Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | /* kernel_event_collector_sample.c - Kernel event collector sample project */ /* * Copyright (c) 2015 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <zephyr.h> #include "phil.h" #include <misc/kernel_event_logger.h> #include <string.h> #ifdef CONFIG_NANOKERNEL #define TAKE(x) nano_fiber_sem_take(&x, TICKS_UNLIMITED) #define GIVE(x) nano_fiber_sem_give(&x) #define SLEEP(x) fiber_sleep(x) #else /* ! CONFIG_NANOKERNEL */ #define TAKE(x) task_mutex_lock(x, TICKS_UNLIMITED) #define GIVE(x) task_mutex_unlock(x) #define SLEEP(x) task_sleep(x) #endif /* CONFIG_NANOKERNEL */ #define RANDDELAY(x) myDelay(((sys_tick_get_32() * ((x) + 1)) & 0x2f) + 1) #define TEST_EVENT_ID 255 extern void philEntry(void); #define STSIZE 1024 char __stack kernel_event_logger_stack[2][STSIZE]; struct context_switch_data_t { uint32_t thread_id; uint32_t last_time_executed; uint32_t count; }; int total_dropped_counter; #define MAX_BUFFER_CONTEXT_DATA 20 struct context_switch_data_t context_switch_summary_data[MAX_BUFFER_CONTEXT_DATA]; unsigned int interrupt_counters[255]; struct sleep_data_t { uint32_t awake_cause; uint32_t last_time_slept; uint32_t last_duration; }; struct sleep_data_t sleep_event_data; int is_busy_task_awake; int forks_available = 1; #ifdef CONFIG_MICROKERNEL struct tmon_data_t { uint32_t event_type; uint32_t timestamp; uint32_t task_id; uint32_t data; }; uint32_t tmon_index; struct tmon_data_t tmon_summary_data[MAX_BUFFER_CONTEXT_DATA]; #endif void register_context_switch_data(uint32_t timestamp, uint32_t thread_id) { int found; int i; found = 0; for (i = 0; (i < MAX_BUFFER_CONTEXT_DATA) && (found == 0); i++) { if (context_switch_summary_data[i].thread_id == thread_id) { context_switch_summary_data[i].last_time_executed = timestamp; context_switch_summary_data[i].count += 1; found = 1; } } if (!found) { for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) { if (context_switch_summary_data[i].thread_id == 0) { context_switch_summary_data[i].thread_id = thread_id; context_switch_summary_data[i].last_time_executed = timestamp; context_switch_summary_data[i].count = 1; break; } } } } void register_interrupt_event_data(uint32_t timestamp, uint32_t irq) { if ((irq >= 0) && (irq < 255)) { interrupt_counters[irq] += 1; } } void register_sleep_event_data(uint32_t time_start, uint32_t duration, uint32_t cause) { sleep_event_data.awake_cause = cause; sleep_event_data.last_time_slept = time_start; sleep_event_data.last_duration = duration; } void print_context_data(uint32_t thread_id, uint32_t count, uint32_t last_time_executed, int indice) { PRINTF("\x1b[%d;1H%u ", 16 + indice, thread_id); PRINTF("\x1b[%d;12H%u ", 16 + indice, count); } #ifdef CONFIG_MICROKERNEL void register_tmon_data(uint32_t event_type, uint32_t timestamp, uint32_t task_id, uint32_t data) { tmon_summary_data[tmon_index].event_type = event_type; tmon_summary_data[tmon_index].timestamp = timestamp; tmon_summary_data[tmon_index].task_id = task_id; tmon_summary_data[tmon_index].data = data; if (++tmon_index == MAX_BUFFER_CONTEXT_DATA) { tmon_index = 0; } } void print_tmon_status_data(int index) { switch (tmon_summary_data[index].event_type) { case KERNEL_EVENT_LOGGER_TASK_MON_TASK_STATE_CHANGE_EVENT_ID: PRINTF("\x1b[%d;64HEVENT ", 4 + index); break; case KERNEL_EVENT_LOGGER_TASK_MON_CMD_PACKET_EVENT_ID: PRINTF("\x1b[%d;64HPACKET ", 4 + index); break; case KERNEL_EVENT_LOGGER_TASK_MON_KEVENT_EVENT_ID: PRINTF("\x1b[%d;64HCOMMAND ", 4 + index); break; } PRINTF("\x1b[%d;76H%u ", 4 + index, tmon_summary_data[index].timestamp); if (tmon_summary_data[index].task_id != -1) { PRINTF("\x1b[%d;88H0x%x ", 4 + index, tmon_summary_data[index].task_id); } else { PRINTF("\x1b[%d;88H---------- ", 4 + index); } PRINTF("\x1b[%d;100H0x%x ", 4 + index, tmon_summary_data[index].data); } #endif void fork_manager_entry(void) { int i; #ifdef CONFIG_NANOKERNEL /* externs */ extern struct nano_sem