Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/* sensor.h - public sensor driver API */

/*
 * Copyright (c) 2016 Intel Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifndef __SENSOR_H__
#define __SENSOR_H__

/**
 * @brief Sensor Interface
 * @defgroup sensor_interface Sensor Interface
 * @ingroup io_interfaces
 * @{
 */

#ifdef __cplusplus
extern "C" {
#endif

#include <stdint.h>
#include <device.h>
#include <errno.h>

/** @brief Sensor value types. */
enum sensor_value_type {
	/** val1 contains an integer value, val2 is unused. */
	SENSOR_TYPE_INT,
	/**
	 * val1 contains an integer value, val2 is the fractional value.
	 * To obtain the final value, use the formula: val1 + val2 *
	 * 10^(-6).
	 */
	SENSOR_TYPE_INT_PLUS_MICRO,
	/**
	 * @brief val1 contains a Q16.16 representation, val2 is
	 * unused.
	 */
	SENSOR_TYPE_Q16_16,
	/** @brief dval contains a floating point value. */
	SENSOR_TYPE_DOUBLE,
};

/**
 * @brief Representation of a sensor readout value.
 *
 * The meaning of the fields is dictated by the type field.
 */
struct sensor_value {
	enum sensor_value_type type;
	union {
		struct {
			int32_t val1;
			int32_t val2;
		};
		double dval;
	};
};

/**
 * @brief Sensor channels.
 */
enum sensor_channel {
	/** Acceleration on the X axis, in m/s^2. */
	SENSOR_CHAN_ACCEL_X,
	/** Acceleration on the Y axis, in m/s^2. */
	SENSOR_CHAN_ACCEL_Y,
	/** Acceleration on the Z axis, in m/s^2. */
	SENSOR_CHAN_ACCEL_Z,
	/** Acceleration on any axis. */
	SENSOR_CHAN_ACCEL_ANY,
	/** Angular velocity around the X axis, in radians/s. */
	SENSOR_CHAN_GYRO_X,
	/** Angular velocity around the Y axis, in radians/s. */
	SENSOR_CHAN_GYRO_Y,
	/** Angular velocity around the Z axis, in radians/s. */
	SENSOR_CHAN_GYRO_Z,
	/** Angular velocity on any axis. */
	SENSOR_CHAN_GYRO_ANY,
	/** Magnetic field on the X axis, in Gauss. */
	SENSOR_CHAN_MAGN_X,
	/** Magnetic field on the Y axis, in Gauss. */
	SENSOR_CHAN_MAGN_Y,
	/** Magnetic field on the Z axis, in Gauss. */
	SENSOR_CHAN_MAGN_Z,
	/** Magnetic field on any axis. */
	SENSOR_CHAN_MAGN_ANY,
	/** Temperature in degrees Celsius. */
	SENSOR_CHAN_TEMP,
	/** Pressure in kilopascal. */
	SENSOR_CHAN_PRESS,
	/**
	 * Proximity.  Adimensional.  A value of 1 indicates that an
	 * object is close.
	 */
	SENSOR_CHAN_PROX,
	/** Humidity, in milli percent. */
	SENSOR_CHAN_HUMIDITY,
	/** Illuminance in visible spectrum, in lux. */
	SENSOR_CHAN_LIGHT,
	/** Illuminance in infra-red spectrum, in lux. */
	SENSOR_CHAN_IR,
};

/**
 * @brief Sensor trigger types.
 */
enum sensor_trigger_type {
	/**
	 * Timer-based trigger, useful when the sensor does not have an
	 * interrupt line.
	 */
	SENSOR_TRIG_TIMER,
	/** Trigger fires whenever new data is ready. */
	SENSOR_TRIG_DATA_READY,
	/**
	 * Trigger fires when the selected channel varies significantly.
	 * This includes any-motion detection when the channel is
	 * acceleration or gyro. If detection is based on slope between
	 * successive channel readings, the slope threshold is configured
	 * via the @ref SENSOR_ATTR_SLOPE_TH and @ref SENSOR_ATTR_SLOPE_DUR
	 * attributes.
	 */
	SENSOR_TRIG_DELTA,
	/** Trigger fires when a near/far event is detected. */
	SENSOR_TRIG_NEAR_FAR,
	/**
	 * Trigger fires when channel reading transitions configured
	 * thresholds.  The thresholds are configured via the @ref
	 * SENSOR_ATTR_LOWER_THRESH and @ref SENSOR_ATTR_UPPER_THRESH
	 * attributes.
	 */
	SENSOR_TRIG_THRESHOLD,
};

