Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
/*
 * Copyright (c) 2015, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 * All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include "fsl_lpi2c.h"
#include <stdlib.h>
#include <string.h>

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpi2c"
#endif

/*! @brief Common sets of flags used by the driver. */
enum _lpi2c_flag_constants
{
    /*! All flags which are cleared by the driver upon starting a transfer. */
    kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag |
                        kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag |
                        kLPI2C_MasterDataMatchFlag,

    /*! IRQ sources enabled by the non-blocking transactional API. */
    kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag |
                      kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag |
                      kLPI2C_MasterFifoErrFlag,

    /*! Errors to check for. */
    kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag |
                        kLPI2C_MasterPinLowTimeoutFlag,

    /*! All flags which are cleared by the driver upon starting a transfer. */
    kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag |
                       kLPI2C_SlaveFifoErrFlag,

    /*! IRQ sources enabled by the non-blocking transactional API. */
    kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag |
                     kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag |
                     kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag,

    /*! Errors to check for. */
    kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag,
};

/* ! @brief LPI2C master fifo commands. */
enum _lpi2c_master_fifo_cmd
{
    kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
    kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
    kStopCmd = LPI2C_MTDR_CMD(0x2U),   /*!< Generate STOP condition */
    kStartCmd = LPI2C_MTDR_CMD(0x4U),  /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
};

/*!
 * @brief Default watermark values.
 *
 * The default watermarks are set to zero.
 */
enum _lpi2c_default_watermarks
{
    kDefaultTxWatermark = 0,
    kDefaultRxWatermark = 0,
};

/*! @brief States for the state machine used by transactional APIs. */
enum _lpi2c_transfer_states
{
    kIdleState = 0,
    kSendCommandState,
    kIssueReadCommandState,
    kTransferDataState,
    kStopState,
    kWaitForCompletionState,
};

/*! @brief Typedef for master interrupt handler. */
typedef void (*lpi2c_master_isr_t)(LPI2C_Type *base, lpi2c_master_handle_t *handle);

/*! @brief Typedef for slave interrupt handler. */
typedef void (*lpi2c_slave_isr_t)(LPI2C_Type *base, lpi2c_slave_handle_t *handle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/

/* Not static so it can be used from fsl_lpi2c_edma.c. */
uint32_t LPI2C_GetInstance(LPI2C_Type *base);

static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
                                        uint32_t width_ns,
                                        uint32_t maxCycles,
                                        uint32_t prescaler);

static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base);

static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone);

static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle);

static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags);

static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief Array to map LPI2C instance number to base pointer. */
static LPI2C_Type *const kLpi2cBases[] = LPI2C_BASE_PTRS;

/*! @brief Array to map LPI2C instance number to IRQ number. */
static IRQn_Type const kLpi2cIrqs[] = LPI2C_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Array to map LPI2C instance number to clock gate enum. */
static clock_ip_name_t const kLpi2cClocks[] = LPI2C_CLOCKS;

#if defined(LPI2C_PERIPH_CLOCKS)
/*! @brief Array to map LPI2C instance number to pheripheral clock gate enum. */
static const clock_ip_name_t kLpi2cPeriphClocks[] = LPI2C_PERIPH_CLOCKS;
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*! @brief Pointer to master IRQ handler for each instance. */
static lpi2c_master_isr_t s_lpi2cMasterIsr;

/*! @brief Pointers to master handles for each instance. */
static lpi2c_master_handle_t *s_lpi2cMasterHandle[ARRAY_SIZE(kLpi2cBases)];

/*! @brief Pointer to slave IRQ handler for each instance. */
static lpi2c_slave_isr_t s_lpi2cSlaveIsr;

/*! @brief Pointers to slave handles for each instance. */
static lpi2c_slave_handle_t *s_lpi2cSlaveHandle[ARRAY_SIZE(kLpi2cBases)];

/*******************************************************************************
 * Code
 ******************************************************************************/

