Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | /* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * @brief IA-32 specific nanokernel interface header * This header contains the IA-32 specific nanokernel interface. It is included * by the generic nanokernel interface header (nanokernel.h) */ #ifndef _ARCH_IFACE_H #define _ARCH_IFACE_H #include <irq.h> #ifndef _ASMLANGUAGE #include <arch/x86/asm_inline.h> #include <arch/x86/addr_types.h> #endif #ifdef __cplusplus extern "C" { #endif /* APIs need to support non-byte addressable architectures */ #define OCTET_TO_SIZEOFUNIT(X) (X) #define SIZEOFUNIT_TO_OCTET(X) (X) /** * Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM. * Not meant to be used explicitly by platform, driver or application code. */ #define MK_ISR_NAME(x) __isr__##x #ifdef CONFIG_MICROKERNEL #define ALL_DYN_IRQ_STUBS (CONFIG_NUM_DYNAMIC_STUBS + CONFIG_MAX_NUM_TASK_IRQS) #elif defined(CONFIG_NANOKERNEL) #define ALL_DYN_IRQ_STUBS (CONFIG_NUM_DYNAMIC_STUBS) #endif #define ALL_DYN_EXC_STUBS (CONFIG_NUM_DYNAMIC_EXC_STUBS + \ CONFIG_NUM_DYNAMIC_EXC_NOERR_STUBS) #define ALL_DYN_STUBS (ALL_DYN_EXC_STUBS + ALL_DYN_IRQ_STUBS) /* * Synchronize these DYN_STUB_* macros with the generated assembly for * _DynIntStubsBegin in intstub.S / _DynExcStubsBegin in excstub.S * Assumes all stub types are same size/format */ /* Size of each dynamic interrupt/exception stub in bytes */ #ifdef CONFIG_X86_IAMCU #define DYN_STUB_SIZE 8 #else #define DYN_STUB_SIZE 9 #endif /* * Offset from the beginning of a stub to the byte containing the argument * to the push instruction, which is the stub index */ #define DYN_STUB_IDX_OFFSET 6 /* Every DYN_STUB_PER_BLOCK stubs, there is a long jump instead of * a short jump. Define the extra amount of bytes for this. */ #define DYN_STUB_LONG_JMP_EXTRA_SIZE 3 /* * How many consecutive stubs we have until we encounter a periodic * jump to _DynStubCommon */ #define DYN_STUB_PER_BLOCK 8 #ifndef _ASMLANGUAGE /* interrupt/exception/error related definitions */ /** * Floating point register set alignment. * * If support for SSEx extensions is enabled a 16 byte boundary is required, * since the 'fxsave' and 'fxrstor' instructions require this. In all other * cases a 4 byte boundary is sufficient. */ #ifdef CONFIG_SSE #define FP_REG_SET_ALIGN 16 #else #define FP_REG_SET_ALIGN 4 #endif /* * The TCS must be aligned to the same boundary as that used by the floating * point register set. This applies even for threads that don't initially * use floating point, since it is possible to enable floating point support * later on. */ #define STACK_ALIGN FP_REG_SET_ALIGN typedef struct s_isrList { /** Address of ISR/stub */ void *fnc; /** IRQ associated with the ISR/stub */ unsigned int irq; /** Priority associated with the IRQ */ unsigned int priority; /** Vector number associated with ISR/stub */ unsigned int vec; /** Privilege level associated with ISR/stub */ unsigned int dpl; } ISR_LIST; /** * @brief Connect a routine to an interrupt vector * * This macro "connects" the specified routine, @a r, to the specified interrupt * vector, @a v using the descriptor privilege level @a d. On the IA-32 * architecture, an interrupt vector is a value from 0 to 255. This macro * populates the special intList section with the address of the routine, the * vector number and the descriptor privilege level. The genIdt tool then picks * up this information and generates an actual IDT entry with this information * properly encoded. This macro replaces the _IntVecSet () routine in static * interrupt systems. * * The @a d argument specifies the privilege level for the interrupt-gate * descriptor; (hardware) interrupts and exceptions should specify a level of 0, * whereas handlers for user-mode software generated interrupts should specify 3. * @param r Routine to be connected * @param n IRQ number * @param p IRQ priority * @param v Interrupt Vector * @param d Descriptor Privilege Level * * @return N/A * */ #define NANO_CPU_INT_REGISTER(r, n, p, v, d) \ ISR_LIST __attribute__((section(".intList"))) MK_ISR_NAME(r) = \ {&r, n, p, v, d} /** * Inline assembly code for the interrupt stub * * This is the actual assembly code which