Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* sensor_lsm9ds0_gyro.c - Driver for LSM9DS0 gyroscope sensor */

/*
 * Copyright (c) 2016 Intel Corporation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <sensor.h>
#include <nanokernel.h>
#include <device.h>
#include <init.h>
#include <i2c.h>
#include <misc/byteorder.h>

#include <gpio.h>

#include "sensor_lsm9ds0_gyro.h"

static struct lsm9ds0_gyro_data lsm9ds0_gyro_data;

#ifdef CONFIG_SENSOR_DEBUG
#include <misc/printk.h>
#define sensor_dbg(fmt, ...) printk("lsm9ds0_gyro: " fmt, ##__VA_ARGS__)
#else
#define sensor_dbg(fmt, ...) do { } while (0)
#endif /* CONFIG_SENSOR_DEBUG */

static int lsm9ds0_gyro_reg_read(struct device *dev, uint8_t reg, uint8_t *val)
{
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *) dev->driver_data;
	struct lsm9ds0_gyro_config *config =
		(struct lsm9ds0_gyro_config *) dev->config->config_info;

	struct i2c_msg msgs[2] = {
		{
			.buf = &reg,
			.len = 1,
			.flags = I2C_MSG_WRITE | I2C_MSG_RESTART,
		},
		{
			.buf = val,
			.len = 1,
			.flags = I2C_MSG_READ | I2C_MSG_STOP,
		},
	};

	return i2c_transfer(data->i2c_master, msgs, 2, config->i2c_slave_addr);
}

static int lsm9ds0_gyro_reg_write(struct device *dev, uint8_t reg, uint8_t val)
{
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *) dev->driver_data;
	struct lsm9ds0_gyro_config *config =
		(struct lsm9ds0_gyro_config *) dev->config->config_info;

	uint8_t buf[2] = {reg, val};

	return i2c_write(data->i2c_master, buf, 2, config->i2c_slave_addr);
}

static int lsm9ds0_gyro_update_bits(struct device *dev, uint8_t reg,
				    uint8_t mask, uint8_t val)
{
	uint8_t old_val, new_val;

	if (lsm9ds0_gyro_reg_read(dev, reg, &old_val) != 0) {
		return -EIO;
	}

	new_val = (old_val & ~mask) | (val & mask);

	if (new_val == old_val) {
		return 0;
	}

	return lsm9ds0_gyro_reg_write(dev, reg, new_val);
}

static inline int lsm9ds0_gyro_power_ctrl(struct device *dev, int power,
					  int x_en, int y_en, int z_en)
{
	uint8_t state = (power << LSM9DS0_GYRO_SHIFT_CTRL_REG1_G_PD) |
			(x_en << LSM9DS0_GYRO_SHIFT_CTRL_REG1_G_XEN) |
			(y_en << LSM9DS0_GYRO_SHIFT_CTRL_REG1_G_YEN) |
			(z_en << LSM9DS0_GYRO_SHIFT_CTRL_REG1_G_ZEN);

	return lsm9ds0_gyro_update_bits(dev, LSM9DS0_GYRO_REG_CTRL_REG1_G,
					LSM9DS0_GYRO_MASK_CTRL_REG1_G_PD |
					LSM9DS0_GYRO_MASK_CTRL_REG1_G_XEN |
					LSM9DS0_GYRO_MASK_CTRL_REG1_G_YEN |
					LSM9DS0_GYRO_MASK_CTRL_REG1_G_ZEN,
					state);
}

static int lsm9ds0_gyro_set_fs_raw(struct device *dev, int fs)
{
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *) dev->driver_data;
#endif

#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
	if (lsm9ds0_gyro_update_bits(dev, LSM9DS0_GYRO_REG_CTRL_REG4_G,
					LSM9DS0_GYRO_MASK_CTRL_REG4_G_FS,
					fs << LSM9DS0_GYRO_SHIFT_CTRL_REG4_G_FS)
					!= 0) {
		return -EIO;
	}

	data->fs = fs;
#endif

	return 0;
}

#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
static int lsm9ds0_gyro_set_fs(struct device *dev, int fs)
{
	switch (fs) {
	case 245:
		return lsm9ds0_gyro_set_fs_raw(dev, 0);
	case 500:
		return lsm9ds0_gyro_set_fs_raw(dev, 1);
	case 2000:
		return lsm9ds0_gyro_set_fs_raw(dev, 2);
	}

	return -ENOTSUP;
}
#endif

static inline int lsm9ds0_gyro_set_odr_raw(struct device *dev, int odr)
{
	return lsm9ds0_gyro_update_bits(dev, LSM9DS0_GYRO_REG_CTRL_REG1_G,
					LSM9DS0_GYRO_MASK_CTRL_REG1_G_DR,
					odr << LSM9DS0_GYRO_SHIFT_CTRL_REG1_G_BW);
}

