Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/* kernel_event_collector_sample.c - Kernel event collector sample project */

/*
 * Copyright (c) 2015 Intel Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <zephyr.h>

#include "phil.h"
#include <misc/kernel_event_logger.h>
#include <string.h>

#ifdef CONFIG_NANOKERNEL
  #define TAKE(x) nano_fiber_sem_take(&x, TICKS_UNLIMITED)
  #define GIVE(x) nano_fiber_sem_give(&x)
  #define SLEEP(x) fiber_sleep(x)
#else  /* ! CONFIG_NANOKERNEL */
  #define TAKE(x) task_mutex_lock(x, TICKS_UNLIMITED)
  #define GIVE(x) task_mutex_unlock(x)
  #define SLEEP(x) task_sleep(x)
#endif /*  CONFIG_NANOKERNEL */

#define RANDDELAY(x) myDelay(((sys_tick_get_32() * ((x) + 1)) & 0x2f) + 1)

#define TEST_EVENT_ID 255

extern void philEntry(void);

#define STSIZE 1024
char __stack kernel_event_logger_stack[2][STSIZE];

struct context_switch_data_t {
	uint32_t thread_id;
	uint32_t last_time_executed;
	uint32_t count;
};

int total_dropped_counter;

#define MAX_BUFFER_CONTEXT_DATA       20

struct context_switch_data_t
	context_switch_summary_data[MAX_BUFFER_CONTEXT_DATA];

unsigned int interrupt_counters[255];


struct sleep_data_t {
	uint32_t awake_cause;
	uint32_t last_time_slept;
	uint32_t last_duration;
};

struct sleep_data_t sleep_event_data;

int is_busy_task_awake;
int forks_available = 1;

#ifdef CONFIG_MICROKERNEL
struct tmon_data_t {
	uint32_t event_type;
	uint32_t timestamp;
	uint32_t task_id;
	uint32_t data;
};

uint32_t tmon_index;

struct tmon_data_t
	tmon_summary_data[MAX_BUFFER_CONTEXT_DATA];
#endif

void register_context_switch_data(uint32_t timestamp, uint32_t thread_id)
{
	int found;
	int i;

	found = 0;
	for (i = 0; (i < MAX_BUFFER_CONTEXT_DATA) && (found == 0); i++) {
		if (context_switch_summary_data[i].thread_id == thread_id) {
			context_switch_summary_data[i].last_time_executed = timestamp;
			context_switch_summary_data[i].count += 1;
			found = 1;
		}
	}

	if (!found) {
		for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) {
			if (context_switch_summary_data[i].thread_id == 0) {
				context_switch_summary_data[i].thread_id = thread_id;
				context_switch_summary_data[i].last_time_executed = timestamp;
				context_switch_summary_data[i].count = 1;
				break;
			}
		}
	}
}

void register_interrupt_event_data(uint32_t timestamp, uint32_t irq)
{
	if ((irq >= 0) && (irq < 255)) {
		interrupt_counters[irq] += 1;
	}
}


void register_sleep_event_data(uint32_t time_start, uint32_t duration,
	uint32_t cause)
{
	sleep_event_data.awake_cause = cause;
	sleep_event_data.last_time_slept = time_start;
	sleep_event_data.last_duration = duration;
}


void print_context_data(uint32_t thread_id, uint32_t count,
	uint32_t last_time_executed, int indice)
{
	PRINTF("\x1b[%d;1H%u    ", 16 + indice, thread_id);
	PRINTF("\x1b[%d;12H%u    ", 16 + indice, count);
}