/*!
 * @brief Returns an instance number given a base address.
 *
 * If an invalid base address is passed, debug builds will assert. Release builds will just return
 * instance number 0.
 *
 * @param base The LPI2C peripheral base address.
 * @return LPI2C instance number starting from 0.
 */
uint32_t LPI2C_GetInstance(LPI2C_Type *base)
{
    uint32_t instance;
    for (instance = 0; instance < ARRAY_SIZE(kLpi2cBases); ++instance)
    {
        if (kLpi2cBases[instance] == base)
        {
            return instance;
        }
    }

    assert(false);
    return 0;
}

/*!
 * @brief Computes a cycle count for a given time in nanoseconds.
 * @param sourceClock_Hz LPI2C functional clock frequency in Hertz.
 * @param width_ns Desired with in nanoseconds.
 * @param maxCycles Maximum cycle count, determined by the number of bits wide the cycle count field is.
 * @param prescaler LPI2C prescaler setting. Pass 1 if the prescaler should not be used, as for slave glitch widths.
 */
static uint32_t LPI2C_GetCyclesForWidth(uint32_t sourceClock_Hz,
                                        uint32_t width_ns,
                                        uint32_t maxCycles,
                                        uint32_t prescaler)
{
    assert(sourceClock_Hz > 0);
    assert(prescaler > 0);

    uint32_t busCycle_ns = 1000000 / (sourceClock_Hz / prescaler / 1000);
    uint32_t cycles = 0;

    /* Search for the cycle count just below the desired glitch width. */
    while ((((cycles + 1) * busCycle_ns) < width_ns) && (cycles + 1 < maxCycles))
    {
        ++cycles;
    }

    /* If we end up with zero cycles, then set the filter to a single cycle unless the */
    /* bus clock is greater than 10x the desired glitch width. */
    if ((cycles == 0) && (busCycle_ns <= (width_ns * 10)))
    {
        cycles = 1;
    }

    return cycles;
}

/*!
 * @brief Convert provided flags to status code, and clear any errors if present.
 * @param base The LPI2C peripheral base address.
 * @param status Current status flags value that will be checked.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
/* Not static so it can be used from fsl_lpi2c_edma.c. */
status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status)
{
    status_t result = kStatus_Success;

    /* Check for error. These errors cause a stop to automatically be sent. We must */
    /* clear the errors before a new transfer can start. */
    status &= kMasterErrorFlags;
    if (status)
    {
        /* Select the correct error code. Ordered by severity, with bus issues first. */
        if (status & kLPI2C_MasterPinLowTimeoutFlag)
        {
            result = kStatus_LPI2C_PinLowTimeout;
        }
        else if (status & kLPI2C_MasterArbitrationLostFlag)
        {
            result = kStatus_LPI2C_ArbitrationLost;
        }
        else if (status & kLPI2C_MasterNackDetectFlag)
        {
            result = kStatus_LPI2C_Nak;
        }
        else if (status & kLPI2C_MasterFifoErrFlag)
        {
            result = kStatus_LPI2C_FifoError;
        }
        else
        {
            assert(false);
        }

        /* Clear the flags. */
        LPI2C_MasterClearStatusFlags(base, status);

        /* Reset fifos. These flags clear automatically. */
        base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
    }

    return result;
}

/*!
 * @brief Wait until there is room in the tx fifo.
 * @param base The LPI2C peripheral base address.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_MasterWaitForTxReady(LPI2C_Type *base)
{
    uint32_t status;
    size_t txCount;
    size_t txFifoSize = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif
    do
    {
        status_t result;

        /* Get the number of words in the tx fifo and compute empty slots. */
        LPI2C_MasterGetFifoCounts(base, NULL, &txCount);
        txCount = txFifoSize - txCount;