#if defined(CONFIG_LSM9DS0_GYRO_SAMPLING_RATE_RUNTIME)
static int lsm9ds0_gyro_set_odr(struct device *dev, int odr)
{
	switch (odr) {
	case 95:
		return lsm9ds0_gyro_set_odr_raw(dev, 0);
	case 190:
		return lsm9ds0_gyro_set_odr_raw(dev, 1);
	case 380:
		return lsm9ds0_gyro_set_odr_raw(dev, 2);
	case 760:
		return lsm9ds0_gyro_set_odr_raw(dev, 3);
	}

	return -ENOTSUP;
}
#endif

static int lsm9ds0_gyro_sample_fetch(struct device *dev)
{
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *) dev->driver_data;

	uint8_t out_x_l, out_x_h, out_y_l, out_y_h, out_z_l, out_z_h;

	if (lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_X_L_G, &out_x_l) != 0 ||
	    lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_X_H_G, &out_x_h) != 0 ||
	    lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_Y_L_G, &out_y_l) != 0 ||
	    lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_Y_H_G, &out_y_h) != 0 ||
	    lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_Z_L_G, &out_z_l) != 0 ||
	    lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_OUT_Z_H_G, &out_z_h) != 0) {
		sensor_dbg("failed to read sample\n");
		return -EIO;
	}

	data->sample_x = (int16_t)((uint16_t)(out_x_l) | ((uint16_t)(out_x_h) << 8));
	data->sample_y = (int16_t)((uint16_t)(out_y_l) | ((uint16_t)(out_y_h) << 8));
	data->sample_z = (int16_t)((uint16_t)(out_z_l) | ((uint16_t)(out_z_h) << 8));

#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
	data->sample_fs = data->fs;
#endif

	return 0;
}

static int lsm9ds0_gyro_channel_get(struct device *dev,
				    enum sensor_channel chan,
				    struct sensor_value *val)
{
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *) dev->driver_data;

	val->type = SENSOR_TYPE_DOUBLE;

#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
	switch (data->sample_fs) {
	case 0:
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME) || defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_245)
		switch (chan) {
		case SENSOR_CHAN_GYRO_X:
			val->dval = (double)(data->sample_x) * 8.75 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Y:
			val->dval = (double)(data->sample_y) * 8.75 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Z:
			val->dval = (double)(data->sample_z) * 8.75 / 1000.0 * DEG2RAD;
			break;
		default:
			return -ENOTSUP;
		}
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
		break;
	case 1:
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME) || defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_500)
		switch (chan) {
		case SENSOR_CHAN_GYRO_X:
			val->dval = (double)(data->sample_x) * 17.50 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Y:
			val->dval = (double)(data->sample_y) * 17.50 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Z:
			val->dval = (double)(data->sample_z) * 17.50 / 1000.0 * DEG2RAD;
			break;
		default:
			return -ENOTSUP;
		}
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
		break;
	default:
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME) || defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_2000)
		switch (chan) {
		case SENSOR_CHAN_GYRO_X:
			val->dval = (double)(data->sample_x) * 70.0 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Y:
			val->dval = (double)(data->sample_y) * 70.0 / 1000.0 * DEG2RAD;
			break;
		case SENSOR_CHAN_GYRO_Z:
			val->dval = (double)(data->sample_z) * 70.0 / 1000.0 * DEG2RAD;
			break;
		default:
			return -ENOTSUP;
		}
#endif
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
		break;
	}
#endif

	return 0;
}

#if defined(LSM9DS0_GYRO_SET_ATTR)
static int lsm9ds0_gyro_attr_set(struct device *dev,
				 enum sensor_channel chan,
				 enum sensor_attribute attr,
				 const struct sensor_value *val)
{
	switch (attr) {
#if defined(CONFIG_LSM9DS0_GYRO_FULLSCALE_RUNTIME)
	case SENSOR_ATTR_FULL_SCALE:
		if (val->type != SENSOR_TYPE_INT) {
			return -ENOTSUP;
		}

