Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
 * Copyright (c) 2012-2014 Wind River Systems, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * @file
 * @brief Test nanokernel stack APIs
 *
 * This module tests three basic scenarios with the usage of the following
 * STACK routines:
 *
 * nano_fiber_stack_pop, nano_fiber_stack_push
 * nano_task_stack_pop, nano_task_stack_push
 * nano_isr_stack_pop, nano_isr_stack_push
 *
 * Scenario #1
 * Task enters items into a queue, starts the fiber and waits for a semaphore.
 * Fiber extracts all items from the queue and enters some items back into
 * the queue.  Fiber gives the semaphore for task to continue.  Once the
 * control is returned back to task, task extracts all items from the queue.
 *
 * Scenario #2
 * Task enters an item into queue2, starts a fiber and extract an item from
 * queue1 once the item is there.  The fiber will extract an item from queue2
 * once the item is there and and enter an item to queue1.  The flow of control
 * goes from task to fiber and so forth.
 *
 * Scenario #3
 * Tests the ISR interfaces.  Fiber2 pops an item from queue1 in ISR context.
 * It then enters four items into the queue and finishes execution.  Control
 * is returned back to function testTaskStackPopW which also finished it's
 * execution and returned to main.  Finally function testIsrStackFromTask is
 * run and it popped all data from queue1, push and pop one last item to the
 * queue. All these are run in ISR context.
 */

#include <tc_util.h>
#include <arch/cpu.h>
#include <irq_offload.h>

#include <util_test_common.h>

#define STACKSIZE               2048
#define NUM_STACK_ELEMENT       4
#define STARTNUM                1       /* Used to compute data to put in the stack */
#define MULTIPLIER              100     /* Used to compute data to put in the stack */
#define MYNUMBER                50      /* Used to compute data to put in the stack */
#define INVALID_DATA            0       /* Invalid data on stack */

#define TCERR1(count)  TC_ERROR("Didn't get back correct data, count %d\n", count)
#define TCERR2         TC_ERROR("Didn't get back correct data\n")
#define TCERR3         TC_ERROR("The stack should be empty!\n")

typedef struct {
	struct nano_stack *stack_ptr;    /* STACK */
	uint32_t           data;         /* data to add */
} ISR_STACK_INFO;


char __stack fiberStack1[STACKSIZE];
char __stack fiberStack2[STACKSIZE];
char __stack fiberStack3[STACKSIZE];

struct nano_timer timer;
struct nano_stack nanoStackObj;
struct nano_stack nanoStackObj2;
struct nano_sem   nanoSemObj; /* Used for transferring control between
                               * main and fiber1
                               */

uint32_t myData[NUM_STACK_ELEMENT];
uint32_t myIsrData[NUM_STACK_ELEMENT];  /* Data used for testing
                                         * nano_isr_stack_push and
                                         * nanoIsrStatckPop interfaces
                                         */
uint32_t stack1[NUM_STACK_ELEMENT];
uint32_t stack2[NUM_STACK_ELEMENT];

void *timerData[1];
int retCode = TC_PASS;

static ISR_STACK_INFO  isrStackInfo = {&nanoStackObj, 0};

void initData(void);
void fiber1(void);
void fiber2(void);
void initNanoObjects(void);
void testFiberStackPopW(void);
void testTaskStackPopW(void);
/* Isr related functions */
void isr_stack_push(void *parameter);
void isr_stack_pop(void *parameter);
void testIsrStackFromFiber(void);
void testIsrStackFromTask(void);


/**
 *
 * initData
 *
 * Initialize myData and myIsrData arrays.
 *
 * @return none
 */

void initData(void)
{
	for (int i=0; i< NUM_STACK_ELEMENT; i++) {
		myData[i] = (STARTNUM + i) * MULTIPLIER;
		myIsrData[i] = myData[i] + MYNUMBER;
	}
} /* initData */

/**
 *
 * @brief Add an item to a STACK
 *
 * This routine is the ISR handler for _trigger_nano_isr_stack_push().  It adds
 * an item to the STACK in the context of an ISR.
 *
 * @param parameter    pointer to ISR handler parameter
 *
 * @return N/A
 */

void isr_stack_push(void *parameter)
{
	ISR_STACK_INFO *pInfo = (ISR_STACK_INFO *) parameter;

	nano_isr_stack_push(pInfo->stack_ptr, pInfo->data);

