Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /* * Copyright (c) 2010-2015 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * * @brief Nanokernel dynamic-size FIFO queue object. * * This module provides the nanokernel FIFO object implementation, including * the following APIs: * * nano_fifo_init * nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put * nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get * nano_fifo_get */ /* * INTERNAL * In some cases the compiler "alias" attribute is used to map two or more * APIs to the same function, since they have identical implementations. */ #include <nano_private.h> #include <misc/debug/object_tracing_common.h> #include <toolchain.h> #include <sections.h> #include <wait_q.h> struct fifo_node { void *next; }; /** * @brief Internal routine to append data to a fifo * * @return N/A */ static inline void data_q_init(struct _nano_queue *q) { q->head = NULL; q->tail = &q->head; } /** * @brief Internal routine to test if queue is empty * * @return N/A */ static inline int is_q_empty(struct _nano_queue *q) { return q->head == NULL; } /* * INTERNAL * Although the existing implementation will support invocation from an ISR * context, for future flexibility, this API will be restricted from ISR * level invocation. */ void nano_fifo_init(struct nano_fifo *fifo) { _nano_wait_q_init(&fifo->wait_q); data_q_init(&fifo->data_q); _TASK_PENDQ_INIT(&fifo->task_q); SYS_TRACING_OBJ_INIT(nano_fifo, fifo); } FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void); FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void); /** * * @brief Internal routine to append data to a fifo * * @return N/A */ static inline void enqueue_data(struct nano_fifo *fifo, void *data) { struct fifo_node *node = data; struct fifo_node *tail = fifo->data_q.tail; tail->next = node; fifo->data_q.tail = node; node->next = NULL; } /** * * @brief Append an element to a fifo (no context switch) * * This routine adds an element to the end of a fifo object; it may be called * from either either a fiber or an ISR context. A fiber pending on the fifo * object will be made ready, but will NOT be scheduled to execute. * * If a fiber is waiting on the fifo, the address of the element is returned to * the waiting fiber. Otherwise, the element is linked to the end of the list. * * @param fifo FIFO on which to interact. * @param data Data to send. * * @return N/A * * INTERNAL * This function is capable of supporting invocations from both a fiber and an * ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases * are created to support any required implementation differences in the future * without introducing a source code migration issue. */ void _fifo_put_non_preemptible(struct nano_fifo *fifo, void *data) { struct tcs *tcs; unsigned int key; key = irq_lock(); tcs = _nano_wait_q_remove(&fifo->wait_q); if (tcs) { _nano_timeout_abort(tcs); fiberRtnValueSet(tcs, (unsigned int)data); } else { enqueue_data(fifo, data); _NANO_UNPEND_TASKS(&fifo->task_q); } irq_unlock(key); } void nano_task_fifo_put(struct nano_fifo *fifo, void *data) { struct tcs *tcs; unsigned int key; key = irq_lock(); tcs = _nano_wait_q_remove(&fifo->wait_q); if (tcs) { _nano_timeout_abort(tcs); fiberRtnValueSet(tcs, (unsigned int)data); _Swap(key); return; } enqueue_data(fifo, data); _TASK_NANO_UNPEND_TASKS(&fifo->task_q); irq_unlock(key); } void nano_fifo_put(struct nano_fifo *fifo, void *data) { static void (*func[3])(struct nano_fifo *fifo, void *data) = { nano_isr_fifo_put, nano_fiber_fifo_put, nano_task_fifo_put }; func[sys_execution_context_type_get()](fifo, data); } /** * * @brief Internal routine to remove data from a fifo * * @return The data item removed */ static inline void *dequeue_data(struct nano_fifo *fifo) { struct fifo_node *head = fifo->data_q.head; fifo->data_q.head = head->next; if (fifo->data_q.tail == head) { fifo->data_q.tail = &fifo->data_q.head; } return head; } FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *); FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *); void *_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks) { unsigned int key; void *data = NULL; key = irq_lock(); if (likely(!is_q_empty(&fifo->data_q))) { data = dequeue_data(fifo); } else if (timeout_in_ticks != TICKS_NONE) { _NANO_TIMEOUT_ADD(&fifo->wait_q, timeout_in_ticks); _nano_wait_q_put(&fifo->wait_q); data = (void *)_Swap(key); return data; } irq_unlock(key); return data; } void *nano_task_fifo_get(struct nano_fifo *fifo, int32_t timeout_in_ticks) { int64_t cur_ticks; int64_t limit = 0x7fffffffffffffffll; unsigned int key; key = irq_lock(); cur_ticks = _NANO_TIMEOUT_TICK_GET(); if (timeout_in_ticks != TICKS_UNLIMITED) { limit = cur_ticks + timeout_in_ticks; } do { /* * Predict that the branch will be taken to break out of the * loop. There is little cost to a misprediction since that * leads to idle. */ if (likely(!is_q_empty(&fifo->data_q))) { void *data = dequeue_data(fifo); irq_unlock(key); return data; } if (timeout_in_ticks != TICKS_NONE) { _NANO_OBJECT_WAIT(&fifo->task_q, &fifo->data_q.head, timeout_in_ticks, key); cur_ticks = _NANO_TIMEOUT_TICK_GET(); _NANO_TIMEOUT_UPDATE(timeout_in_ticks, limit, cur_ticks); } } while (cur_ticks < limit); irq_unlock(key); return NULL; } void *nano_fifo_get(struct nano_fifo *fifo, int32_t timeout) { static void *(*func[3])(struct nano_fifo *, int32_t) = { nano_isr_fifo_get, nano_fiber_fifo_get, nano_task_fifo_get }; return func[sys_execution_context_type_get()](fifo, timeout); } |