/**
 * @brief Sensor trigger spec.
 */
struct sensor_trigger {
	/** Trigger type. */
	enum sensor_trigger_type type;
	/** Channel the trigger is set on. */
	enum sensor_channel chan;
};

/**
 * @brief Sensor attribute types.
 */
enum sensor_attribute {
	/**
	 * Sensor sampling frequency, i.e. how many times a second the
	 * sensor takes a measurement.
	 */
	SENSOR_ATTR_SAMPLING_FREQUENCY,
	/** Lower threshold for trigger. */
	SENSOR_ATTR_LOWER_THRESH,
	/** Upper threshold for trigger. */
	SENSOR_ATTR_UPPER_THRESH,
	/** Threshold for any-motion (slope) trigger. */
	SENSOR_ATTR_SLOPE_TH,
	/**
	 * Duration for which the slope values needs to be
	 * outside the threshold for the trigger to fire.
	 */
	SENSOR_ATTR_SLOPE_DUR,
	/** Oversampling factor */
	SENSOR_ATTR_OVERSAMPLING,
	/** Sensor range, in SI units. */
	SENSOR_ATTR_FULL_SCALE,
	/**
	 * The sensor value returned will be altered by the amount indicated by
	 * offset: final_value = sensor_value + offset.
	 */
	SENSOR_ATTR_OFFSET,
	/**
	 * Calibration target. This will be used by the internal chip's
	 * algorithms to calibrate itself on a certain axis, or all of them.
	 */
	SENSOR_ATTR_CALIB_TARGET,
};

typedef void (*sensor_trigger_handler_t)(struct device *dev,
					 struct sensor_trigger *trigger);

typedef int (*sensor_attr_set_t)(struct device *dev,
				 enum sensor_channel chan,
				 enum sensor_attribute attr,
				 const struct sensor_value *val);
typedef int (*sensor_trigger_set_t)(struct device *dev,
				    const struct sensor_trigger *trig,
				    sensor_trigger_handler_t handler);
typedef int (*sensor_sample_fetch_t)(struct device *dev);
typedef int (*sensor_channel_get_t)(struct device *dev,
				    enum sensor_channel chan,
				    struct sensor_value *val);

struct sensor_driver_api {
	sensor_attr_set_t attr_set;
	sensor_trigger_set_t trigger_set;
	sensor_sample_fetch_t sample_fetch;
	sensor_channel_get_t channel_get;
};

/**
 * @brief Set an attribute for a sensor
 *
 * @param dev Pointer to the sensor device
 * @param chan The channel the attribute belongs to, if any.  Some
 * attributes may only be set for all channels of a device, depending on
 * device capabilities.
 * @param attr The attribute to set
 * @param val The value to set the attribute to
 *
 * @return 0 if successful, negative errno code if failure.
 */
static inline int sensor_attr_set(struct device *dev,
				  enum sensor_channel chan,
				  enum sensor_attribute attr,
				  const struct sensor_value *val)
{
	struct sensor_driver_api *api;

	api = (struct sensor_driver_api *)dev->driver_api;
	if (!api->attr_set) {
		return -ENOTSUP;
	}

	return api->attr_set(dev, chan, attr, val);
}

/**
 * @brief Activate a sensor's trigger and set the trigger handler
 *
 * The handler will be called from a fiber, so I2C or SPI operations are
 * safe.  However, the fiber's stack is limited and defined by the
 * driver.  It is currently up to the caller to ensure that the handler
 * does not overflow the stack.
 *
 * @param dev Pointer to the sensor device
 * @param trig The trigger to activate
 * @param handler The function that should be called when the trigger
 * fires
 *
 * @return 0 if successful, negative errno code if failure.
 */
static inline int sensor_trigger_set(struct device *dev,
				     struct sensor_trigger *trig,
				     sensor_trigger_handler_t handler)
{
	struct sensor_driver_api *api;

	api = (struct sensor_driver_api *)dev->driver_api;
	if (!api->trigger_set) {
		return -ENOTSUP;
	}

	return api->trigger_set(dev, trig, handler);
}

/**
 * @brief Fetch a sample from the sensor and store it in an internal
 * driver buffer
 *
 * Read all of a sensor's active channels and, if necessary, perform any
 * additional operations necessary to make the values useful.  The user
 * may then get individual channel values by calling @ref
 * sensor_channel_get.
 *
 * Since the function communicates with the sensor device, it is unsafe
 * to call it in an ISR if the device is connected via I2C or SPI.
 *
 * @param dev Pointer to the sensor device
 *
 * @return 0 if successful, negative errno code if failure.
 */
static inline int sensor_sample_fetch(struct device *dev)
{
	struct sensor_driver_api *api;

