spi_config_2_irq(void) { IRQ_CONNECT(SPI_K64_2_IRQ, CONFIG_SPI_K64_2_PRI, spi_k64_isr, DEVICE_GET(spi_k64_port_2), 0); } #endif /* CONFIG_SPI_K64_2 */ |