Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief Interrupt management support for IA-32 architecture * * This module implements assembly routines to manage interrupts on * the Intel IA-32 architecture. More specifically, the interrupt (asynchronous * exception) stubs are implemented in this module. The stubs are invoked when * entering and exiting a C interrupt handler. */ #define _ASMLANGUAGE #include <nano_private.h> #include <arch/x86/asm.h> #include <offsets.h> /* nanokernel structure offset definitions */ #include <arch/cpu.h> /* _NANO_ERR_SPURIOUS_INT */ #include <drivers/loapic.h> /* LOAPIC_EOI */ /* exports (internal APIs) */ GTEXT(_IntEnt) GTEXT(_IntExitWithEoi) GTEXT(_IntExit) GTEXT(_SpuriousIntNoErrCodeHandler) GTEXT(_SpuriousIntHandler) GTEXT(_DynIntStubsBegin) GTEXT(_irq_sw_handler) /* externs */ GTEXT(_Swap) #ifdef CONFIG_SYS_POWER_MANAGEMENT #if defined(CONFIG_NANOKERNEL) && defined(CONFIG_TICKLESS_IDLE) GTEXT(_power_save_idle_exit) #else GTEXT(_sys_power_save_idle_exit) #endif #endif #ifdef CONFIG_INT_LATENCY_BENCHMARK GTEXT(_int_latency_start) GTEXT(_int_latency_stop) #endif /** * * @brief Inform the kernel of an interrupt * * This function is called from the interrupt stub created by IRQ_CONNECT() * to inform the kernel of an interrupt. This routine increments * _nanokernel.nested (to support interrupt nesting), switches to the * base of the interrupt stack, if not already on the interrupt stack, and then * saves the volatile integer registers onto the stack. Finally, control is * returned back to the interrupt stub code (which will then invoke the * "application" interrupt service routine). * * Only the volatile integer registers are saved since ISRs are assumed not to * utilize floating point (or SSE) instructions. If an ISR requires the usage * of floating point (or SSE) instructions, it must first invoke nanoCpuFpSave() * (or nanoCpuSseSave()) at the beginning of the ISR. A subsequent * nanoCpuFpRestore() (or nanoCpuSseRestore()) is needed just prior to returning * from the ISR. Note that the nanoCpuFpSave(), nanoCpuSseSave(), * nanoCpuFpRestore(), and nanoCpuSseRestore() APIs have not been * implemented yet. * * WARNINGS * * Host-based tools and the target-based GDB agent depend on the stack frame * created by this routine to determine the locations of volatile registers. * These tools must be updated to reflect any changes to the stack frame. * * @return N/A * * C function prototype: * * void _IntEnt (void); */ SECTION_FUNC(TEXT, _IntEnt) /* * The _IntVecSet() routine creates an interrupt-gate descriptor for * all connections. The processor will automatically clear the IF * bit in the EFLAGS register upon execution of the handler, thus * _IntEnt() (and _ExcEnt) need not issue an 'cli' as the first * instruction. * * Clear the direction flag. It is automatically restored when the * interrupt exits via the IRET instruction. */ cld /* * Note that the processor has pushed both the EFLAGS register * and the logical return address (cs:eip) onto the stack prior * to invoking the handler specified in the IDT */ /* * swap eax and return address on the current stack; * this saves eax on the stack without losing knowledge * of how to get back to the interrupt stub */ xchgl %eax, (%esp) /* * The remaining volatile registers are pushed onto the current * stack. */ pushl %ecx pushl %edx #ifdef CONFIG_DEBUG_INFO /* * Push the cooperative registers on the existing stack as they are * required by debug tools. */ pushl %edi pushl %esi pushl %ebx pushl %ebp leal 44(%esp), %ecx /* Calculate ESP before interrupt occurred */ pushl %ecx /* Save calculated ESP */ #endif #ifdef CONFIG_INT_LATENCY_BENCHMARK /* * Volatile registers are now saved it is safe to start measuring * how long interrupt are disabled. * The interrupt gate created by IRQ_CONNECT disables the * interrupt. * * Preserve EAX as it contains the stub return address. */ pushl %eax call _int_latency_start popl %eax #endif #ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT /* * Preserve EAX as it contains the stub return address. */ pushl %eax call _sys_k_event_logger_interrupt popl %eax #endif #ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP /* * Preserve EAX as it contains the stub return address. */ pushl %eax call _sys_k_event_logger_exit_sleep popl %eax #endif /* load %ecx with &_nanokernel */ movl $_nanokernel, %ecx /* switch to the interrupt stack for the non-nested case */ incl __tNANO_nested_OFFSET(%ecx) /* inc interrupt nest count */ cmpl $1, __tNANO_nested_OFFSET(%ecx) /* use int stack if !nested */ #ifdef CONFIG_DEBUG_INFO jne nested_save_isf #else jne alreadyOnIntStack #endif /* switch to base of the interrupt stack */ movl %esp, %edx /* save current thread's stack pointer */ movl __tNANO_common_isp_OFFSET(%ecx), %esp /* load new sp value */ /* save thread's stack pointer onto base of interrupt stack */ pushl %edx /* Save stack pointer */ #ifdef CONFIG_DEBUG_INFO /* * The saved stack pointer happens to match the address of the * interrupt stack frame. To simplify the exit case, push a dummy ISF * for the "old" ISF and save it to the _nanokernel.isf. */ pushl %edx movl %edx, __tNANO_isf_OFFSET(%ecx) #endif #ifdef CONFIG_SYS_POWER_MANAGEMENT cmpl $0, __tNANO_idle_OFFSET(%ecx) jne _HandleIdle /* fast path is !idle, in the pipeline */ #endif #ifdef CONFIG_DEBUG_INFO jmp alreadyOnIntStack BRANCH_LABEL(nested_save_isf) movl __tNANO_isf_OFFSET(%ecx), %edx /* Get old ISF */ movl %esp, __tNANO_isf_OFFSET(%ecx) /* Save new ISF */ pushl %edx /* Save old ISF */ #endif /* fall through to nested case */ BRANCH_LABEL(alreadyOnIntStack) #ifdef CONFIG_INT_LATENCY_BENCHMARK /* preserve eax which contain stub return address */ pushl %eax call _int_latency_stop popl %eax #endif #ifdef CONFIG_NESTED_INTERRUPTS sti /* re-enable interrupts */ #endif jmp *%eax /* "return" back to stub */ #ifdef CONFIG_SYS_POWER_MANAGEMENT BRANCH_LABEL(_HandleIdle) /* Preserve eax which contains stub return address */ #if defined(CONFIG_NANOKERNEL) && defined(CONFIG_TICKLESS_IDLE) pushl %eax call _power_save_idle_exit #else pushl %eax push __tNANO_idle_OFFSET(%ecx) movl $0, __tNANO_idle_OFFSET(%ecx) /* * Beware that a timer driver's _sys_power_save_idle_exit() implementation might * expect that interrupts are disabled when invoked. This ensures that * the calculation and programming of the device for the next timer * deadline is not interrupted. */ call _sys_power_save_idle_exit add $0x4, %esp #endif /* CONFIG_NANOKERNEL && CONFIG_TICKLESS_IDLE */ #ifdef CONFIG_INT_LATENCY_BENCHMARK call _int_latency_stop #endif sti /* re-enable interrupts */ popl %eax jmp *%eax /* "return" back to stub */ #endif /* CONFIG_SYS_POWER_MANAGEMENT */ /** * @brief Perform EOI and do interrupt exit * * This is used by the interrupt stubs, which all leave the stack in * a particular state and need to poke the interrupt controller. */ SECTION_FUNC(TEXT, _IntExitWithEoi) cli /* disable interrupts */ #ifndef CONFIG_X86_IAMCU /* For SYS V, the stub pushes an argument onto the stack to be * consumed by the handler, remove it since the handler is now * finished */ popl %eax #endif #if CONFIG_EOI_FORWARDING_BUG call _lakemont_eoi #else xorl %eax, %eax /* zeroes eax */ /* TODO not great to have hard-coded LOAPIC stuff here. When * we get around to introducing the interrupt controller abstraction * layer, the in-use IRQ controller code will define an ASM macro * with a specific name which does the correct thing for the particular * controller. */ loapic_eoi_reg = (CONFIG_LOAPIC_BASE_ADDRESS + LOAPIC_EOI) movl %eax, loapic_eoi_reg /* tell LOAPIC the IRQ is handled */ #endif jmp _IntExitWithCli /** * * @brief Inform the kernel of an interrupt exit * * This function is called from the interrupt stub created by IRQ_CONNECT() * to inform the kernel that the processing of an interrupt has * completed. This routine decrements _nanokernel.nested (to support interrupt * nesting), restores the volatile integer registers, and then switches * back to the interrupted execution context's