gets run when the interrupt * is triggered. Due to different calling convention semantics we have * different versions for IAMCU and SYSV. * * For IAMCU case, we call _execute_handler() with the isr and its argument * as parameters. * * For SysV case, we first call _IntEnt to properly enter Zephyr's interrupt * handling context, and then directly call the isr. A jump is done to * _IntExitWithEoi which does EOI to the interrupt controller, restores * context, and finally does 'iret'. * * This is only intended to be used by the IRQ_CONNECT() macro. */ #if CONFIG_X86_IAMCU #define _IRQ_STUB_ASM \ "pushl %%eax\n\t" \ "pushl %%edx\n\t" \ "pushl %%ecx\n\t" \ "movl %[isr], %%eax\n\t" \ "movl %[isr_param], %%edx\n\t" \ "call _execute_handler\n\t" \ "popl %%ecx\n\t" \ "popl %%edx\n\t" \ "popl %%eax\n\t" \ "iret\n\t" #else #define _IRQ_STUB_ASM \ "call _IntEnt\n\t" \ "pushl %[isr_param]\n\t" \ "call %P[isr]\n\t" \ "jmp _IntExitWithEoi\n\t" #endif /* CONFIG_X86_IAMCU */ /** * Code snippets for populating the vector ID and priority into the intList * * The 'magic' of static interrupts is accomplished by building up an array * 'intList' at compile time, and the gen_idt tool uses this to create the * actual IDT data structure. * * For controllers like APIC, the vectors in the IDT are not normally assigned * at build time; instead the sentinel value -1 is saved, and gen_idt figures * out the right vector to use based on our priority scheme. Groups of 16 * vectors starting at 32 correspond to each priority level. * * On MVIC, the mapping is fixed; the vector to use is just the irq line * number plus 0x20. The priority argument supplied by the user is discarded. * * These macros are only intended to be used by IRQ_CONNECT() macro. */ #if CONFIG_MVIC #define _PRIORITY_ARG(irq_p, priority_p) (-1) #define _VECTOR_ARG(irq_p) (irq_p + 0x20) #else #define _PRIORITY_ARG(irq_p, priority_p) (priority_p) #define _VECTOR_ARG(irq_p) (-1) #endif /* CONFIG_MVIC */ /** * Configure a static interrupt. * * All arguments must be computable by the compiler at build time; if this * can't be done use irq_connect_dynamic() instead. * * Internally this function does a few things: * * 1. There is a block of inline assembly which is completely skipped over * at runtime with an initial 'jmp' instruction. * * 2. There is a declaration of the interrupt parameters in the .intList * section, used by gen_idt to create the IDT. This does the same thing * as the NANO_CPU_INT_REGISTER() macro, but is done in assembly as we * need to populate the .fnc member with the address of the assembly * IRQ stub that we generate immediately afterwards. * * 3. The IRQ stub itself is declared. It doesn't get run in the context * of the calling function due to the initial 'jmp' instruction at the * beginning of the assembly block, but a pointer to it gets saved in the IDT. * * 4. _SysIntVecProgram() is called at runtime to set the mapping between * the vector and the IRQ line. * * @param irq_p IRQ line number * @param priority_p Interrupt priority * @param isr_p Interrupt service routine * @param isr_param_p ISR parameter * @param flags_p IRQ triggering options * * @return The vector assigned to this interrupt */ #define _ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \ ({ \ __asm__ __volatile__( \ "jmp 2f\n\t" \ ".pushsection .intList\n\t" \ ".long 1f\n\t" /* ISR_LIST.fnc */ \ ".long %P[irq]\n\t" /* ISR_LIST.irq */ \ ".long %P[priority]\n\t" /* ISR_LIST.priority */ \ ".long %P[vector]\n\t" /* ISR_LIST.vec */ \ ".long 0\n\t" /* ISR_LIST.dpl */ \ ".popsection\n\t" \ "1:\n\t" \ _IRQ_STUB_ASM \ "2:\n\t" \ : \ : [isr] "i" (isr_p), \ [isr_param] "i" (isr_param_p), \ [priority] "i" _PRIORITY_ARG(irq_p, priority_p), \ [vector] "i" _VECTOR_ARG(irq_p), \ [irq] "i" (irq_p)); \ _SysIntVecProgram(_IRQ_TO_INTERRUPT_VECTOR(irq_p), (irq_p), (flags_p)); \ _IRQ_TO_INTERRUPT_VECTOR(irq_p); \ }) #ifdef CONFIG_MVIC /* Fixed vector-to-irq association mapping. * No need for the table at all. */ #define _IRQ_TO_INTERRUPT_VECTOR(irq) (irq + 0x20) #else /** * @brief Convert a statically connected IRQ to its interrupt vector number * * @param irq IRQ number */ extern unsigned char _irq_to_interrupt_vector[]; #define _IRQ_TO_INTERRUPT_VECTOR(irq) \ ((unsigned int) _irq_to_interrupt_vector[irq]) #endif /** * @brief Nanokernel Exception Stack Frame * * A pointer to an "exception stack frame" (ESF) is passed as an argument * to exception handlers registered via nanoCpuExcConnect(). As the system * always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed * onto the stack when an exception occurs. * * The exception stack frame includes the volatile registers (EAX, ECX, and * EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP). * Those registers are pushed onto the stack by _ExcEnt(). */ typedef struct nanoEsf { unsigned int esp; unsigned int ebp; unsigned int ebx; unsigned int esi; unsigned int edi; unsigned int edx; unsigned int eax; unsigned int ecx; unsigned int errorCode; unsigned int eip; unsigned int cs; unsigned int eflags; } NANO_ESF; /** * @brief Nanokernel "interrupt stack frame" (ISF) * * An "interrupt stack frame" (ISF) as constructed by the processor * and the interrupt wrapper function _IntEnt(). As the system always operates * at ring 0, only the EIP, CS and EFLAGS registers are pushed onto the stack * when an interrupt occurs. * * The interrupt stack frame includes the volatile registers EAX, ECX, and EDX * pushed on the stack by _IntEnt(). * * Only target-based debug tools such as GDB require the 5 non-volatile * registers (EDI, ESI, EBX, EBP and ESP) to be preserved during an interrupt. */ typedef struct nanoIsf { #ifdef CONFIG_DEBUG_INFO unsigned int esp; unsigned int ebp; unsigned int ebx; unsigned int esi; unsigned int edi; #endif /* CONFIG_DEBUG_INFO */ unsigned int edx; unsigned int ecx; unsigned int eax; unsigned int eip; unsigned int cs; unsigned int eflags; } NANO_ISF; #endif /* !_ASMLANGUAGE */ /* * Reason codes passed to both _NanoFatalErrorHandler() * and _SysFatalErrorHandler(). */ /** Unhandled exception/interrupt */ #define _NANO_ERR_SPURIOUS_INT (0) /** Page fault */ #define _NANO_ERR_PAGE_FAULT (1) /** General protection fault */ #define _NANO_ERR_GEN_PROT_FAULT (2) /** Invalid task exit */ #define _NANO_ERR_INVALID_TASK_EXIT (3) /** Stack corruption detected */ #define _NANO_ERR_STACK_CHK_FAIL (4) /** Kernel Allocation Failure */ #define _NANO_ERR_ALLOCATION_FAIL (5) /** Unhandled exception */ #define _NANO_ERR_CPU_EXCEPTION (6) #ifndef _ASMLANGUAGE #ifdef CONFIG_INT_LATENCY_BENCHMARK void _int_latency_start(void); void _int_latency_stop(void); #else #define _int_latency_start() do { } while (0) #define _int_latency_stop() do { } while (0) #endif /** * @brief Disable all interrupts on the CPU (inline) * * This routine disables interrupts. It can be called from either interrupt, * task or fiber level. This routine returns an architecture-dependent * lock-out key representing the "interrupt disable state" prior to the call; * this key can be passed to irq_unlock() to re-enable interrupts. * * The lock-out key should only be used as the argument to the irq_unlock() * API. It should never be used to manually re-enable interrupts or to inspect * or manipulate the contents of the source register. * * This function can be called recursively: it will return a key to return the * state of interrupt locking to the previous level. * * WARNINGS * Invoking a kernel routine with interrupts locked may result in * interrupts being re-enabled for an unspecified period of time. If the * called routine blocks, interrupts will be re-enabled while another * thread executes, or while the system is idle. * * The "interrupt disable state" is an attribute of a thread. Thus, if a * fiber or task disables interrupts and subsequently invokes a kernel * routine that causes the calling thread to block, the interrupt * disable state will be restored when the thread is later rescheduled * for execution. * * @return An architecture-dependent lock-out key representing the * "interrupt disable state" prior to the call. * */ static inline __attribute__((always_inline)) unsigned int _arch_irq_lock(void) { unsigned int key = _do_irq_lock(); _int_latency_start(); return key; } /** * * @brief Enable all interrupts on the CPU (inline) * * This routine re-enables interrupts on the CPU. The @a key parameter * is an architecture-dependent lock-out key that is returned by a previous * invocation of irq_lock(). * * This routine can be called from either interrupt, task or fiber level. * * @return N/A * */ static inline __attribute__((always_inline)) void _arch_irq_unlock(unsigned int key) { if (!