        /* Check for error flags. */
        status = LPI2C_MasterGetStatusFlags(base);
        result = LPI2C_MasterCheckAndClearError(base, status);
        if (result)
        {
            return result;
        }
#if LPI2C_WAIT_TIMEOUT
    } while ((!txCount) && (--waitTimes));

    if (waitTimes == 0)
    {
        return kStatus_LPI2C_Timeout;
    }
#else
    } while (!txCount);
#endif

    return kStatus_Success;
}

/*!
 * @brief Make sure the bus isn't already busy.
 *
 * A busy bus is allowed if we are the one driving it.
 *
 * @param base The LPI2C peripheral base address.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_Busy
 */
/* Not static so it can be used from fsl_lpi2c_edma.c. */
status_t LPI2C_CheckForBusyBus(LPI2C_Type *base)
{
    uint32_t status = LPI2C_MasterGetStatusFlags(base);
    if ((status & kLPI2C_MasterBusBusyFlag) && (!(status & kLPI2C_MasterBusyFlag)))
    {
        return kStatus_LPI2C_Busy;
    }

    return kStatus_Success;
}

/*!
 * brief Provides a default configuration for the LPI2C master peripheral.
 *
 * This function provides the following default configuration for the LPI2C master peripheral:
 * code
 *  masterConfig->enableMaster            = true;
 *  masterConfig->debugEnable             = false;
 *  masterConfig->ignoreAck               = false;
 *  masterConfig->pinConfig               = kLPI2C_2PinOpenDrain;
 *  masterConfig->baudRate_Hz             = 100000U;
 *  masterConfig->busIdleTimeout_ns       = 0;
 *  masterConfig->pinLowTimeout_ns        = 0;
 *  masterConfig->sdaGlitchFilterWidth_ns = 0;
 *  masterConfig->sclGlitchFilterWidth_ns = 0;
 *  masterConfig->hostRequest.enable      = false;
 *  masterConfig->hostRequest.source      = kLPI2C_HostRequestExternalPin;
 *  masterConfig->hostRequest.polarity    = kLPI2C_HostRequestPinActiveHigh;
 * endcode
 *
 * After calling this function, you can override any settings in order to customize the configuration,
 * prior to initializing the master driver with LPI2C_MasterInit().
 *
 * param[out] masterConfig User provided configuration structure for default values. Refer to #lpi2c_master_config_t.
 */
void LPI2C_MasterGetDefaultConfig(lpi2c_master_config_t *masterConfig)
{
    /* Initializes the configure structure to zero. */
    memset(masterConfig, 0, sizeof(*masterConfig));

    masterConfig->enableMaster = true;
    masterConfig->debugEnable = false;
    masterConfig->enableDoze = true;
    masterConfig->ignoreAck = false;
    masterConfig->pinConfig = kLPI2C_2PinOpenDrain;
    masterConfig->baudRate_Hz = 100000U;
    masterConfig->busIdleTimeout_ns = 0;
    masterConfig->pinLowTimeout_ns = 0;
    masterConfig->sdaGlitchFilterWidth_ns = 0;
    masterConfig->sclGlitchFilterWidth_ns = 0;
    masterConfig->hostRequest.enable = false;
    masterConfig->hostRequest.source = kLPI2C_HostRequestExternalPin;
    masterConfig->hostRequest.polarity = kLPI2C_HostRequestPinActiveHigh;
}

/*!
 * brief Initializes the LPI2C master peripheral.
 *
 * This function enables the peripheral clock and initializes the LPI2C master peripheral as described by the user
 * provided configuration. A software reset is performed prior to configuration.
 *
 * param base The LPI2C peripheral base address.
 * param masterConfig User provided peripheral configuration. Use LPI2C_MasterGetDefaultConfig() to get a set of
 * defaults
 *      that you can override.
 * param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the baud rate divisors,
 *      filter widths, and timeout periods.
 */
void LPI2C_MasterInit(LPI2C_Type *base, const lpi2c_master_config_t *masterConfig, uint32_t sourceClock_Hz)
{
    uint32_t prescaler;
    uint32_t cycles;
    uint32_t cfgr2;
    uint32_t value;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Ungate the clock. */
    CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Ungate the functional clock in initialize function. */
    CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset peripheral before configuring it. */
    LPI2C_MasterReset(base);

    /* Doze bit: 0 is enable, 1 is disable */
    base->MCR = LPI2C_MCR_DBGEN(masterConfig->debugEnable) | LPI2C_MCR_DOZEN(!(masterConfig->enableDoze));