stack, if this isn't a nested * interrupt. * * Finally, control is returned back to the interrupted fiber or ISR. * A context switch _may_ occur if the interrupted context was a task context, * in which case one or more other fibers and tasks will execute before * this routine resumes and control gets returned to the interrupted task. * * @return N/A * * C function prototype: * * void _IntExit (void); */ BRANCH_LABEL(_IntExit) cli /* disable interrupts */ BRANCH_LABEL(_IntExitWithCli) #ifdef CONFIG_INT_LATENCY_BENCHMARK call _int_latency_start #endif /* determine whether exiting from a nested interrupt */ movl $_nanokernel, %ecx #ifdef CONFIG_DEBUG_INFO popl __tNANO_isf_OFFSET(%ecx) /* Restore old ISF */ #endif decl __tNANO_nested_OFFSET(%ecx) /* dec interrupt nest count */ jne nestedInterrupt /* 'iret' if nested case */ /* * Determine whether the execution of the ISR requires a context * switch. If the interrupted thread is PREEMPTIBLE (a task) and * _nanokernel.fiber is non-NULL, a _Swap() needs to occur. */ movl __tNANO_current_OFFSET (%ecx), %eax testl $PREEMPTIBLE, __tTCS_flags_OFFSET(%eax) je noReschedule cmpl $0, __tNANO_fiber_OFFSET (%ecx) je noReschedule /* * Set the INT_ACTIVE bit in the tTCS to allow the upcoming call to * _Swap() to determine whether non-floating registers need to be * preserved using the lazy save/restore algorithm, or to indicate to * debug tools that a preemptive context switch has occurred. * * Setting the NO_METRICS bit tells _Swap() that the per-execution context * [totalRunTime] calculation has already been performed and that * there is no need to do it again. */ #if defined(CONFIG_FP_SHARING) || defined(CONFIG_GDB_INFO) orl $INT_ACTIVE, __tTCS_flags_OFFSET(%eax) #endif /* * A context reschedule is required: keep the volatile registers of * the interrupted thread on the context's stack. Utilize * the existing _Swap() primitive to save the remaining * thread's registers (including floating point) and perform * a switch to the new thread. */ popl %esp /* switch back to kernel stack */ #ifdef CONFIG_DEBUG_INFO popl %ebp /* Discard saved ESP */ popl %ebp popl %ebx popl %esi popl %edi #endif pushfl /* push KERNEL_LOCK_KEY argument */ #ifdef CONFIG_X86_IAMCU /* IAMCU first argument goes into a register, not the stack. */ popl %eax #endif call _Swap #ifndef CONFIG_X86_IAMCU addl $4, %esp /* pop KERNEL_LOCK_KEY argument */ #endif /* * The interrupted thread has now been scheduled, * as the result of a _later_ invocation of _Swap(). * * Now need to restore the interrupted thread's environment before * returning control to it at the point where it was interrupted ... */ #if ( defined(CONFIG_FP_SHARING) || \ defined(CONFIG_GDB_INFO) ) /* * _Swap() has restored the floating point registers, if needed. * Clear the INT_ACTIVE bit of the interrupted thread's TCS * since it has served its purpose. */ movl _nanokernel + __tNANO_current_OFFSET, %eax andl $~INT_ACTIVE, __tTCS_flags_OFFSET (%eax) #endif /* CONFIG_FP_SHARING || CONFIG_GDB_INFO */ /* Restore volatile registers and return to the interrupted thread */ #ifdef CONFIG_INT_LATENCY_BENCHMARK call _int_latency_stop #endif popl %edx popl %ecx popl %eax /* Pop of EFLAGS will re-enable interrupts and restore direction flag */ iret BRANCH_LABEL(noReschedule) /* * A thread reschedule is not required; switch back to the * interrupted thread's stack and restore volatile registers */ popl %esp /* pop thread stack pointer */ /* fall through to 'nestedInterrupt' */ /* * For the nested interrupt case, the interrupt stack must still be * utilized, and more importantly, a rescheduling decision must * not be performed. */ BRANCH_LABEL(nestedInterrupt) #ifdef CONFIG_INT_LATENCY_BENCHMARK call _int_latency_stop #endif #ifdef CONFIG_DEBUG_INFO popl %ebp /* Discard saved ESP */ popl %ebp popl %ebx popl %esi popl %edi #endif popl %edx /* pop volatile registers in reverse order */ popl %ecx popl %eax /* Pop of EFLAGS will re-enable interrupts and restore direction flag */ iret /** * * _SpuriousIntHandler - * @brief Spurious interrupt handler stubs * * Interrupt-gate descriptors are statically created for all slots in the IDT * that point to _SpuriousIntHandler() or _SpuriousIntNoErrCodeHandler(). The * former stub is connected to exception vectors where the processor pushes an * error code onto the stack (or kernel stack) in addition to the EFLAGS/CS/EIP * records. * * A spurious interrupt is considered a fatal condition, thus this routine * merely sets up the 'reason' and 'pEsf' parameters to the routine * _SysFatalHwErrorHandler(). In other words, there is no provision to return * to the interrupted execution context and thus the volatile registers are not * saved. * * @return Never returns * * C function prototype: * * void _SpuriousIntHandler (void); * * INTERNAL * The _IntVecSet() routine creates an interrupt-gate descriptor for all * connections. The processor will automatically clear the IF bit * in the EFLAGS register upon execution of the handler, * thus _SpuriousIntNoErrCodeHandler()/_SpuriousIntHandler() shall be * invoked with interrupts disabled. */ SECTION_FUNC(TEXT, _SpuriousIntNoErrCodeHandler) pushl $0 /* push dummy err code onto stk */ /* fall through to _SpuriousIntHandler */ SECTION_FUNC(TEXT, _SpuriousIntHandler) cld /* Clear direction flag */ /* Create the ESF */ pushl %eax pushl %ecx pushl %edx pushl %edi pushl %esi pushl %ebx pushl %ebp leal 44(%esp), %ecx /* Calculate ESP before exception occurred */ pushl %ecx /* Save calculated ESP */ /* * The task's regular stack is being used, but push the value of ESP * anyway so that _ExcExit can "recover the stack pointer" * without determining whether the exception occurred while CPL=3 */ #ifndef CONFIG_X86_IAMCU pushl %esp /* push cur stack pointer: pEsf arg */ #else mov %esp, %edx #endif BRANCH_LABEL(finishSpuriousInt) /* re-enable interrupts */ sti /* push the 'unsigned int reason' parameter */ #ifndef CONFIG_X86_IAMCU pushl $_NANO_ERR_SPURIOUS_INT #else movl $_NANO_ERR_SPURIOUS_INT, %eax #endif BRANCH_LABEL(callFatalHandler) /* call the fatal error handler */ call _NanoFatalErrorHandler /* handler doesn't return */ #if ALL_DYN_IRQ_STUBS > 0 BRANCH_LABEL(_DynIntStubCommon) call _common_dynamic_irq_handler /* Clean up and call IRET */ jmp _IntExitWithEoi /* Create all the dynamic IRQ stubs * * NOTE: Please update DYN_STUB_SIZE in include/arch/x86/arch.h if you change * how large the generated stubs are, otherwise _get_dynamic_stub() will * be unable to correctly determine the offset */ /* * Create nice labels for all the stubs so we can see where we * are in a debugger */ .altmacro .macro __INT_STUB_NUM id BRANCH_LABEL(_DynIntStub\id) .endm .macro INT_STUB_NUM id __INT_STUB_NUM %id .endm SECTION_FUNC(TEXT, _DynIntStubsBegin) stub_num = 0 .rept ((ALL_DYN_IRQ_STUBS + DYN_STUB_PER_BLOCK - 1) / DYN_STUB_PER_BLOCK) block_counter = 0 .rept DYN_STUB_PER_BLOCK .if stub_num < ALL_DYN_IRQ_STUBS INT_STUB_NUM stub_num /* * TODO: make this call in _DynIntStubCommon, saving * 5 bytes per stub. Some voodoo will be necessary * in _IntEnt/_IntExit to transplant the pushed * stub_num to the irq stack */ call _IntEnt #if CONFIG_X86_IAMCU /* * 2-byte mov imm8 to r8 * Put the stub id in the lower 8 bits of EAX, * which will be the 1st arg of * _common_dynamic_irq_handlder. */ movb $stub_num, %al #else /* * 2-byte push imm8. Consumed by * common_dynamic_handler(), see intconnect.c */ push $stub_num #endif /* * Check to make sure this isn't the last stub in * a block, in which case we just fall through */ .if (block_counter <> (DYN_STUB_PER_BLOCK - 1) && \ (stub_num <> ALL_DYN_IRQ_STUBS - 1)) /* This should always be a 2-byte jmp rel8 */ jmp 1f .endif stub_num = stub_num + 1 block_counter = block_counter + 1 .endif .endr /* * This must a 5-bvte jump rel32, which is why _DynStubCommon * is before the actual stubs */ 1: jmp _DynIntStubCommon .endr #endif /* ALL_DYN_IRQ_STUBS */ #if CONFIG_IRQ_OFFLOAD SECTION_FUNC(TEXT, _irq_sw_handler) call _IntEnt call _irq_do_offload jmp _IntExit #endif |