#ifdef CONFIG_MICROKERNEL
void register_tmon_data(uint32_t event_type, uint32_t timestamp,
	uint32_t task_id, uint32_t data)
{
	tmon_summary_data[tmon_index].event_type = event_type;
	tmon_summary_data[tmon_index].timestamp = timestamp;
	tmon_summary_data[tmon_index].task_id = task_id;
	tmon_summary_data[tmon_index].data = data;

	if (++tmon_index == MAX_BUFFER_CONTEXT_DATA) {
		tmon_index = 0;
	}
}

void print_tmon_status_data(int index)
{
	switch (tmon_summary_data[index].event_type) {
	case KERNEL_EVENT_LOGGER_TASK_MON_TASK_STATE_CHANGE_EVENT_ID:
		PRINTF("\x1b[%d;64HEVENT    ", 4 + index);
		break;
	case KERNEL_EVENT_LOGGER_TASK_MON_CMD_PACKET_EVENT_ID:
		PRINTF("\x1b[%d;64HPACKET    ", 4 + index);
		break;
	case KERNEL_EVENT_LOGGER_TASK_MON_KEVENT_EVENT_ID:
		PRINTF("\x1b[%d;64HCOMMAND    ", 4 + index);
		break;
	}
	PRINTF("\x1b[%d;76H%u    ", 4 + index,
		tmon_summary_data[index].timestamp);
	if (tmon_summary_data[index].task_id != -1) {
		PRINTF("\x1b[%d;88H0x%x    ", 4 + index,
			tmon_summary_data[index].task_id);
	} else {
		PRINTF("\x1b[%d;88H----------    ", 4 + index);
	}
	PRINTF("\x1b[%d;100H0x%x    ", 4 + index,
		tmon_summary_data[index].data);
}
#endif

void fork_manager_entry(void)
{
	int i;
#ifdef CONFIG_NANOKERNEL
	/* externs */
	extern struct nano_sem forks[N_PHILOSOPHERS];
#else  /* ! CONFIG_NANOKERNEL */
	kmutex_t forks[] = {forkMutex0, forkMutex1, forkMutex2, forkMutex3, forkMutex4, forkMutex5};
#endif /*  CONFIG_NANOKERNEL */

	SLEEP(2000);
	while (1) {
		if (forks_available) {
			/* take all forks */
			for (i = 0; i < N_PHILOSOPHERS; i++) {
				TAKE(forks[i]);
			}

			/* Philosophers won't be able to take any fork for 2000 ticks */
			forks_available = 0;
			SLEEP(2000);
		} else {
			/* give back all forks */
			for (i = 0; i < N_PHILOSOPHERS; i++) {
				GIVE(forks[i]);
			}

			/* Philosophers will be able to take forks for 2000 ticks */
			forks_available = 1;
			SLEEP(2000);
		}
	}
}


void busy_task_entry(void)
{
	int ticks_when_awake;
	int i;

	while (1) {
		/*
		 * go to sleep for 1000 ticks allowing the system entering to sleep
		 * mode if required.
		 */
		is_busy_task_awake = 0;
		SLEEP(1000);
		ticks_when_awake = sys_tick_get_32();

		/*
		 * keep the cpu busy for 1000 ticks preventing the system entering
		 * to sleep mode.
		 */
		is_busy_task_awake = 1;
		while (sys_tick_get_32() - ticks_when_awake < 1000) {
			i++;
		}
	}
}


/**
 * @brief Summary data printer fiber
 *
 * @details Print the summary data of the context switch events
 * and the total dropped event ocurred.
 *
 * @return No return value.
 */
void summary_data_printer(void)
{
	int i;

	while (1) {
		/* print task data */
		PRINTF("\x1b[1;32HFork manager task");
		if (forks_available) {
			PRINTF("\x1b[2;32HForks : free to use");
		} else {
			PRINTF("\x1b[2;32HForks : all taken  ");
		}

#ifndef CONFIG_NANOKERNEL
		/* Due to fiber are not pre-emptive, the busy_task_entry thread won't
		 * run as a fiber in nanokernel-only system, because it would affect
		 * the visualization of the sample and the collection of the data
		 * while running busy.
		 */
		PRINTF("\x1b[4;32HWorker task");
		if (is_busy_task_awake) {
			PRINTF("\x1b[5;32HState : BUSY");
			PRINTF("\x1b[6;32H(Prevent the system going idle)");
		} else {
			PRINTF("\x1b[5;32HState : IDLE");
			PRINTF("\x1b[6;32H                               ");
		}
#endif

