Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/* spi_k64.c - Driver implementation for K64 SPI controller */

/*
 * Copyright (c) 2015-2016 Wind River Systems, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Portions of this file are derived from material that is
 * Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice,
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <errno.h>

#include <nanokernel.h>
#include <arch/cpu.h>

#include <misc/__assert.h>
#include <board.h>
#include <init.h>

#include <sys_io.h>
#include <limits.h>

#include <spi.h>
#include <spi/spi_k64.h>
#include "spi_k64_priv.h"

#ifndef CONFIG_SPI_DEBUG
#define DBG(...) do { } while ((0))
#else
#if defined(CONFIG_STDOUT_CONSOLE)
#include <stdio.h>
#define DBG printf
#else
#include <misc/printk.h>
#define DBG printk
#endif /* CONFIG_STDOUT_CONSOLE */
#endif /* CONFIG_SPI_DEBUG */


/* SPI protocol frequency = K64 bus clock frequency, in hz */

#define SPI_K64_PROTOCOL_FREQ (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / \
							CONFIG_K64_BUS_CLOCK_DIVIDER)

/* SPI protocol period, in ns */

#define SPI_K64_PROTOCOL_PERIOD_NS	(NSEC_PER_SEC/SPI_K64_PROTOCOL_FREQ)

/* # of possible SPI baud rate and delay prescaler and scaler values */

#define SPI_K64_NUM_PRESCALERS	4
#define SPI_K64_NUM_SCALERS		16

/*
 * SPI baud rate prescaler and scaler values, indexed by the clocking and timing
 * attribute register (CTAR) parameters CTAR[PBR] and CTAR[BR], respectively.
 */

static const uint32_t baud_rate_prescaler[] = { 2, 3, 5, 7 };
static const uint32_t baud_rate_scaler[] = {
	2, 4, 6, 8, 16, 32, 64, 128, 256, 512,
	1024, 2048, 4096, 8192, 16384, 32768
};
/*
 * SPI delay prescaler and scaler values, indexed by clocking and timing
 * attribute register (CTAR) parameter pairs:
 * CTAR[PCSSCK]/CTAR[CSSCK] for the PCS to SCK delay,
 * CTAR[PASC]/CTAR[ASC] for the after SCK delay, and
 * CTAR[PDT]/CTAR[DT] for the after transfer delay.
 */

static const uint32_t delay_prescaler[] = { 1, 3, 5, 7 };
static const uint32_t delay_scaler[] = {
	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
	2048, 4096, 8192, 16384, 32768, 65536
};


/**
 * @brief Halt SPI module operation.
 * @param dev Pointer to the device structure for the driver instance
 * @return None.
 */
static inline void spi_k64_halt(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;

	/* Ensure module operation is stopped */

	sys_set_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_HALT_BIT);

	while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) {
		DBG("SPI Controller dev %p is running.  Waiting for Halt.\n", dev);
	}

}

/**
 * @brief Enable SPI module operation.
 * @param dev Pointer to the device structure for the driver instance
 * @return None.
 */
static inline void spi_k64_start(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;

	/* Allow module operation */

	sys_clear_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_HALT_BIT);

}

/**
 * @brief Set a SPI baud rate nearest to the desired rate, without exceeding it.
 * @param baud_rate The desired baud rate.
 * @param ctar_ptr Pointer to clocking and timing attribute storage.
 * @return The calculated baud rate or 0 if an error occurred.
 */
static uint32_t spi_k64_set_baud_rate(uint32_t baud_rate, uint32_t *ctar_ptr)
{
	/*
	 * The 'volatile' attribute is added to some of the variables in this
	 * function to prevent bad code generation by gcc toolchains for ARM
	 * when an optimization setting above -O0 is used.
	 *
	 * Specifically, a register is loaded with the constant 0 and is used as
	 * the divisor in a following divide instruction, resulting in a
	 * divide-by-zero exception.
	 * This issue has been seen with gcc versions 4.8.1 and 5.2.0.
	 */

