Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | /* * Copyright (c) 2016 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <i2c.h> #include <init.h> #include <sensor.h> #include "sensor_bma280.h" static int bma280_reg_burst_read(struct bma280_data *drv_data, uint8_t reg, uint8_t *buff, int buff_len) { struct i2c_msg msgs[2] = { { .buf = ®, .len = 1, .flags = I2C_MSG_WRITE | I2C_MSG_RESTART, }, { .buf = buff, .len = buff_len, .flags = I2C_MSG_READ | I2C_MSG_STOP, }, }; return i2c_transfer(drv_data->i2c, msgs, 2, BMA280_I2C_ADDRESS); } int bma280_reg_read(struct bma280_data *drv_data, uint8_t reg, uint8_t *val) { return bma280_reg_burst_read(drv_data, reg, val, 1); } int bma280_reg_write(struct bma280_data *drv_data, uint8_t reg, uint8_t val) { uint8_t tx_buf[2] = {reg, val}; return i2c_write(drv_data->i2c, tx_buf, sizeof(tx_buf), BMA280_I2C_ADDRESS); } int bma280_reg_update(struct bma280_data *drv_data, uint8_t reg, uint8_t mask, uint8_t val) { uint8_t old_val = 0; uint8_t new_val; if (bma280_reg_read(drv_data, reg, &old_val) != 0) { return -EIO; } new_val = old_val & ~mask; new_val |= val & mask; return bma280_reg_write(drv_data, reg, new_val); } static int bma280_sample_fetch(struct device *dev) { struct bma280_data *drv_data = dev->driver_data; uint8_t buf[6]; uint8_t lsb; int rc; /* * since all accel data register addresses are consecutive, * a burst read can be used to read all the samples */ rc = bma280_reg_burst_read(drv_data, BMA280_REG_ACCEL_X_LSB, buf, 6); if (rc != 0) { DBG("Could not read accel axis data\n"); return -EIO; } lsb = (buf[0] & BMA280_ACCEL_LSB_MASK) >> BMA280_ACCEL_LSB_SHIFT; drv_data->x_sample = (((int8_t)buf[1]) << BMA280_ACCEL_LSB_BITS) | lsb; lsb = (buf[2] & BMA280_ACCEL_LSB_MASK) >> BMA280_ACCEL_LSB_SHIFT; drv_data->y_sample = (((int8_t)buf[3]) << BMA280_ACCEL_LSB_BITS) | lsb; lsb = (buf[4] & BMA280_ACCEL_LSB_MASK) >> BMA280_ACCEL_LSB_SHIFT; drv_data->z_sample = (((int8_t)buf[5]) << BMA280_ACCEL_LSB_BITS) | lsb; rc = bma280_reg_read(drv_data, BMA280_REG_TEMP, (uint8_t *)&drv_data->temp_sample); if (rc != 0) { DBG("Could not read temperature data\n"); return -EIO; } return 0; } static int bma280_channel_get(struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct bma280_data *drv_data = dev->driver_data; int64_t raw_val; /* * See datasheet "Sensor data" section for * more details on processing sample data. */ if (chan == SENSOR_CHAN_ACCEL_X) { raw_val = drv_data->x_sample; } else if (chan == SENSOR_CHAN_ACCEL_Y) { raw_val = drv_data->y_sample; } else if (chan == SENSOR_CHAN_ACCEL_Z) { raw_val = drv_data->z_sample; } else if (chan == SENSOR_CHAN_TEMP) { /* temperature_val = 23 + sample / 2 */ val->type = SENSOR_TYPE_INT_PLUS_MICRO; val->val1 = (drv_data->temp_sample >> 1) + 23; val->val2 = 500000 * (drv_data->temp_sample & 1); return 0; } else { return -ENOTSUP; } /* * accel_val = (sample * BMA280_PMU_FULL_RAGE) / * (2^data_width * 10^6) */ val->type = SENSOR_TYPE_INT_PLUS_MICRO; raw_val = (raw_val * BMA280_PMU_FULL_RANGE) / (1 << (8 + BMA280_ACCEL_LSB_BITS)); val->val1 = raw_val / 1000000; val->val2 = raw_val % 1000000; /* normalize val to make sure val->val2 is positive */ if (val->val2 < 0) { val->val1 -= 1; val->val2 += 1000000; } return 0; } static struct sensor_driver_api bma280_driver_api = { #if CONFIG_BMA280_TRIGGER .attr_set = bma280_attr_set, .trigger_set = bma280_trigger_set, #endif .sample_fetch = bma280_sample_fetch, .channel_get = bma280_channel_get, }; int bma280_init(struct device *dev) { struct bma280_data *drv_data = dev->driver_data; uint8_t id = 0; int rc; dev->driver_api = &bma280_driver_api; drv_data->i2c = device_get_binding(CONFIG_BMA280_I2C_MASTER_DEV_NAME); if (drv_data->i2c == NULL) { DBG("Could not get pointer to %s device\n", CONFIG_BMA280_I2C_MASTER_DEV_NAME); return -EINVAL; } /* read device ID */ rc = bma280_reg_read(drv_data, BMA280_REG_CHIP_ID, &id); if (rc != 0) { DBG("Could not read chip id\n"); return -EIO; } if (id != BMA280_CHIP_ID) { DBG("Unexpected chip id (%x)\n", id); return -EIO; } /* set the data filter bandwidth */ rc = bma280_reg_write(drv_data, BMA280_REG_PMU_BW, BMA280_PMU_BW); if (rc != 0) { DBG("Could not set data filter bandwidth\n"); return -EIO; } /* set g-range */ rc = bma280_reg_write(drv_data, BMA280_REG_PMU_RANGE, BMA280_PMU_RANGE); if (rc != 0) { DBG("Could not set data g-range\n"); return -EIO; } #ifdef CONFIG_BMA280_TRIGGER rc = bma280_init_interrupt(dev); if (rc != 0) { DBG("Could not initialize interrupts\n"); return -EIO; } #endif return 0; } struct bma280_data bma280_driver; DEVICE_INIT(bma280, CONFIG_BMA280_NAME, bma280_init, &bma280_driver, NULL, SECONDARY, CONFIG_BMA280_INIT_PRIORITY); |