    /* host request */
    value = base->MCFGR0;
    value &= (~(LPI2C_MCFGR0_HREN_MASK | LPI2C_MCFGR0_HRPOL_MASK | LPI2C_MCFGR0_HRSEL_MASK));
    value |= LPI2C_MCFGR0_HREN(masterConfig->hostRequest.enable) |
             LPI2C_MCFGR0_HRPOL(masterConfig->hostRequest.polarity) |
             LPI2C_MCFGR0_HRSEL(masterConfig->hostRequest.source);
    base->MCFGR0 = value;

    /* pin config and ignore ack */
    value = base->MCFGR1;
    value &= ~(LPI2C_MCFGR1_PINCFG_MASK | LPI2C_MCFGR1_IGNACK_MASK);
    value |= LPI2C_MCFGR1_PINCFG(masterConfig->pinConfig);
    value |= LPI2C_MCFGR1_IGNACK(masterConfig->ignoreAck);
    base->MCFGR1 = value;

    LPI2C_MasterSetWatermarks(base, kDefaultTxWatermark, kDefaultRxWatermark);

    LPI2C_MasterSetBaudRate(base, sourceClock_Hz, masterConfig->baudRate_Hz);

    /* Configure glitch filters and bus idle and pin low timeouts. */
    prescaler = (base->MCFGR1 & LPI2C_MCFGR1_PRESCALE_MASK) >> LPI2C_MCFGR1_PRESCALE_SHIFT;
    cfgr2 = base->MCFGR2;
    if (masterConfig->busIdleTimeout_ns)
    {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->busIdleTimeout_ns,
                                         (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
        cfgr2 &= ~LPI2C_MCFGR2_BUSIDLE_MASK;
        cfgr2 |= LPI2C_MCFGR2_BUSIDLE(cycles);
    }
    if (masterConfig->sdaGlitchFilterWidth_ns)
    {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sdaGlitchFilterWidth_ns,
                                         (LPI2C_MCFGR2_FILTSDA_MASK >> LPI2C_MCFGR2_FILTSDA_SHIFT), 1);
        cfgr2 &= ~LPI2C_MCFGR2_FILTSDA_MASK;
        cfgr2 |= LPI2C_MCFGR2_FILTSDA(cycles);
    }
    if (masterConfig->sclGlitchFilterWidth_ns)
    {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->sclGlitchFilterWidth_ns,
                                         (LPI2C_MCFGR2_FILTSCL_MASK >> LPI2C_MCFGR2_FILTSCL_SHIFT), 1);
        cfgr2 &= ~LPI2C_MCFGR2_FILTSCL_MASK;
        cfgr2 |= LPI2C_MCFGR2_FILTSCL(cycles);
    }
    base->MCFGR2 = cfgr2;
    if (masterConfig->pinLowTimeout_ns)
    {
        cycles = LPI2C_GetCyclesForWidth(sourceClock_Hz, masterConfig->pinLowTimeout_ns / 256,
                                         (LPI2C_MCFGR2_BUSIDLE_MASK >> LPI2C_MCFGR2_BUSIDLE_SHIFT), prescaler);
        base->MCFGR3 = (base->MCFGR3 & ~LPI2C_MCFGR3_PINLOW_MASK) | LPI2C_MCFGR3_PINLOW(cycles);
    }

    LPI2C_MasterEnable(base, masterConfig->enableMaster);
}

/*!
* brief Deinitializes the LPI2C master peripheral.
*
 * This function disables the LPI2C master peripheral and gates the clock. It also performs a software
 * reset to restore the peripheral to reset conditions.
 *
 * param base The LPI2C peripheral base address.
 */
void LPI2C_MasterDeinit(LPI2C_Type *base)
{
    /* Restore to reset state. */
    LPI2C_MasterReset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Gate clock. */
    CLOCK_DisableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Gate the functional clock. */
    CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * brief Configures LPI2C master data match feature.
 *
 * param base The LPI2C peripheral base address.
 * param config Settings for the data match feature.
 */
void LPI2C_MasterConfigureDataMatch(LPI2C_Type *base, const lpi2c_data_match_config_t *config)
{
    /* Disable master mode. */
    bool wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
    LPI2C_MasterEnable(base, false);