	/* prescaler values,CTAR[PBR] */
	uint32_t prescaler;
	volatile uint32_t best_prescaler;
	/* scaler values, CTAR[BR] */
	uint32_t scaler;
	volatile uint32_t best_scaler;
	/* doubler values,CTAR[DBR]-1 */
	uint32_t dbr, best_dbr;
	/* baud rate */
	uint32_t calc_baud_rate;
	volatile uint32_t best_baud_rate;
	/* calculated differences */
	uint32_t diff, min_diff;

	min_diff = 0xFFFFFFFFU;
	best_dbr = 1;

	/*
	 * Master mode is assumed.
	 *
	 * Find the combination of prescaler, scaler and doubler factors that
	 * results in the baud rate closest to the requested value, without
	 * exceeding it.
	 */

	DBG("spi_k64_set_baud_rate - ");

	/*
	 * Initialize the prescaler and scaler to their maximum values to calculate
	 * the minimum baud rate and check if it is greater than the desired rate.
	 */

	best_prescaler = SPI_K64_NUM_PRESCALERS - 1;
	best_scaler = SPI_K64_NUM_SCALERS - 1;
	best_baud_rate = SPI_K64_PROTOCOL_PERIOD_NS /
						(baud_rate_prescaler[best_prescaler] *
							baud_rate_prescaler[best_scaler]);

	if (best_baud_rate > baud_rate) {

		DBG("ERROR : Minimum baud rate %d is greater than desired rate %d\n",
			best_baud_rate, baud_rate);

		return 0;
	}


	/*
	 * Note that no further combinations are checked if the calculated baud rate
	 * equals the requested baud rate.
	 */

	for (prescaler = 0;
		(prescaler < SPI_K64_NUM_PRESCALERS) && min_diff;
		prescaler++) {

		for (scaler = 0; (scaler < SPI_K64_NUM_SCALERS) && min_diff; scaler++) {

			for (dbr = 1; (dbr < 3) && min_diff; dbr++) {

				calc_baud_rate = ((SPI_K64_PROTOCOL_FREQ * dbr) /
									(baud_rate_prescaler[prescaler] *
										baud_rate_scaler[scaler]));

				/* ensure the rate will not exceed the one requested */

				if (baud_rate >= calc_baud_rate) {

					diff = baud_rate - calc_baud_rate;

					if (min_diff > diff) {

						/* a better match was found */

						min_diff = diff;
						best_prescaler = prescaler;
						best_scaler = scaler;
						best_baud_rate = calc_baud_rate;
						best_dbr = dbr;
					}

				}

			}

		}

	}

	/* save the best baud rate dbr, prescaler and scaler */

	*ctar_ptr = *ctar_ptr | SPI_K64_CTAR_DBR_SET(best_dbr - 1) |
				SPI_K64_CTAR_PBR_SET(best_prescaler) | best_scaler;

	/* return the actual baud rate */

	DBG("%d bps desired, %d bps set\n", baud_rate, best_baud_rate);

	return best_baud_rate;
}

/**
 * @brief Set the specified delay nearest to the desired value, but not lower.
 * @param delay_id The delay identifier.
 * @param delay_ns The desired delay value, in ns.
 * @param ctar_ptr Pointer to clocking and timing attribute storage.
 * @return The calculated delay or 0 if an error occurred.
 */
static uint32_t spi_k64_set_delay(enum spi_k64_delay_id delay_id,
									uint32_t delay_ns,
									uint32_t *ctar_ptr)
{
	/*
	 * The 'volatile' attribute is added to some of the variables in this
	 * function to prevent bad code generation by gcc toolchains for ARM
	 * when an optimization setting above -O0 is used.
	 *
	 * Specifically, a register is loaded with the constant 0 and is used as
	 * the divisor in a following divide instruction, resulting in a
	 * divide-by-zero exception.
	 * This issue has been seen with gcc versions 4.8.1 and 5.2.0.
	 */

	uint32_t prescaler;							/* prescaler values */
	volatile uint32_t best_prescaler;
	uint32_t scaler;							/* scaler values */
	volatile uint32_t best_scaler;
	uint32_t calc_delay;						/* delay values */
	volatile uint32_t best_delay;
	uint32_t diff, min_diff;					/* difference values */

	DBG("spi_k64_set_delay - ");