		/* print general data */
		PRINTF("\x1b[8;1HGENERAL DATA");
		PRINTF("\x1b[9;1H------------");

		PRINTF("\x1b[10;1HSystem tick count : %d    ", sys_tick_get_32());

		/* print dropped event counter */
		PRINTF("\x1b[11;1HDropped events #  : %d   ", total_dropped_counter);

		/* Print context switch event data */
		PRINTF("\x1b[13;1HCONTEXT SWITCH EVENT DATA");
		PRINTF("\x1b[14;1H-------------------------");
		PRINTF("\x1b[15;1HThread ID   Switches");
		for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) {
			if (context_switch_summary_data[i].thread_id != 0) {
				print_context_data(context_switch_summary_data[i].thread_id,
					context_switch_summary_data[i].count,
					context_switch_summary_data[i].last_time_executed, i);
			}
		}

		/* Print sleep event data */
		PRINTF("\x1b[8;32HSLEEP EVENT DATA");
		PRINTF("\x1b[9;32H----------------");
		PRINTF("\x1b[10;32HLast sleep event received");
		if (sleep_event_data.last_time_slept > 0) {
			PRINTF("\x1b[11;32HExit cause : irq #%u   ",
				sleep_event_data.awake_cause);
			PRINTF("\x1b[12;32HAt tick    : %u        ",
				sleep_event_data.last_time_slept);
			PRINTF("\x1b[13;32HDuration   : %u ticks     ",
				sleep_event_data.last_duration);
		}

		/* Print interrupt event data */
		PRINTF("\x1b[15;32HINTERRUPT EVENT DATA");
		PRINTF("\x1b[16;32H--------------------");
		PRINTF("\x1b[17;32HInterrupt counters");

		int line = 0;

		for (i = 0; i < 255; i++) {
			if (interrupt_counters[i] > 0) {
				PRINTF("\x1b[%d;%dHirq #%d : %d times", 18 + line, 32, i,
					interrupt_counters[i]);
				line++;
			}
		}

#ifdef CONFIG_MICROKERNEL
		/* Print task monitor status data */
		PRINTF("\x1b[1;64HTASK MONITOR STATUS DATA");
		PRINTF("\x1b[2;64H-------------------------");
		PRINTF("\x1b[3;64HEvento\tTimestamp\tTaskId\tData");
		for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) {
			if (tmon_summary_data[i].timestamp != 0) {
				print_tmon_status_data(i);
			}
		}
#endif

		/* Sleep */
		fiber_sleep(50);
	}
}


/**
 * @brief Kernel event data collector fiber
 *
 * @details Collect the kernel event messages and process them depending
 * the kind of event received.
 *
 * @return No return value.
 */
void profiling_data_collector(void)
{
	int res;
	uint32_t data[4];
	uint8_t dropped_count;
	uint16_t event_id;

	/* We register the fiber as collector to avoid this fiber generating a
	 * context switch event every time it collects the data
	 */
	sys_k_event_logger_register_as_collector();

	while (1) {
		/* collect the data */
		uint8_t data_length = SIZE32_OF(data);

		res = sys_k_event_logger_get_wait(&event_id, &dropped_count, data,
					    &data_length);
		if (res > 0) {
			/* Register the amount of droppped events occurred */
			if (dropped_count) {
				total_dropped_counter += dropped_count;
			}

