Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
 * Copyright (c) 1997-2010, 2012-2014 Wind River Systems, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * @file
 * @brief Microkernel idle logic
 *
 * Microkernel idle logic. Different forms of idling are performed by the idle
 * task, depending on how the kernel is configured.
 */

#include <micro_private.h>
#include <nano_private.h>
#include <arch/cpu.h>
#include <toolchain.h>
#include <sections.h>
#include <microkernel.h>
#include <misc/util.h>
#include <drivers/system_timer.h>

#if defined(CONFIG_WORKLOAD_MONITOR)

static unsigned int _k_workload_slice = 0x0;
static unsigned int _k_workload_ticks = 0x0;
static unsigned int _k_workload_ref_time = 0x0;
static unsigned int _k_workload_t0 = 0x0;
static unsigned int _k_workload_t1 = 0x0;
static volatile unsigned int _k_workload_n0 = 0x0;
static volatile unsigned int _k_workload_n1 = 0x0;
static volatile unsigned int _k_workload_i = 0x0;
static volatile unsigned int _k_workload_i0 = 0x0;
static volatile unsigned int _k_workload_delta = 0x0;
static volatile unsigned int _k_workload_start_time = 0x0;
static volatile unsigned int _k_workload_end_time = 0x0;

#ifdef WL_SCALE
static extern uint32_t _k_workload_scale;
#endif

/**
 *
 * @brief Shared code between workload calibration and monitoring
 *
 * Perform idle task "dummy work".
 *
 * This routine increments _k_workload_i and checks it against _k_workload_n1.
 * _k_workload_n1 is updated by the system tick handler, and both are kept
 * in close synchronization.
 *
 * @return N/A
 *
 */
static void workload_loop(void)
{
	volatile int x = 87654321;
	volatile int y = 4;

	/* loop never terminates, except during calibration phase */

	while (++_k_workload_i != _k_workload_n1) {
		unsigned int s_iCountDummyProc = 0;

		while (64 != s_iCountDummyProc++) { /* 64 == 2^6 */
			x >>= y;
			x <<= y;
			y++;
			x >>= y;
			x <<= y;
			y--;
		}
	}
}

/**
 *
 * @brief Calibrate the workload monitoring subsystem
 *
 * Measures the time required to do a fixed amount of "dummy work", and
 * sets default values for the workload measuring period.
 *
 * @return N/A
 *
 */
void _k_workload_monitor_calibrate(void)
{
	_k_workload_n0 = _k_workload_i = 0;
	_k_workload_n1 = 1000;

	_k_workload_t0 = sys_cycle_get_32();
	workload_loop();
	_k_workload_t1 = sys_cycle_get_32();

	_k_workload_delta = _k_workload_t1 - _k_workload_t0;
	_k_workload_i0 = _k_workload_i;
#ifdef WL_SCALE
	_k_workload_ref_time =
		(_k_workload_t1 - _k_workload_t0) >> (_k_workload_scale);
#else
	_k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (4 + 6);
#endif

	_k_workload_slice = 100;
	_k_workload_ticks = 100;
}

/**
 *
 * @brief Workload monitor tick handler
 *
 * If workload monitor is configured this routine updates the global variables
 * it uses to record the passage of time.
 *
 * @return N/A
 *
 */
void _k_workload_monitor_update(void)
{
	if (--_k_workload_ticks == 0) {
		_k_workload_t0 = _k_workload_t1;
		_k_workload_t1 = sys_cycle_get_32();
		_k_workload_n0 = _k_workload_n1;
		_k_workload_n1 = _k_workload_i - 1;
		_k_workload_ticks = _k_workload_slice;
	}
}

/**
 *
 * @brief Workload monitor "start idling" handler
 *
 * Records time when idle task was selected for execution by the microkernel.
 *
 * @return N/A
 */
void _k_workload_monitor_idle_start(void)
{
	_k_workload_start_time = sys_cycle_get_32();
}

/**
 *
 * @brief Workload monitor "end idling" handler
 *
 * Records time when idle task was no longer selected for execution by the
 * microkernel, and updates amount of time spent idling.
 *
 * @return N/A
 */
void _k_workload_monitor_idle_end(void)
{
	_k_workload_end_time = sys_cycle_get_32();
	_k_workload_i += (_k_workload_i0 *
		(_k_workload_end_time - _k_workload_start_time)) / _k_workload_delta;
}