	/*
	 * This function can calculate the clocking and timing attribute register
	 * (CTAR) values for:
	 * - PCS to SCK delay prescaler (PCSSCK) and scaler (CSSCK),
	 * - After SCK delay prescaler (PASC) and scaler (ASC), or
	 * - Delay after transfer prescaler (PDT) and scaler (DT).
	 */

	if ((delay_id != DELAY_PCS_TO_SCK) && (delay_id != DELAY_AFTER_SCK) &&
		(delay_id != DELAY_AFTER_XFER)) {

		DBG("ERROR : Unknown delay type %d\n", delay_id);

		return 0;
	}

	/*
	 * Initialize the prescaler and scaler to their maximum values to calculate
	 * the maximum delay and check if it is less than the desired delay.
	 */

	best_prescaler = SPI_K64_NUM_PRESCALERS - 1;
	best_scaler = SPI_K64_NUM_SCALERS - 1;
	best_delay = SPI_K64_PROTOCOL_PERIOD_NS * delay_prescaler[best_prescaler] *
				 delay_scaler[best_scaler];

	if (best_delay < delay_ns) {

		DBG("ERROR : Maximum delay %d does meet desired minimum of %d\n",
			best_delay, delay_ns);

		return 0;
	}

	min_diff = 0xFFFFFFFFU;

	/*
	 * Check if the minimum delay (prescaler value = 1, scaler value = 2) is
	 * greater than the desired delay.  If so, set the prescaler and scaler to
	 * their associated minimum in the CTAR (0).
	 */

	calc_delay = SPI_K64_PROTOCOL_PERIOD_NS * 2;

	if (calc_delay >= delay_ns) {
		best_prescaler = 0;
		best_scaler = 0;
		min_diff = 0;	/* skip remaining calculations */
	}


	/*
	 * Note that no further combinations are checked if the calculated delay
	 * equals the requested delay.
	 */

	for (prescaler = 0;
		(prescaler < SPI_K64_NUM_PRESCALERS) && min_diff;
		prescaler++) {

		for (scaler = 0; (scaler < SPI_K64_NUM_SCALERS) && min_diff; scaler++) {

			calc_delay = SPI_K64_PROTOCOL_PERIOD_NS *
						delay_prescaler[prescaler] * delay_scaler[scaler];

			/* ensure the delay is at least as long as the one requested */

			if (calc_delay >= delay_ns) {

				diff = calc_delay - delay_ns;

				if (min_diff > diff) {

					/* a better match was found */

					min_diff = diff;
					best_prescaler = prescaler;
					best_scaler = scaler;
					best_delay = calc_delay;
				}

			}

		}

	}

	/* save the best delay prescaler and scaler */

	switch (delay_id) {

	case DELAY_PCS_TO_SCK:
		*ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PCSSCK_SET(best_prescaler) |
					SPI_K64_CTAR_CSSCK_SET(best_scaler);
		DBG("DELAY_PCS_TO_SCK: ");
		break;

	case DELAY_AFTER_SCK:
		*ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PASC_SET(best_prescaler) |
					SPI_K64_CTAR_ASC_SET(best_scaler);
		DBG("DELAY_AFTER_SCK: ");
		break;

	case DELAY_AFTER_XFER:
		*ctar_ptr = *ctar_ptr | SPI_K64_CTAR_PDT_SET(best_prescaler) |
					SPI_K64_CTAR_DT_SET(best_scaler);
		DBG("DELAY_AFTER_XFER: ");
		break;

	default:
		break;

	}

	/* return the actual delay */

	DBG("%d delay desired, %d delay set\n", delay_ns, best_delay);

	return best_delay;
}


/**
 * @brief Configure the SPI host controller for operating against slaves
 * @param dev Pointer to the device structure for the driver instance
 * @param config Pointer to the application provided configuration
 *
 * @return 0 if successful, another DEV_* code otherwise.
 */
static int spi_k64_configure(struct device *dev, struct spi_config *config)
{
	struct spi_k64_config *info = dev->config->config_info;
	struct spi_k64_data *spi_data = dev->driver_data;
	uint32_t flags = config->config;
	uint32_t mcr;		/* mode configuration attributes, for MCR */
	uint32_t ctar = 0;	/* clocking and timing attributes, for CTAR */
	uint32_t frame_sz;	/* frame size, in bits */