}  /* isr_stack_push */

static void _trigger_nano_isr_stack_push(void)
{
	irq_offload(isr_stack_push, &isrStackInfo);
}

/**
 *
 * @brief Get an item from a STACK
 *
 * This routine is the ISR handler for _trigger_nano_isr_stack_pop().  It gets
 * an item from the STACK in the context of an ISR.  If the queue is empty,
 * it sets data to INVALID_DATA.
 *
 * @param parameter    pointer to ISR handler parameter
 *
 * @return N/A
 */

void isr_stack_pop(void *parameter)
{
	ISR_STACK_INFO *pInfo = (ISR_STACK_INFO *) parameter;

	if (nano_isr_stack_pop(pInfo->stack_ptr, &(pInfo->data), TICKS_NONE) == 0) {
		/* the stack is empty, set data to INVALID_DATA */
		pInfo->data = INVALID_DATA;
	}

}  /* isr_stack_pop */

static void _trigger_nano_isr_stack_pop(void)
{
	irq_offload(isr_stack_pop, &isrStackInfo);
}

/**
 *
 * fiber1
 *
 * This is the fiber started from the main task.  Gets all items from
 * the STACK queue and puts four items back to the STACK queue.  Control is
 * transferred back to the main task.
 *
 * @return N/A
 */

void fiber1(void)
{
	uint32_t    data;        /* data used to put and get from the stack queue */
	int         count = 0;   /* counter */

	TC_PRINT("Test Fiber STACK Pop\n\n");
	/* Get all data */
	while (nano_fiber_stack_pop(&nanoStackObj, &data, TICKS_NONE) != 0) {
		TC_PRINT("FIBER STACK Pop: count = %d, data is %d\n", count, data);
		if ((count >= NUM_STACK_ELEMENT) || (data != myData[NUM_STACK_ELEMENT - 1 - count])) {
			TCERR1(count);
			retCode = TC_FAIL;
			return;
		}
		count++;
	}

	TC_END_RESULT(retCode);
	PRINT_LINE;

	/* Put data */
	TC_PRINT("Test Fiber STACK Push\n");
	TC_PRINT("\nFIBER STACK Put Order: ");
	for (int i=NUM_STACK_ELEMENT; i>0; i--) {
		nano_fiber_stack_push(&nanoStackObj, myData[i-1]);
		TC_PRINT(" %d,", myData[i-1]);
	}
	TC_PRINT("\n");
	PRINT_LINE;

	/* Give semaphore to allow the main task to run */
	nano_fiber_sem_give(&nanoSemObj);

} /* fiber1 */



/**
 *
 * testFiberStackPopW
 *
 * This function tests the stack push and pop wait interfaces in a fiber.
 * It gets data from nanoStackObj2 queue and puts data to nanoStackObj queue.
 *
 * @return N/A
 */

void testFiberStackPopW(void)
{
	uint32_t  data;     /* data used to put and get from the stack queue */
	int rc;

	TC_PRINT("Test Fiber STACK Pop Wait Interfaces\n\n");
	rc = nano_fiber_stack_pop(&nanoStackObj2, &data, TICKS_UNLIMITED);
	TC_PRINT("FIBER STACK Pop from queue2: %d\n", data);
	/* Verify results */
	if ((rc == 0) || (data != myData[0])) {
		retCode = TC_FAIL;
		TCERR2;
		return;
	}

	data = myData[1];
	TC_PRINT("FIBER STACK Push to queue1: %d\n", data);
	nano_fiber_stack_push(&nanoStackObj, data);

	rc = nano_fiber_stack_pop(&nanoStackObj2, &data, TICKS_UNLIMITED);
	TC_PRINT("FIBER STACK Pop from queue2: %d\n", data);
	/* Verify results */
	if ((rc == 0) || (data != myData[2])) {
		retCode = TC_FAIL;
		TCERR2;
		return;
	}

	data = myData[3];
	TC_PRINT("FIBER STACK Push to queue1: %d\n", data);
	nano_fiber_stack_push(&nanoStackObj, data);

	TC_END_RESULT(retCode);

}  /* testFiberStackPopW */

/**
 *
 * testIsrStackFromFiber
 *
 * This function tests the stack push and pop interfaces in the ISR context.
 * It is invoked from a fiber.
 *
 * We use nanoStackObj queue to push and pop data.
 *
 * @return N/A
 */

void testIsrStackFromFiber(void)
{
	uint32_t  result = INVALID_DATA;     /* data used to put and get from the stack queue */