	api = (struct sensor_driver_api *)dev->driver_api;

	return api->sample_fetch(dev);
}

/**
 * @brief Get a reading from a sensor device
 *
 * Return a useful value for a particular channel, from the driver's
 * internal data.  Before calling this function, a sample must be
 * obtained by calling @ref sensor_sample_fetch.  It is guaranteed that
 * two subsequent calls of this function for the same channels will
 * yield the same value, if @ref sensor_sample_fetch has not been called
 * in the meantime.
 *
 * @param dev Pointer to the sensor device
 * @param chan The channel to read
 * @param val Where to store the value
 *
 * @return 0 if successful, negative errno code if failure.
 */
static inline int sensor_channel_get(struct device *dev,
				     enum sensor_channel chan,
				     struct sensor_value *val)
{
	struct sensor_driver_api *api;

	api = (struct sensor_driver_api *)dev->driver_api;

	return api->channel_get(dev, chan, val);
}

#ifdef CONFIG_SENSOR_DELAYED_WORK
typedef void (*sensor_work_handler_t)(void *arg);

/**
 * @brief Sensor delayed work descriptor.
 *
 * Used by sensor drivers internally to delay function calls to a fiber
 * context.
 */
struct sensor_work {
	sensor_work_handler_t handler;
	void *arg;
};

/**
 * @brief Get a fifo to which sensor delayed work can be submitted
 *
 * If @ref CONFIG_SENSOR_DELAYED_WORK is enabled, the system creates a
 * global fiber that can execute delayed work on behalf of drivers.
 * This is useful for drivers which need a mechanism of delayed work but
 * do not create their own fibers due to system resource constraints.
 */
struct nano_fifo *sensor_get_work_fifo(void);
#endif

/**
 * @brief The value of gravitational constant in micro m/s^2.
 */
#define SENSOR_G		9806650LL

/**
 * @brief The value of constant PI in micros.
 */
#define SENSOR_PI		3141592LL

/**
 * @brief Helper function to convert acceleration from m/s^2 to Gs
 *
 * @param ms2 A pointer to a sensor_value struct holding the acceleration,
 *            in m/s^2.
 *
 * @return The converted value, in Gs.
 */
static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)
{
	int64_t micro_ms2 = ms2->val1 * 1000000LL + ms2->val2;

	if (micro_ms2 > 0) {
		return (micro_ms2 + SENSOR_G / 2) / SENSOR_G;
	} else {
		return (micro_ms2 - SENSOR_G / 2) / SENSOR_G;
	}
}

/**
 * @brief Helper function to convert acceleration from Gs to m/s^2
 *
 * @param g The G value to be converted.
 * @param ms2 A pointer to a sensor_value struct, where the result is stored.
 */
static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)
{
	ms2->type = SENSOR_TYPE_INT_PLUS_MICRO;
	ms2->val1 = ((int64_t)g * SENSOR_G) / 1000000LL;
	ms2->val2 = ((int64_t)g * SENSOR_G) % 1000000LL;
}

/**
 * @brief Helper function for converting radians to degrees.
 *
 * @param rad A pointer to a sensor_value struct, holding the value in radians.
 *
 * @return The converted value, in degrees.
 */
static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)
{
	int64_t micro_rad_s = rad->val1 * 1000000LL + rad->val2;

	if (micro_rad_s > 0) {
		return (micro_rad_s * 180LL + SENSOR_PI / 2) / SENSOR_PI;
	} else {
		return (micro_rad_s * 180LL - SENSOR_PI / 2) / SENSOR_PI;
	}
}

/**
 * @brief Helper function for converting degrees to radians.
 *
 * @param d The value (in degrees) to be converted.
 * @param rad A pointer to a sensor_value struct, where the result is stored.
 */
static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)
{
	rad->type = SENSOR_TYPE_INT_PLUS_MICRO;
	rad->val1 = ((int64_t)d * SENSOR_PI / 180LL) / 1000000LL;
	rad->val2 = ((int64_t)d * SENSOR_PI / 180LL) % 1000000LL;
}

#ifdef __cplusplus
}
#endif

/**
 * @}
 */

#endif /* __SENSOR_H__ */