	DBG("spi_k64_configure: dev %p (regs @ 0x%x), ", dev, info->regs);
	DBG("config 0x%x, freq 0x%x",
		config->config, config->max_sys_freq);

	 /* Disable transfer operations during configuration */

	spi_k64_halt(dev);

	/*
	 * Set the common configuration:
	 * Master mode, normal SPI transfers, PCS strobe disabled,
	 * Rx overflow data ignored, PCSx inactive low signal, Doze disabled,
	 * Rx/Tx FIFOs enabled.
	 *
	 * Also, keep transfers disabled.
	 */

	mcr = SPI_K64_MCR_MSTR | SPI_K64_MCR_HALT;

	/* Set PCSx signal polarities and continuous SCK, as requested */

	mcr |= (SPI_K64_MCR_PCSIS_SET(SPI_PCS_POL_GET(flags)) |
			SPI_K64_MCR_CONT_SCKE_SET(SPI_CONT_SCK_GET(flags)));

	sys_write32(mcr, (info->regs + SPI_K64_REG_MCR));


	/* Set clocking and timing parameters */


	/* SCK polarity and phase, and bit order of data */

	if (flags & SPI_MODE_CPOL) {
		ctar |= SPI_K64_CTAR_CPOL;
	}

	if (flags & SPI_MODE_CPHA) {
		ctar |= SPI_K64_CTAR_CPHA;
	}

	if (flags & SPI_TRANSFER_MASK) {
		ctar |= SPI_K64_CTAR_LSBFE;
	}

	/*
	 * Frame size is limited to 16 bits (vs. 8 bit value in struct spi_config),
	 * programmed as: (frame_size - 1)
	 */

	frame_sz = SPI_WORD_SIZE_GET(flags);
	if (frame_sz > SPI_K64_WORD_SIZE_MAX) {
		return -ENOTSUP;
	}

	spi_data->frame_sz = frame_sz;

	ctar |= (SPI_K64_CTAR_FRMSZ_SET(frame_sz - 1));

	/* Set baud rate and signal timing parameters (delays) */

	if (spi_k64_set_baud_rate(config->max_sys_freq, &ctar) == 0) {
		return -ENOTSUP;
	}

	/*
	 * Set signal timing parameters (delays):
	 * - PCS to SCK delay is set to the minimum, CTAR[PCSSCK] = CTAR[CSSCK] = 0;
	 * - After SCK delay is set to at least half of the baud rate period,
	 *   (using the combination of CTAR[PASC] and CTAR[ASC]); and
	 * - Delay after transfer is set to the minimum, CTAR[PDT] = CTAR[DT] = 0.
	 */

	if (spi_k64_set_delay(DELAY_AFTER_SCK,
							(NSEC_PER_SEC / 2) / config->max_sys_freq,
							&ctar) == 0) {
		return -ENOTSUP;
	}


	DBG("spi_k64_configure: MCR: 0x%x CTAR0: 0x%x\n", mcr, ctar);

	sys_write32(ctar, (info->regs + SPI_K64_REG_CTAR0));

	/* Initialize Tx/Rx parameters */

	spi_data->tx_buf = spi_data->rx_buf = NULL;
	spi_data->tx_buf_len = spi_data->rx_buf_len = 0;

	/* Store continuous slave/PCS signal selection mode */

	spi_data->cont_pcs_sel = SPI_CONT_PCS_GET(flags);

	return 0;
}

/**
 * @brief Select a slave to transmit data to.
 *
 * @param dev Pointer to the device structure for the driver instance
 * @param slave An integer identifying the slave, where the bit values denote:
 *				0 - Negate the associated PCS signal
 *				1 - Assert the associated PCS signal
 *
 * Note: The polarity of each PCS signal is defined by the Peripheral Chip
 * Select inactive state setting, MCR[PCSIS], determined by the configuration
 * data parameter to spi_configure()/spi_k64_configure().
 *
 * @return 0 if successful, another DEV_* code otherwise.
 */
static int spi_k64_slave_select(struct device *dev, uint32_t slave)
{
	struct spi_k64_data *spi_data = dev->driver_data;

	/*
	 * Note that the number of valid PCS signals differs for each
	 * K64 SPI module:
	 * - SPI0 uses PCS0-5;
	 * - SPI1 uses PCS0-3;
	 * - SPI2 uses PCS0-1;
	 */