forks[N_PHILOSOPHERS]; #else /* ! CONFIG_NANOKERNEL */ kmutex_t forks[] = {forkMutex0, forkMutex1, forkMutex2, forkMutex3, forkMutex4, forkMutex5}; #endif /* CONFIG_NANOKERNEL */ SLEEP(2000); while (1) { if (forks_available) { /* take all forks */ for (i = 0; i < N_PHILOSOPHERS; i++) { TAKE(forks[i]); } /* Philosophers won't be able to take any fork for 2000 ticks */ forks_available = 0; SLEEP(2000); } else { /* give back all forks */ for (i = 0; i < N_PHILOSOPHERS; i++) { GIVE(forks[i]); } /* Philosophers will be able to take forks for 2000 ticks */ forks_available = 1; SLEEP(2000); } } } void busy_task_entry(void) { int ticks_when_awake; int i; while (1) { /* * go to sleep for 1000 ticks allowing the system entering to sleep * mode if required. */ is_busy_task_awake = 0; SLEEP(1000); ticks_when_awake = sys_tick_get_32(); /* * keep the cpu busy for 1000 ticks preventing the system entering * to sleep mode. */ is_busy_task_awake = 1; while (sys_tick_get_32() - ticks_when_awake < 1000) { i++; } } } /** * @brief Summary data printer fiber * * @details Print the summary data of the context switch events * and the total dropped event ocurred. * * @return No return value. */ void summary_data_printer(void) { int i; while (1) { /* print task data */ PRINTF("\x1b[1;32HFork manager task"); if (forks_available) { PRINTF("\x1b[2;32HForks : free to use"); } else { PRINTF("\x1b[2;32HForks : all taken "); } #ifndef CONFIG_NANOKERNEL /* Due to fiber are not pre-emptive, the busy_task_entry thread won't * run as a fiber in nanokernel-only system, because it would affect * the visualization of the sample and the collection of the data * while running busy. */ PRINTF("\x1b[4;32HWorker task"); if (is_busy_task_awake) { PRINTF("\x1b[5;32HState : BUSY"); PRINTF("\x1b[6;32H(Prevent the system going idle)"); } else { PRINTF("\x1b[5;32HState : IDLE"); PRINTF("\x1b[6;32H "); } #endif /* print general data */ PRINTF("\x1b[8;1HGENERAL DATA"); PRINTF("\x1b[9;1H------------"); PRINTF("\x1b[10;1HSystem tick count : %d ", sys_tick_get_32()); /* print dropped event counter */ PRINTF("\x1b[11;1HDropped events # : %d ", total_dropped_counter); /* Print context switch event data */ PRINTF("\x1b[13;1HCONTEXT SWITCH EVENT DATA"); PRINTF("\x1b[14;1H-------------------------"); PRINTF("\x1b[15;1HThread ID Switches"); for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) { if (context_switch_summary_data[i].thread_id != 0) { print_context_data(context_switch_summary_data[i].thread_id, context_switch_summary_data[i].count, context_switch_summary_data[i].last_time_executed, i); } } /* Print sleep event data */ PRINTF("\x1b[8;32HSLEEP EVENT DATA"); PRINTF("\x1b[9;32H----------------"); PRINTF("\x1b[10;32HLast sleep event received"); if (sleep_event_data.last_time_slept > 0) { PRINTF("\x1b[11;32HExit cause : irq #%u ", sleep_event_data.awake_cause); PRINTF("\x1b[12;32HAt tick : %u ", sleep_event_data.last_time_slept); PRINTF("\x1b[13;32HDuration : %u ticks ", sleep_event_data.last_duration); } /* Print interrupt event data */ PRINTF("\x1b[15;32HINTERRUPT EVENT DATA"); PRINTF("\x1b[16;32H--------------------"); PRINTF("\x1b[17;32HInterrupt counters"); int line = 0; for (i = 0; i < 255; i++) { if (interrupt_counters[i] > 0) { PRINTF("\x1b[%d;%dHirq #%d : %d times", 18 + line, 32, i, interrupt_counters[i]); line++; } } #ifdef CONFIG_MICROKERNEL /* Print task monitor status data */ PRINTF("\x1b[1;64HTASK MONITOR STATUS DATA"); PRINTF("\x1b[2;64H-------------------------"); PRINTF("\x1b[3;64HEvento\tTimestamp\tTaskId\tData"); for (i = 0; i < MAX_BUFFER_CONTEXT_DATA; i++) { if (tmon_summary_data[i].timestamp != 0) { print_tmon_status_data(i); } } #endif /* Sleep */ fiber_sleep(50); } } /** * @brief Kernel event data collector fiber * * @details Collect the kernel event messages and process them depending * the kind of event received. * * @return No return value. */ void profiling_data_collector(void) { int res; uint32_t data[4]; uint8_t