(key & 0x200)) { return; } _int_latency_stop(); _do_irq_unlock(); } /** interrupt/exception/error related definitions */ typedef void (*NANO_EOI_GET_FUNC) (void *); /** * The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter * to NANO_CPU_INT_REGSITER when connecting to an interrupt that does not * correspond to any IRQ line (such as spurious vector or SW IRQ) */ #define NANO_SOFT_IRQ ((unsigned int) (-1)) #ifdef CONFIG_FP_SHARING /* Definitions for the 'options' parameter to the fiber_fiber_start() API */ /** thread uses floating point unit */ #define USE_FP 0x10 #ifdef CONFIG_SSE /** thread uses SSEx instructions */ #define USE_SSE 0x20 #endif /* CONFIG_SSE */ #endif /* CONFIG_FP_SHARING */ extern int _arch_irq_connect_dynamic(unsigned int irq, unsigned int priority, void (*routine)(void *parameter), void *parameter, uint32_t flags); /** * @brief Enable a specific IRQ * @param irq IRQ */ extern void _arch_irq_enable(unsigned int irq); /** * @brief Disable a specific IRQ * @param irq IRQ */ extern void _arch_irq_disable(unsigned int irq); #ifdef CONFIG_FP_SHARING /** * @brief Enable floating point hardware resources sharing * Dynamically enable/disable the capability of a thread to share floating * point hardware resources. The same "floating point" options accepted by * fiber_fiber_start() are accepted by these APIs (i.e. USE_FP and USE_SSE). */ extern void fiber_float_enable(nano_thread_id_t thread_id, unsigned int options); extern void task_float_enable(nano_thread_id_t thread_id, unsigned int options); extern void fiber_float_disable(nano_thread_id_t thread_id); extern void task_float_disable(nano_thread_id_t thread_id); #endif /* CONFIG_FP_SHARING */ #include <stddef.h> /* for size_t */ extern void nano_cpu_idle(void); /** Nanokernel provided routine to report any detected fatal error. */ extern FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason, const NANO_ESF * pEsf); /** User provided routine to handle any detected fatal error post reporting. */ extern FUNC_NORETURN void _SysFatalErrorHandler(unsigned int reason, const NANO_ESF * pEsf); /** Dummy ESF for fatal errors that would otherwise not have an ESF */ extern const NANO_ESF _default_esf; /** * @brief Configure an interrupt vector of the specified priority * * This routine is invoked by the kernel to configure an interrupt vector of * the specified priority. To this end, it allocates an interrupt vector, * programs hardware to route interrupt requests on the specified IRQ to that * vector, and returns the vector number */ extern int _SysIntVecAlloc(unsigned int irq, unsigned int priority, uint32_t flags); /** * * @brief Program interrupt controller * * This routine programs the interrupt controller with the given vector * based on the given IRQ parameter. * * Drivers call this routine instead of IRQ_CONNECT() when interrupts are * configured statically. * */ extern void _SysIntVecProgram(unsigned int vector, unsigned int irq, uint32_t flags); /* functions provided by the kernel for usage by _SysIntVecAlloc() */ extern int _IntVecAlloc(unsigned int priority); extern void _IntVecMarkAllocated(unsigned int vector); extern void _IntVecMarkFree(unsigned int vector); #if CONFIG_DEBUG_IRQS /** * * @brief Dump out the IDT for debugging purposes * * The IDT has a strange structure which confounds direct examination in * a debugger. This function will print out its contents in human-readable * form. If unused, gc-sections will strip this function from the binary. */ void irq_debug_dump_idt(void); #endif /* CONFIG_DEBUG_IRQS */ #endif /* !_ASMLANGUAGE */ /* Segment selector definitions are shared */ #include "segselect.h" /* reboot through Reset Control Register (I/O port 0xcf9) */ #define SYS_X86_RST_CNT_REG 0xcf9 #define SYS_X86_RST_CNT_SYS_RST 0x02 #define SYS_X86_RST_CNT_CPU_RST 0x4 #define SYS_X86_RST_CNT_FULL_RST 0x08 #ifdef __cplusplus } #endif #endif /* _ARCH_IFACE_H */ |