	DBG("spi_k64_slave_select: slave 0x%x selected for dev %p\n",
		(uint8_t)slave, dev);

	spi_data->pcs = (uint8_t)slave;

	return 0;
}

/**
 * @brief Read and/or write a defined amount of data through an SPI driver
 *
 * @param dev Pointer to the device structure for the driver instance
 * @param tx_buf Memory buffer that data should be transferred from
 * @param tx_buf_len Size of the memory buffer available for reading from
 * @param rx_buf Memory buffer that data should be transferred to
 * @param rx_buf_len Size of the memory buffer available for writing to
 *
 * @return 0 if successful, another DEV_* code otherwise.
 */
static int spi_k64_transceive(struct device *dev,
				const void *tx_buf, uint32_t tx_buf_len,
				void *rx_buf, uint32_t rx_buf_len)
{
	struct spi_k64_config *info = dev->config->config_info;
	struct spi_k64_data *spi_data = dev->driver_data;
	uint32_t int_config;	/* interrupt configuration */

	DBG("spi_k64_transceive: dev %p, Tx buf %p, ", dev, tx_buf);
	DBG("Tx len %u, Rx buf %p, Rx len %u\n", tx_buf_len, rx_buf, rx_buf_len);

#ifdef CONFIG_SPI_DEBUG
	__ASSERT(!((tx_buf_len && (tx_buf == NULL)) ||
				(rx_buf_len && (rx_buf == NULL))),
			"spi_k64_transceive: ERROR - NULL buffer");
#endif

	/* Check Tx FIFO status */

	if (tx_buf_len &&
		((sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TFFF) == 0)) {

		DBG("spi_k64_transceive: Tx FIFO is already full\n");
		return -EBUSY;
	}

	/* Set buffers info */
	spi_data->tx_buf = tx_buf;
	spi_data->tx_buf_len = tx_buf_len;
	spi_data->rx_buf = rx_buf;
	spi_data->rx_buf_len = rx_buf_len;

	/* enable transfer operations - must be done before enabling interrupts */

	spi_k64_start(dev);

	/*
	 * Enable interrupts:
	 * - Transmit FIFO Fill (Tx FIFO not full); and/or
	 * - Receive FIFO Drain (Rx FIFO not empty);
	 *
	 * Note: DMA requests are not supported.
	 */

	int_config = sys_read32(info->regs + SPI_K64_REG_RSER);

	if (tx_buf_len) {

		int_config |= SPI_K64_RSER_TFFF_RE;
	}

	if (rx_buf_len) {

		int_config |= SPI_K64_RSER_RFDF_RE;
	}

	sys_write32(int_config, (info->regs + SPI_K64_REG_RSER));

    /* wait for transfer to complete */

	device_sync_call_wait(&spi_data->sync_info);

    /* check completion status */

	if (spi_data->error) {
		spi_data->error = 0;
		return -EIO;
	}

	return 0;
}

/**
 * @brief Suspend SPI host controller operations.
 * @param dev Pointer to the device structure for the driver instance
 * @return 0 if successful, another DEV_* code otherwise.
 */
static int spi_k64_suspend(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;

	DBG("spi_k64_suspend: %p\n", dev);

	/* disable module */

	sys_set_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_MDIS_BIT);

	irq_disable(info->irq);

	while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) {
		DBG("SPI Controller dev %p is running.  Waiting to stop.\n", dev);
	}

	return 0;
}

/**
 * @brief Resume SPI host controller operations.
 * @param dev Pointer to the device structure for the driver instance
 * @return 0 if successful, another DEV_* code otherwise.
 */
static int spi_k64_resume(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;

	DBG("spi_k64_resume: %p\n", dev);

	/* enable module */

	sys_clear_bit((info->regs + SPI_K64_REG_MCR), SPI_K64_MCR_MDIS_BIT);

	irq_enable(info->irq);

	return 0;
}

/**
 * @brief SPI module data push (write) operation.
 * @param dev Pointer to the device structure for the driver instance
 * @return None.
 */
static void spi_k64_push_data(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;
	struct spi_k64_data *spi_data = dev->driver_data;
	uint32_t data;
#ifdef CONFIG_SPI_DEBUG
	uint32_t cnt = 0;		/* # of bytes pushed */
#endif