		if (lsm9ds0_gyro_set_fs(dev, val->val1) != 0) {
			sensor_dbg("full-scale value not supported\n");
			return -EIO;
		}
		break;
#endif
#if defined(CONFIG_LSM9DS0_GYRO_SAMPLING_RATE_RUNTIME)
	case SENSOR_ATTR_SAMPLING_FREQUENCY:
		if (val->type != SENSOR_TYPE_INT) {
			return -ENOTSUP;
		}

		if (lsm9ds0_gyro_set_odr(dev, val->val1) != 0) {
			sensor_dbg("sampling frequency value not supported\n");
			return -EIO;
		}
		break;
#endif
	default:
		return -ENOTSUP;
	}

	return 0;
}
#endif

#if defined(CONFIG_LSM9DS0_GYRO_TRIGGERS)
static int lsm9ds0_gyro_trigger_set(struct device *dev,
				    const struct sensor_trigger *trig,
				    sensor_trigger_handler_t handler)
{
#if defined(CONFIG_LSM9DS0_GYRO_TRIGGER_DRDY)
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *)dev->driver_data;
	const struct lsm9ds0_gyro_config * const config = dev->config->config_info;
	uint8_t state;
#endif

#if defined(CONFIG_LSM9DS0_GYRO_TRIGGER_DRDY)
	if (trig->type == SENSOR_TRIG_DATA_READY) {
		gpio_pin_disable_callback(data->gpio_drdy, config->gpio_drdy_int_pin);

		state = 0;
		if (handler) {
			state = 1;
		}

		data->handler_drdy = handler;
		data->trigger_drdy = *trig;

		if (lsm9ds0_gyro_update_bits(dev, LSM9DS0_GYRO_REG_CTRL_REG3_G,
					     LSM9DS0_GYRO_MASK_CTRL_REG3_G_I2_DRDY,
					     state << LSM9DS0_GYRO_SHIFT_CTRL_REG3_G_I2_DRDY)
					     != 0) {
			sensor_dbg("failed to set DRDY interrupt\n");
			return -EIO;
		}

		gpio_pin_enable_callback(data->gpio_drdy, config->gpio_drdy_int_pin);
		return 0;
	}
#endif

	return -ENOTSUP;
}
#endif

#if defined(CONFIG_LSM9DS0_GYRO_TRIGGER_DRDY)
static void lsm9ds0_gyro_gpio_drdy_callback(struct device *dev, uint32_t pin)
{
	gpio_pin_disable_callback(dev, pin);

	nano_isr_sem_give(&lsm9ds0_gyro_data.sem);
}

static void lsm9ds0_gyro_fiber_main(int arg1, int gpio_pin)
{
	struct device *dev = (struct device *) arg1;
	struct lsm9ds0_gyro_data *data = (struct lsm9ds0_gyro_data *)dev->driver_data;

	while (1) {
		nano_fiber_sem_take(&data->sem, TICKS_UNLIMITED);

		if (data->handler_drdy) {
			data->handler_drdy(dev, &data->trigger_drdy);
		}

		gpio_pin_enable_callback(data->gpio_drdy, gpio_pin);
	}
}
#endif

static struct sensor_driver_api lsm9ds0_gyro_api_funcs = {
	.sample_fetch = lsm9ds0_gyro_sample_fetch,
	.channel_get = lsm9ds0_gyro_channel_get,
#if defined(LSM9DS0_GYRO_SET_ATTR)
	.attr_set = lsm9ds0_gyro_attr_set,
#endif
#if defined(CONFIG_LSM9DS0_GYRO_TRIGGERS)
	.trigger_set = lsm9ds0_gyro_trigger_set,
#endif
};

static int lsm9ds0_gyro_init_chip(struct device *dev)
{
	uint8_t chip_id;

	if (lsm9ds0_gyro_power_ctrl(dev, 0, 0, 0, 0) != 0) {
		sensor_dbg("failed to power off device\n");
		return -EIO;
	}

	if (lsm9ds0_gyro_power_ctrl(dev, 1, 1, 1, 1) != 0) {
		sensor_dbg("failed to power on device\n");
		return -EIO;
	}