	TC_PRINT("Test ISR STACK (invoked from Fiber)\n\n");

	/* This is data pushed by function testFiberStackPopW */
	_trigger_nano_isr_stack_pop();
	result = isrStackInfo.data;
	if (result != INVALID_DATA) {
		TC_PRINT("ISR STACK (running in fiber) Pop from queue1: %d\n", result);
		if (result != myData[3]) {
			retCode = TC_FAIL;
			TCERR2;
			return;
		}
	}

	/* Verify that the STACK is empty */
	_trigger_nano_isr_stack_pop();
	result = isrStackInfo.data;
	if (result != INVALID_DATA) {
		 TC_PRINT("Pop from queue1: %d\n", result);
		 retCode = TC_FAIL;
		 TCERR3;
		 return;
	}

	/* Put more data into STACK */
	TC_PRINT("ISR STACK (running in fiber) Push to queue1:\n");
	for (int i=0; i<NUM_STACK_ELEMENT; i++) {
		isrStackInfo.data = myIsrData[i];
		TC_PRINT("  %d, ", myIsrData[i]);
		_trigger_nano_isr_stack_push();
	}
	TC_PRINT("\n");

	/* Set variable to INVALID_DATA to ensure [data] changes */
	isrStackInfo.data = INVALID_DATA;

	TC_END_RESULT(retCode);

}  /* testIsrStackFromFiber */

/**
 *
 * testIsrStackFromTask
 *
 * This function tests the stack push and pop interfaces in the ISR context.
 * It is invoked from a task.
 *
 * We use nanoStackObj queue to push and pop data.
 *
 * @return N/A
 */

void testIsrStackFromTask(void)
{
	uint32_t  result = INVALID_DATA;     /* data used to put and get from the stack queue */
	int       count  = 0;

	TC_PRINT("Test ISR STACK (invoked from Task)\n\n");

	/* Get all data */
	_trigger_nano_isr_stack_pop();
	result = isrStackInfo.data;

	while (result != INVALID_DATA) {
		TC_PRINT("  Pop from queue1: count = %d, data is %d\n", count, result);
		if ((count >= NUM_STACK_ELEMENT) || (result != myIsrData[NUM_STACK_ELEMENT - count - 1])) {
			TCERR1(count);
			retCode = TC_FAIL;
			return;
		}  /* if */

		/* Get the next element */
		_trigger_nano_isr_stack_pop();
		result = isrStackInfo.data;
		count++;
	}  /* while */


	/* Put data into stack and get it again */
	isrStackInfo.data = myIsrData[3];
	_trigger_nano_isr_stack_push();
	isrStackInfo.data = INVALID_DATA;   /* force variable to a new value */
	/* Get data from stack */
	_trigger_nano_isr_stack_pop();
	result = isrStackInfo.data;
	/* Verify data */
	if (result != myIsrData[3]) {
		TCERR2;
		retCode = TC_FAIL;
		return;
	} else {
		TC_PRINT("\nTest ISR STACK (invoked from Task) - push %d and pop back %d\n",
				 myIsrData[3], result);
	}

	TC_END_RESULT(retCode);
}

/**
 *
 * fiber2
 *
 * This is the fiber started from the testTaskStackPopW function.
 *
 * @return N/A
 */

void fiber2(void)
{
	testFiberStackPopW();
	PRINT_LINE;
	testIsrStackFromFiber();

	TC_END_RESULT(retCode);
}


/**
 *
 * testTaskStackPopW
 *
 * This is in the task.  It puts data to nanoStackObj2 queue and gets
 * data from nanoStackObj queue.
 *
 * @return N/A
 */

void testTaskStackPopW(void)
{
	uint32_t  data;     /* data used to put and get from the stack queue */
	int rc;

	PRINT_LINE;
	TC_PRINT("Test STACK Pop Wait Interfaces\n\n");
	data = myData[0];
	TC_PRINT("TASK  STACK Push to queue2: %d\n", data);
	nano_task_stack_push(&nanoStackObj2, data);