	DBG("spi_k64_push_data - ");

	do {	/* initial status already checked by spi_k64_isr() */

		if (spi_data->tx_buf && (spi_data->tx_buf_len > 0)) {

			if (spi_data->frame_sz > CHAR_BIT) {

				/* get 2nd byte with frame sizes larger than 8 bits  */

				data = (uint32_t)(*(uint16_t *)(spi_data->tx_buf));

				spi_data->tx_buf += 2;
				spi_data->tx_buf_len -= 2;

#ifdef CONFIG_SPI_DEBUG
				cnt += 2;
#endif
			} else {

				data = (uint32_t)(*(spi_data->tx_buf));

				spi_data->tx_buf++;
				spi_data->tx_buf_len--;

#ifdef CONFIG_SPI_DEBUG
				cnt++;
#endif
			}

			/* Write data to the selected slave */

			if (spi_data->cont_pcs_sel && (spi_data->tx_buf_len == 0)) {

				/* clear continuous PCS enabling in the last frame */

				sys_write32((data | SPI_K64_PUSHR_PCS_SET(spi_data->pcs)),
							(info->regs + SPI_K64_REG_PUSHR));

			} else {

				sys_write32((data | SPI_K64_PUSHR_PCS_SET(spi_data->pcs) |
								SPI_K64_PUSHR_CONT_SET(spi_data->cont_pcs_sel)),
							(info->regs + SPI_K64_REG_PUSHR));
			}

			/* Clear interrupt */

			sys_write32(SPI_K64_SR_TFFF, (info->regs + SPI_K64_REG_SR));

		} else {

			/* Nothing more to push */

			break;
		}

	} while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TFFF);

	DBG("pushed: %d\n", cnt);

}

/**
 * @brief SPI module data pull (read) operation.
 * @param dev Pointer to the device structure for the driver instance
 * @return None.
 */
static void spi_k64_pull_data(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;
	struct spi_k64_data *spi_data = dev->driver_data;
	uint16_t data;
#ifdef CONFIG_SPI_DEBUG
	uint32_t cnt = 0;		/* # of bytes pulled */
#endif

	DBG("spi_k64_pull_data - ");

	do {	/* initial status already checked by spi_k64_isr() */

		if (spi_data->rx_buf && spi_data->rx_buf_len > 0) {

			data = (uint16_t)sys_read32(info->regs + SPI_K64_REG_POPR);

			if (spi_data->frame_sz > CHAR_BIT) {

				/* store 2nd byte with frame sizes larger than 8 bits  */

				*((uint16_t *)(spi_data->rx_buf)) = data;
				spi_data->rx_buf += 2;
				spi_data->rx_buf_len -= 2;

#ifdef CONFIG_SPI_DEBUG
				cnt += 2;
#endif
			} else {

				*(spi_data->rx_buf) = (uint8_t)data;
				spi_data->rx_buf++;
				spi_data->rx_buf_len--;

#ifdef CONFIG_SPI_DEBUG
				cnt++;
#endif
			}

			/* Clear interrupt */

			sys_write32(SPI_K64_SR_RFDF, (info->regs + SPI_K64_REG_SR));

		} else {

			/* No buffer to store data to */

			break;
		}

	} while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_RFDF);


	DBG("pulled: %d\n", cnt);
}

/**
 * @brief Complete SPI module data transfer operations.
 * @param dev Pointer to the device structure for the driver instance
 * @param error Error condition (0 = no error, otherwise an error occurred)
 * @return None.
 */
static void spi_k64_complete(struct device *dev, uint32_t error)
{
	struct spi_k64_data *spi_data = dev->driver_data;
	struct spi_k64_config *info = dev->config->config_info;
	uint32_t int_config;	/* interrupt configuration */

	if (error) {

		DBG("spi_k64_complete - ERROR condition\n");

		goto complete;
	}

	/* Check for a completed transfer */

	if (spi_data->tx_buf && (spi_data->tx_buf_len == 0) && !spi_data->rx_buf) {

		/* disable Tx interrupts */

		int_config = sys_read32(info->regs + SPI_K64_REG_RSER);

		int_config &= ~SPI_K64_RSER_TFFF_RE;

		sys_write32(int_config, (info->regs + SPI_K64_REG_RSER));