	if (lsm9ds0_gyro_reg_read(dev, LSM9DS0_GYRO_REG_WHO_AM_I_G, &chip_id) != 0) {
		sensor_dbg("failed reading chip id\n");
		goto err_poweroff;
	}
	if (chip_id != LSM9DS0_GYRO_VAL_WHO_AM_I_G) {
		sensor_dbg("invalid chip id 0x%x\n", chip_id);
		goto err_poweroff;
	}
	sensor_dbg("chip id 0x%x\n", chip_id);

	if (lsm9ds0_gyro_set_fs_raw(dev, LSM9DS0_GYRO_DEFAULT_FULLSCALE) != 0) {
		sensor_dbg("failed to set full-scale\n");
		goto err_poweroff;
	}

	if (lsm9ds0_gyro_set_odr_raw(dev, LSM9DS0_GYRO_DEFAULT_SAMPLING_RATE) != 0) {
		sensor_dbg("failed to set sampling rate\n");
		goto err_poweroff;
	}

	if (lsm9ds0_gyro_update_bits(dev, LSM9DS0_GYRO_REG_CTRL_REG4_G,
					LSM9DS0_GYRO_MASK_CTRL_REG4_G_BDU |
					LSM9DS0_GYRO_MASK_CTRL_REG4_G_BLE,
					(1 << LSM9DS0_GYRO_SHIFT_CTRL_REG4_G_BDU) |
					(0 << LSM9DS0_GYRO_SHIFT_CTRL_REG4_G_BLE))
					!= 0) {
		sensor_dbg("failed to set BDU and BLE\n");
		goto err_poweroff;
	}

	return 0;

err_poweroff:
	lsm9ds0_gyro_power_ctrl(dev, 0, 0, 0, 0);
	return -EIO;
}

int lsm9ds0_gyro_init(struct device *dev)
{
	const struct lsm9ds0_gyro_config * const config = dev->config->config_info;
	struct lsm9ds0_gyro_data *data = dev->driver_data;

	dev->driver_api = &lsm9ds0_gyro_api_funcs;

	data->i2c_master = device_get_binding((char *)config->i2c_master_dev_name);
	if (!data->i2c_master) {
		sensor_dbg("i2c master not found: %s\n",
			   config->i2c_master_dev_name);
		return -EINVAL;
	}

	if (lsm9ds0_gyro_init_chip(dev) != 0) {
		sensor_dbg("failed to initialize chip\n");
		return -EIO;
	}

#if defined(CONFIG_LSM9DS0_GYRO_TRIGGER_DRDY)
	nano_sem_init(&data->sem);

	task_fiber_start(data->lsm9ds0_gyro_fiber_stack, CONFIG_LSM9DS0_GYRO_FIBER_STACK_SIZE,
			 lsm9ds0_gyro_fiber_main, (int) dev, config->gpio_drdy_int_pin, 10, 0);

	data->gpio_drdy = device_get_binding(config->gpio_drdy_dev_name);
	if (!data->gpio_drdy) {
		sensor_dbg("gpio controller %s not found\n",
			   config->gpio_drdy_dev_name);
		return -EINVAL;
	}

	gpio_pin_configure(data->gpio_drdy, config->gpio_drdy_int_pin,
			   GPIO_DIR_IN | GPIO_INT |
			   GPIO_INT_ACTIVE_HIGH | GPIO_INT_DEBOUNCE);
	if (gpio_set_callback(data->gpio_drdy, lsm9ds0_gyro_gpio_drdy_callback) != 0) {
		sensor_dbg("failed to set gpio callback\n");
		return -EINVAL;
	}
#endif

	return 0;
}

static struct lsm9ds0_gyro_config lsm9ds0_gyro_config = {
	.i2c_master_dev_name = CONFIG_LSM9DS0_GYRO_I2C_MASTER_DEV_NAME,
	.i2c_slave_addr = LSM9DS0_GYRO_I2C_ADDR,
#if defined(CONFIG_LSM9DS0_GYRO_TRIGGER_DRDY)
	.gpio_drdy_dev_name = CONFIG_LSM9DS0_GYRO_GPIO_DRDY_DEV_NAME,
	.gpio_drdy_int_pin = CONFIG_LSM9DS0_GYRO_GPIO_DRDY_INT_PIN,
#endif
};

DEVICE_INIT(lsm9ds0_gyro, CONFIG_LSM9DS0_GYRO_DEV_NAME, lsm9ds0_gyro_init, &lsm9ds0_gyro_data,
	    &lsm9ds0_gyro_config, SECONDARY, CONFIG_LSM9DS0_GYRO_INIT_PRIORITY);