	/* Start fiber */
	task_fiber_start(&fiberStack2[0], STACKSIZE,
					 (nano_fiber_entry_t) fiber2, 0, 0, 7, 0);

	rc = nano_task_stack_pop(&nanoStackObj, &data, TICKS_UNLIMITED);
	TC_PRINT("TASK STACK Pop from queue1: %d\n", data);
	/* Verify results */
	if ((rc == 0) || (data != myData[1])) {
		retCode = TC_FAIL;
		TCERR2;
		return;
	}

	data = myData[2];
	TC_PRINT("TASK STACK Push to queue2: %d\n", data);
	nano_task_stack_push(&nanoStackObj2, data);

	TC_END_RESULT(retCode);
}  /* testTaskStackPopW */

/**
 *
 * @brief A fiber to help test nano_task_stack_pop(TICKS_UNLIMITED)
 *
 * This fiber blocks for one second before pushing an item onto the stack.
 * The main task, which was waiting for item from the stack then unblocks.
 *
 * @return N/A
 */

void fiber3(void)
{
	nano_fiber_timer_start(&timer, SECONDS(1));
	nano_fiber_timer_test(&timer, TICKS_UNLIMITED);
	nano_fiber_stack_push(&nanoStackObj, myData[0]);
}

/**
 *
 * @brief Initialize nanokernel objects
 *
 * This routine initializes the nanokernel objects used in the STACK tests.
 *
 * @return N/A
 */

void initNanoObjects(void)
{
	nano_stack_init(&nanoStackObj,  stack1);
	nano_stack_init(&nanoStackObj2, stack2);
	nano_sem_init(&nanoSemObj);
	nano_timer_init(&timer, timerData);
} /* initNanoObjects */

/**
 *
 * @brief Entry point to STACK tests
 *
 * This is the entry point to the STACK tests.
 *
 * @return N/A
 */

void main(void)
{
	int         count = 0;  /* counter */
	uint32_t    data;       /* data used to put and get from the stack queue */
	int         rc;         /* return code */

	TC_START("Test Nanokernel STACK");

	/* Initialize data */
	initData();

	/* Initialize the queues and semaphore */
	initNanoObjects();

	/* Start fiber3 */
	task_fiber_start(&fiberStack3[0], STACKSIZE, (nano_fiber_entry_t) fiber3,
					 0, 0, 7, 0);
	/*
	 * While fiber3 blocks (for one second), wait for an item to be pushed
	 * onto the stack so that it can be popped.  This will put the nanokernel
	 * into an idle state.
	 */

	rc = nano_task_stack_pop(&nanoStackObj, &data, TICKS_UNLIMITED);
	if ((rc == 0) || (data != myData[0])) {
		TC_ERROR("nano_task_stack_pop(TICKS_UNLIMITED) expected 0x%x, but got 0x%x\n",
				 myData[0], data);
		retCode = TC_FAIL;
		goto exit;
	}

	/* Put data */
	TC_PRINT("Test Task STACK Push\n");
	TC_PRINT("\nTASK STACK Put Order: ");
	for (int i=0; i<NUM_STACK_ELEMENT; i++) {
		nano_task_stack_push(&nanoStackObj, myData[i]);
		TC_PRINT(" %d,", myData[i]);
	}
	TC_PRINT("\n");

	PRINT_LINE;

	/* Start fiber */
	task_fiber_start(&fiberStack1[0], STACKSIZE,
					 (nano_fiber_entry_t) fiber1, 0, 0, 7, 0);

	if (retCode == TC_FAIL) {
		goto exit;
	}

	/*
	 * Wait for fiber1 to complete execution. (Using a semaphore gives
	 * the fiber the freedom to do blocking-type operations if it wants to.)
	 *
	 */
	nano_task_sem_take(&nanoSemObj, TICKS_UNLIMITED);
	TC_PRINT("Test Task STACK Pop\n");

	/* Get all data */
	while (nano_task_stack_pop(&nanoStackObj, &data, TICKS_NONE) != 0) {
		TC_PRINT("TASK STACK Pop: count = %d, data is %d\n", count, data);
		if ((count >= NUM_STACK_ELEMENT) || (data != myData[count])) {
			TCERR1(count);
			retCode = TC_FAIL;
			goto exit;
		}
		count++;
	}

	/* Test Task Stack Pop Wait interfaces*/
	testTaskStackPopW();

	if (retCode == TC_FAIL) {
		goto exit;
	}

	PRINT_LINE;

	/* Test ISR interfaces */
	testIsrStackFromTask();
	PRINT_LINE;

exit:
	TC_END_RESULT(retCode);
	TC_END_REPORT(retCode);
}