	} else if (spi_data->rx_buf && (spi_data->rx_buf_len == 0) &&
				!spi_data->tx_buf) {

		/* disable Rx interrupts */

		int_config = sys_read32(info->regs + SPI_K64_REG_RSER);

		int_config &= ~SPI_K64_RSER_RFDF_RE;

		sys_write32(int_config, (info->regs + SPI_K64_REG_RSER));

	} else if (spi_data->tx_buf && spi_data->tx_buf_len == 0 &&
			spi_data->rx_buf && spi_data->rx_buf_len == 0) {

		/* disable Tx, Rx interrupts */

		int_config = sys_read32(info->regs + SPI_K64_REG_RSER);

		int_config &= ~(SPI_K64_RSER_TFFF_RE | SPI_K64_RSER_RFDF_RE);

		sys_write32(int_config, (info->regs + SPI_K64_REG_RSER));

	} else {

		return;
	}

complete:

	spi_data->tx_buf = spi_data->rx_buf = NULL;
	spi_data->tx_buf_len = spi_data->rx_buf_len = 0;

	/* Disable transfer operations */

	spi_k64_halt(dev);

    /* Save status */

	spi_data->error = error;

    /* Signal completion */

	device_sync_call_complete(&spi_data->sync_info);
}

/**
 * @brief SPI module interrupt handler.
 * @param arg Pointer to the device structure for the driver instance
 * @return None.
 */
void spi_k64_isr(void *arg)
{
	struct device *dev = arg;
	struct spi_k64_config *info = dev->config->config_info;
	uint32_t error = 0;
	uint32_t status;

	status = sys_read32(info->regs + SPI_K64_REG_SR);

	DBG("spi_k64_isr: dev %p, status 0x%x\n", dev, status);

	if (status & (SPI_K64_SR_RFOF | SPI_K64_SR_TFUF)) {

		/* Unrecoverable error: Rx overflow, Tx underflow */

		error = 1;

	} else {

		if (status & SPI_K64_SR_TFFF) {
			spi_k64_push_data(dev);
		}

		if (status & SPI_K64_SR_RFDF) {
			spi_k64_pull_data(dev);
		}

	}

	/* finish processing, if data transfer is complete */

	spi_k64_complete(dev, error);
}

static struct spi_driver_api k64_spi_api = {
	.configure = spi_k64_configure,
	.slave_select = spi_k64_slave_select,
	.transceive = spi_k64_transceive,
	.suspend = spi_k64_suspend,
	.resume = spi_k64_resume,
};


int spi_k64_init(struct device *dev)
{
	struct spi_k64_config *info = dev->config->config_info;
	struct spi_k64_data *data = dev->driver_data;
	uint32_t mcr;

	dev->driver_api = &k64_spi_api;

	/* Enable module clocking */

	sys_set_bit(info->clk_gate_reg, info->clk_gate_bit);

	/*
	 * Ensure module operation is stopped and enabled before writing anything
	 * more to the registers.
	 * (Clear MCR[MDIS] and set MCR[HALT].)
	 */

	DBG("halt\n");
	mcr = SPI_K64_MCR_HALT;
	sys_write32(mcr, (info->regs + SPI_K64_REG_MCR));

	while (sys_read32(info->regs + SPI_K64_REG_SR) & SPI_K64_SR_TXRXS) {
		DBG("SPI Controller dev %p is running.  Waiting for Halt.\n", dev);
	}

	/* Clear Tx and Rx FIFOs */

	mcr |= (SPI_K64_MCR_CLR_RXF | SPI_K64_MCR_CLR_TXF);

	DBG("fifo clr\n");
	sys_write32(mcr, (info->regs + SPI_K64_REG_MCR));

	/* Set master mode */

	mcr = SPI_K64_MCR_MSTR | SPI_K64_MCR_HALT;
	DBG("master mode\n");
	sys_write32(mcr, (info->regs + SPI_K64_REG_MCR));

	/* Disable SPI module interrupt generation */

	DBG("irq disable\n");
	sys_write32(0, (info->regs + SPI_K64_REG_RSER));