dropped_count; uint16_t event_id; /* We register the fiber as collector to avoid this fiber generating a * context switch event every time it collects the data */ sys_k_event_logger_register_as_collector(); while (1) { /* collect the data */ uint8_t data_length = SIZE32_OF(data); res = sys_k_event_logger_get_wait(&event_id, &dropped_count, data, &data_length); if (res > 0) { /* Register the amount of droppped events occurred */ if (dropped_count) { total_dropped_counter += dropped_count; } /* process the data */ switch (event_id) { #ifdef CONFIG_KERNEL_EVENT_LOGGER_CONTEXT_SWITCH case KERNEL_EVENT_LOGGER_CONTEXT_SWITCH_EVENT_ID: if (data_length != 2) { PRINTF("\x1b[13;1HError in context switch message. " "event_id = %d, Expected %d, received %d\n", event_id, 2, data_length); } else { register_context_switch_data(data[0], data[1]); } break; #endif #ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT case KERNEL_EVENT_LOGGER_INTERRUPT_EVENT_ID: if (data_length != 2) { PRINTF("\x1b[13;1HError in interrupt message. " "event_id = %d, Expected %d, received %d\n", event_id, 2, data_length); } else { register_interrupt_event_data(data[0], data[1]); } break; #endif #ifdef CONFIG_KERNEL_EVENT_LOGGER_SLEEP case KERNEL_EVENT_LOGGER_SLEEP_EVENT_ID: if (data_length != 3) { PRINTF("\x1b[13;1HError in sleep message. " "event_id = %d, Expected %d, received %d\n", event_id, 3, data_length); } else { register_sleep_event_data(data[0], data[1], data[2]); } break; #endif #ifdef CONFIG_MICROKERNEL case KERNEL_EVENT_LOGGER_TASK_MON_TASK_STATE_CHANGE_EVENT_ID: case KERNEL_EVENT_LOGGER_TASK_MON_CMD_PACKET_EVENT_ID: if (data_length != 3) { PRINTF("\x1b[13;1HError in task monitor message. " "event_id = %d, Expected 3, received %d\n", event_id, data_length); } else { register_tmon_data(event_id, data[0], data[1], data[2]); } break; case KERNEL_EVENT_LOGGER_TASK_MON_KEVENT_EVENT_ID: if (data_length != 2) { PRINTF("\x1b[13;1HError in task monitor message. " "event_id = %d, Expected 2, received %d\n", event_id, data_length); } else { register_tmon_data(event_id, data[0], -1, data[1]); } break; #endif default: PRINTF("unrecognized event id %d", event_id); } } else { /* This error should never happen */ if (res == -EMSGSIZE) { PRINTF("FATAL ERROR. The buffer provided to collect the " "profiling events is too small\n"); } } } } /** * @brief Start the demo fibers * * @details Start the kernel event data colector fiber and the summary printer * fiber that shows the context switch data. * * @return No return value. */ void kernel_event_logger_fiber_start(void) { PRINTF("\x1b[2J\x1b[15;1H"); task_fiber_start(&kernel_event_logger_stack[0][0], STSIZE, (nano_fiber_entry_t) profiling_data_collector, 0, 0, 6, 0); task_fiber_start(&kernel_event_logger_stack[1][0], STSIZE, (nano_fiber_entry_t) summary_data_printer, 0, 0, 6, 0); } #ifdef CONFIG_NANOKERNEL char __stack philStack[N_PHILOSOPHERS+1][STSIZE]; struct nano_sem forks[N_PHILOSOPHERS]; /** * @brief Manokernel entry point. * * @details Start the kernel event data colector fiber. Then * do wait forever. * @return No return value. */ int main(void) { int i; #ifdef CONFIG_MICROKERNEL tmon_index = 0; #endif kernel_event_logger_fiber_start(); /* initialize philosopher semaphores */ for (i = 0; i < N_PHILOSOPHERS; i++) { nano_sem_init(&forks[i]); nano_task_sem_give(&forks[i]); } /* create philosopher fibers */ for (i = 0; i < N_PHILOSOPHERS; i++) { task_fiber_start(&philStack[i][0], STSIZE, (nano_fiber_entry_t) philEntry, 0, 0, 6, 0); } task_fiber_start(&philStack[N_PHILOSOPHERS][0], STSIZE, (nano_fiber_entry_t) fork_manager_entry, 0, 0, 6, 0); /* wait forever */ while (1) { extern void nano_cpu_idle(void); nano_cpu_idle(); } } #else /** * @brief Microkernel task. * * @details Start the kernel event data colector fiber. Then * do wait forever. * * @return No return value. */ void k_event_logger_demo(void) { kernel_event_logger_fiber_start(); task_group_start(PHI); } #endif |