/**
 *
 * @brief Process request to read the processor workload
 *
 * Computes workload, or uses 0 if workload monitoring is not configured.
 *
 * @return N/A
 */
void _k_workload_get(struct k_args *P)
{
	unsigned int k, t;
	signed int iret;

	k = (_k_workload_i - _k_workload_n0) * _k_workload_ref_time;
#ifdef WL_SCALE
	t = (sys_cycle_get_32() - _k_workload_t0) >> (_k_workload_scale);
#else
	t = (sys_cycle_get_32() - _k_workload_t0) >> (4 + 6);
#endif

	iret = MSEC_PER_SEC - k / t;

	/*
	 * Due to calibration at startup, <iret> could be slightly negative.
	 * Ensure a negative value is never returned.
	 */

	if (iret < 0) {
		iret = 0;
	}

	P->args.u1.rval = iret;
}
#else
void _k_workload_get(struct k_args *P)
{
	P->args.u1.rval = 0;
}

#endif /* CONFIG_WORKLOAD_MONITOR */


int task_workload_get(void)
{
	struct k_args A;

	A.Comm = _K_SVC_WORKLOAD_GET;
	KERNEL_ENTRY(&A);
	return A.args.u1.rval;
}


void sys_workload_time_slice_set(int32_t t)
{
#ifdef CONFIG_WORKLOAD_MONITOR
	if (t < 10) {
		t = 10;
	}
	if (t > 1000) {
		t = 1000;
	}
	_k_workload_slice = t;
#else
	ARG_UNUSED(t);
#endif
}

unsigned char _sys_power_save_flag = 1;

#if defined(CONFIG_SYS_POWER_MANAGEMENT)

#include <nanokernel.h>
#include <microkernel/base_api.h>
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
	defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
	defined(CONFIG_DEVICE_POWER_MANAGEMENT))
#include <power.h>
#endif
#if defined(CONFIG_TICKLESS_IDLE)
#include <drivers/system_timer.h>
#endif

extern void nano_cpu_set_idle(int32_t ticks);

#if defined(CONFIG_TICKLESS_IDLE)
/*
 * Idle time must be this value or higher for timer to go into tickless idle
 * state.
 */
int32_t _sys_idle_threshold_ticks = CONFIG_TICKLESS_IDLE_THRESH;
#endif /* CONFIG_TICKLESS_IDLE */

/**
 *
 * @brief Power management policy when kernel begins idling
 *
 * This routine implements the power management policy based on the time
 * until the timer expires, in system ticks.
 * Routine is invoked from the idle task with interrupts disabled
 *
 * @return N/A
 */
void _sys_power_save_idle(int32_t ticks)
{
#if defined(CONFIG_TICKLESS_IDLE)
	if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) {
		/*
		 * Stop generating system timer interrupts until it's time for
		 * the next scheduled microkernel timer to expire.
		 */

		_timer_idle_enter(ticks);
	}
#endif /* CONFIG_TICKLESS_IDLE */

	nano_cpu_set_idle(ticks);
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
	defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
	defined(CONFIG_DEVICE_POWER_MANAGEMENT))
	/*
	 * Call the suspend hook function, which checks if the system should
	 * enter deep sleep, low power state or only suspend devices.
	 * If the time available is too short for any PM operation then
	 * the function returns SYS_PM_NOT_HANDLED immediately and kernel
	 * does normal idle processing. Otherwise it will return the code
	 * corresponding to the action taken.
	 *
	 * This function can just suspend devices without entering
	 * deep sleep or cpu low power state.  In this case it should return
	 * SYS_PM_DEVICE_SUSPEND_ONLY and kernel would do normal idle
	 * processing.
	 *
	 * This function is entered with interrupts disabled. If the function
	 * returns either SYS_PM_LOW_POWER_STATE or SYS_PM_DEEP_SLEEP then
	 * it should ensure interrupts are re-enabled before returning.
	 * This is because the kernel does not do its own idle processing in
	 * these cases i.e. skips nano_cpu_idle(). The kernel's idle
	 * processing re-enables interrupts which is essential for kernel's
	 * scheduling logic.
	 */
	if (!(_sys_soc_suspend(ticks) &
			(SYS_PM_DEEP_SLEEP | SYS_PM_LOW_POWER_STATE))) {
		nano_cpu_idle();
	}
#else
	nano_cpu_idle();
#endif
}