	/* Clear status */

	DBG("status clr\n");
	sys_write32((SPI_K64_SR_RFDF | SPI_K64_SR_RFOF | SPI_K64_SR_TFUF |
				SPI_K64_SR_EOQF	| SPI_K64_SR_TCF),
				(info->regs + SPI_K64_REG_SR));

    /* Set up the synchronous call mechanism */

	device_sync_call_init(&data->sync_info);

	/* Configure and enable SPI module IRQs */

	info->config_func();

	irq_enable(info->irq);

	/*
	 * Enable Rx overflow interrupt generation.
	 * Note that Tx underflow is only generated when in slave mode.
	 */

	DBG("rxfifo overflow enable\n");
	sys_write32(SPI_K64_RSER_RFOF_RE, (info->regs + SPI_K64_REG_RSER));

	DBG("K64 SPI Driver initialized on device: %p\n", dev);

	/* operation remains disabled (MCR[HALT] = 1)*/

	return 0;
}

/* system bindings */
#ifdef CONFIG_SPI_K64_0

void spi_config_0_irq(void);

struct spi_k64_data spi_k64_data_port_0;

struct spi_k64_config spi_k64_config_0 = {
	.regs = SPI_K64_0_BASE_ADDR,
	.clk_gate_reg = SPI_K64_0_CLK_GATE_REG_ADDR,
	.clk_gate_bit = SPI_K64_0_CLK_GATE_REG_BIT,
	.irq = SPI_K64_0_IRQ,
	.config_func = spi_config_0_irq
};

DEVICE_INIT(spi_k64_port_0, CONFIG_SPI_K64_0_DEV_NAME, spi_k64_init,
			&spi_k64_data_port_0, &spi_k64_config_0,
			PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);


void spi_config_0_irq(void)
{
	IRQ_CONNECT(SPI_K64_0_IRQ, CONFIG_SPI_K64_0_PRI,
		    spi_k64_isr, DEVICE_GET(spi_k64_port_0), 0);
}

#endif /* CONFIG_SPI_K64_0 */


#ifdef CONFIG_SPI_K64_1

void spi_config_1_irq(void);

struct spi_k64_data spi_k64_data_port_1;

struct spi_k64_config spi_k64_config_1 = {
	.regs = SPI_K64_1_BASE_ADDR,
	.clk_gate_reg = SPI_K64_1_CLK_GATE_REG_ADDR,
	.clk_gate_bit = SPI_K64_1_CLK_GATE_REG_BIT,
	.irq = SPI_K64_1_IRQ,
	.config_func = spi_config_1_irq
};

DEVICE_INIT(spi_k64_port_1, CONFIG_SPI_K64_1_DEV_NAME, spi_k64_init,
			&spi_k64_data_port_1, &spi_k64_config_1,
			PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);


void spi_config_1_irq(void)
{
	IRQ_CONNECT(SPI_K64_1_IRQ, CONFIG_SPI_K64_1_PRI,
		    spi_k64_isr, DEVICE_GET(spi_k64_port_1), 0);
}

#endif /* CONFIG_SPI_K64_1 */


#ifdef CONFIG_SPI_K64_2

void spi_config_2_irq(void);

struct spi_k64_data spi_k64_data_port_2;

struct spi_k64_config spi_k64_config_2 = {
	.regs = SPI_K64_2_BASE_ADDR,
	.clk_gate_reg = SPI_K64_2_CLK_GATE_REG_ADDR,
	.clk_gate_bit = SPI_K64_2_CLK_GATE_REG_BIT,
	.irq = SPI_K64_2_IRQ,
	.config_func = spi_config_2_irq
};

DEVICE_INIT(spi_k64_port_2, CONFIG_SPI_K64_2_DEV_NAME, spi_k64_init,
			&spi_k64_data_port_2, &spi_k64_config_2,
			PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);


void spi_config_2_irq(void)
{
	IRQ_CONNECT(SPI_K64_2_IRQ, CONFIG_SPI_K64_2_PRI,
		    spi_k64_isr, DEVICE_GET(spi_k64_port_2), 0);
}

#endif /* CONFIG_SPI_K64_2 */