			/* process the data */
			switch (event_id) {
#ifdef CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH
			case KERNEL_EVENT_LOGGER_CONTEXT_SWITCH_EVENT_ID:
				if (data_length != 2) {
					PRINTF("\x1b[13;1HError in context switch message. "
						"event_id = %d, Expected %d, received %d\n",
						event_id, 2, data_length);
				} else {
					register_context_switch_data(data[0], data[1]);
				}
				break;
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT
			case KERNEL_EVENT_LOGGER_INTERRUPT_EVENT_ID:
				if (data_length != 2) {
					PRINTF("\x1b[13;1HError in interrupt message. "
						"event_id = %d, Expected %d, received %d\n",
						event_id, 2, data_length);
				} else {
					register_interrupt_event_data(data[0], data[1]);
				}
				break;
#endif
#ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP
			case KERNEL_EVENT_LOGGER_SLEEP_EVENT_ID:
				if (data_length != 3) {
					PRINTF("\x1b[13;1HError in sleep message. "
						"event_id = %d, Expected %d, received %d\n",
						event_id, 3, data_length);
				} else {
					register_sleep_event_data(data[0], data[1], data[2]);
				}
				break;
#endif
#ifdef CONFIG_MICROKERNEL
			case KERNEL_EVENT_LOGGER_TASK_MON_TASK_STATE_CHANGE_EVENT_ID:
			case KERNEL_EVENT_LOGGER_TASK_MON_CMD_PACKET_EVENT_ID:
				if (data_length != 3) {
					PRINTF("\x1b[13;1HError in task monitor message. "
						"event_id = %d, Expected 3, received %d\n",
						event_id, data_length);
				} else {
					register_tmon_data(event_id, data[0], data[1], data[2]);
				}
				break;

			case KERNEL_EVENT_LOGGER_TASK_MON_KEVENT_EVENT_ID:
				if (data_length != 2) {
					PRINTF("\x1b[13;1HError in task monitor message. "
						"event_id = %d, Expected 2, received %d\n",
						event_id, data_length);
				} else {
					register_tmon_data(event_id, data[0], -1, data[1]);
				}
				break;
#endif
			default:
				PRINTF("unrecognized event id %d", event_id);
			}
		} else {
			/* This error should never happen */
			if (res == -EMSGSIZE) {
				PRINTF("FATAL ERROR. The buffer provided to collect the "
					"profiling events is too small\n");
			}
		}
	}
}


/**
 * @brief Start the demo fibers
 *
 * @details Start the kernel event data colector fiber and the summary printer
 * fiber that shows the context switch data.
 *
 * @return No return value.
 */
void kernel_event_logger_fiber_start(void)
{
	PRINTF("\x1b[2J\x1b[15;1H");
	task_fiber_start(&kernel_event_logger_stack[0][0], STSIZE,
		(nano_fiber_entry_t) profiling_data_collector, 0, 0, 6, 0);
	task_fiber_start(&kernel_event_logger_stack[1][0], STSIZE,
		(nano_fiber_entry_t) summary_data_printer, 0, 0, 6, 0);
}

#ifdef CONFIG_NANOKERNEL
char __stack philStack[N_PHILOSOPHERS+1][STSIZE];
struct nano_sem forks[N_PHILOSOPHERS];

/**
 * @brief Manokernel entry point.
 *
 * @details Start the kernel event data colector fiber. Then
 * do wait forever.
 * @return No return value.
 */
int main(void)
{
	int i;

#ifdef CONFIG_MICROKERNEL
	tmon_index = 0;
#endif
	kernel_event_logger_fiber_start();

	/* initialize philosopher semaphores */
	for (i = 0; i < N_PHILOSOPHERS; i++) {
		nano_sem_init(&forks[i]);
		nano_task_sem_give(&forks[i]);
	}

	/* create philosopher fibers */
	for (i = 0; i < N_PHILOSOPHERS; i++) {
		task_fiber_start(&philStack[i][0], STSIZE,
						(nano_fiber_entry_t) philEntry, 0, 0, 6, 0);
	}

	task_fiber_start(&philStack[N_PHILOSOPHERS][0], STSIZE,
		(nano_fiber_entry_t) fork_manager_entry, 0, 0, 6, 0);

	/* wait forever */
	while (1) {
		extern void nano_cpu_idle(void);
		nano_cpu_idle();
	}
}

#else

/**
 * @brief Microkernel task.
 *
 * @details Start the kernel event data colector fiber. Then
 * do wait forever.
 *
 * @return No return value.
 */
void k_event_logger_demo(void)
{
	kernel_event_logger_fiber_start();

	task_group_start(PHI);
}
#endif