/**
 *
 * @brief Power management policy when kernel stops idling
 *
 * This routine is invoked when the kernel leaves the idle state.
 * Routine can be modified to wake up other devices.
 * The routine is invoked from interrupt thread, with interrupts disabled.
 *
 * @return N/A
 */
void _sys_power_save_idle_exit(int32_t ticks)
{
#if (defined(CONFIG_SYS_POWER_LOW_POWER_STATE) || \
	defined(CONFIG_SYS_POWER_DEEP_SLEEP) || \
	defined(CONFIG_DEVICE_POWER_MANAGEMENT))
	/* Any idle wait based on CPU low power state will be exited by
	 * interrupt. This function is called within that interrupt's
	 * ISR context.  _sys_soc_resume() needs to be called here
	 * to handle exit from CPU low power states. This gives an
	 * opportunity for device states altered in _sys_soc_suspend()
	 * to be restored before the kernel schedules another thread.
	 * _sys_soc_resume() is not called from here for deep sleep
	 * exit. Deep sleep recovery happens at cold boot path.
	 */
	_sys_soc_resume();
#endif
#ifdef CONFIG_TICKLESS_IDLE
	if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) {
		/* Resume normal periodic system timer interrupts */

		_timer_idle_exit();
	}
#else
	ARG_UNUSED(ticks);
#endif /* CONFIG_TICKLESS_IDLE */
}

/**
 *
 * @brief Obtain number of ticks until next timer expires
 *
 * Must be called with interrupts locked to prevent the timer queues from
 * changing.
 *
 * @return Number of ticks until next timer expires.
 *
 */
static inline int32_t _get_next_timer_expiry(void)
{
	uint32_t closest_deadline = (uint32_t)TICKS_UNLIMITED;

	if (_k_timer_list_head) {
		closest_deadline = _k_timer_list_head->duration;
	}

	return (int32_t)min(closest_deadline, _nano_get_earliest_deadline());
}
#endif

/**
 *
 * @brief Power saving when idle
 *
 * If _sys_power_save_flag is non-zero, this routine keeps the system in a low
 * power state whenever the kernel is idle. If it is zero, this routine will
 * fall through and _k_kernel_idle() will try the next idling mechanism.
 *
 * @return N/A
 *
 */
static void _power_save(void)
{
	if (_sys_power_save_flag) {
		for (;;) {
			irq_lock();
#ifdef CONFIG_SYS_POWER_MANAGEMENT
			_sys_power_save_idle(_get_next_timer_expiry());
#else
			/*
			 * nano_cpu_idle() is invoked here directly only if APM
			 * is disabled. Otherwise the microkernel decides
			 * either to invoke it or to implement advanced idle
			 * functionality
			 */

			nano_cpu_idle();
#endif
		}

		/*
		 * Code analyzers may complain that _power_save() uses an
		 * infinite loop unless we indicate that this is intentional
		 */

		CODE_UNREACHABLE;
	}
}

/* Specify what work to do when idle task is "busy waiting" */

#ifdef CONFIG_WORKLOAD_MONITOR
#define DO_IDLE_WORK()	workload_loop()
#else
#define DO_IDLE_WORK()	do { /* do nothing */ } while (0)
#endif

/**
 *
 * @brief Microkernel idle task
 *
 * If power save is on, we sleep; if power save is off, we "busy wait".
 *
 * @return N/A
 *
 */
int _k_kernel_idle(void)
{
	_power_save(); /* never returns if power saving is enabled */

#ifdef CONFIG_BOOT_TIME_MEASUREMENT
	/* record timestamp when idling begins */

	extern uint64_t __idle_tsc;

	__idle_tsc = _NanoTscRead();
#endif

	for (;;) {
		DO_IDLE_WORK();
	}

	/*
	 * Code analyzers may complain that _k_kernel_idle() uses an infinite
	 * loop unless we indicate that this is intentional
	 */

	CODE_UNREACHABLE;
}