    base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_MATCFG_MASK) | LPI2C_MCFGR1_MATCFG(config->matchMode);
    base->MCFGR0 = (base->MCFGR0 & ~LPI2C_MCFGR0_RDMO_MASK) | LPI2C_MCFGR0_RDMO(config->rxDataMatchOnly);
    base->MDMR = LPI2C_MDMR_MATCH0(config->match0) | LPI2C_MDMR_MATCH1(config->match1);

    /* Restore master mode. */
    if (wasEnabled)
    {
        LPI2C_MasterEnable(base, true);
    }
}

/*!
 * brief Sets the I2C bus frequency for master transactions.
 *
 * The LPI2C master is automatically disabled and re-enabled as necessary to configure the baud
 * rate. Do not call this function during a transfer, or the transfer is aborted.
 *
 * note Please note that the second parameter is the clock frequency of LPI2C module, the third
 * parameter means user configured bus baudrate, this implementation is different from other I2C drivers
 * which use baudrate configuration as second parameter and source clock frequency as third parameter.
 *
 * param base The LPI2C peripheral base address.
 * param sourceClock_Hz LPI2C functional clock frequency in Hertz.
 * param baudRate_Hz Requested bus frequency in Hertz.
 */
void LPI2C_MasterSetBaudRate(LPI2C_Type *base, uint32_t sourceClock_Hz, uint32_t baudRate_Hz)
{
    uint32_t prescale = 0;
    uint32_t bestPre = 0;
    uint32_t bestClkHi = 0;
    uint32_t absError = 0;
    uint32_t bestError = 0xffffffffu;
    uint32_t value;
    uint32_t clkHiCycle;
    uint32_t computedRate;
    int i;
    bool wasEnabled;

    /* Disable master mode. */
    wasEnabled = (base->MCR & LPI2C_MCR_MEN_MASK) >> LPI2C_MCR_MEN_SHIFT;
    LPI2C_MasterEnable(base, false);

    /* Baud rate = (sourceClock_Hz/2^prescale)/(CLKLO+1+CLKHI+1 + ROUNDDOWN((2+FILTSCL)/2^prescale) */
    /* Assume CLKLO = 2*CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2. */
    for (prescale = 1; (prescale <= 128) && (bestError != 0); prescale = 2 * prescale)
    {
        for (clkHiCycle = 1; clkHiCycle < 32; clkHiCycle++)
        {
            if (clkHiCycle == 1)
            {
                computedRate = (sourceClock_Hz / prescale) / (1 + 3 + 2 + 2 / prescale);
            }
            else
            {
                computedRate = (sourceClock_Hz / prescale) / (3 * clkHiCycle + 2 + 2 / prescale);
            }

            absError = baudRate_Hz > computedRate ? baudRate_Hz - computedRate : computedRate - baudRate_Hz;

            if (absError < bestError)
            {
                bestPre = prescale;
                bestClkHi = clkHiCycle;
                bestError = absError;

                /* If the error is 0, then we can stop searching because we won't find a better match. */
                if (absError == 0)
                {
                    break;
                }
            }
        }
    }

    /* Standard, fast, fast mode plus and ultra-fast transfers. */
    value = LPI2C_MCCR0_CLKHI(bestClkHi);

    if (bestClkHi < 2)
    {
        value |= LPI2C_MCCR0_CLKLO(3) | LPI2C_MCCR0_SETHOLD(2) | LPI2C_MCCR0_DATAVD(1);
    }
    else
    {
        value |= LPI2C_MCCR0_CLKLO(2 * bestClkHi) | LPI2C_MCCR0_SETHOLD(bestClkHi) | LPI2C_MCCR0_DATAVD(bestClkHi / 2);
    }

    base->MCCR0 = value;

    for (i = 0; i < 8; i++)
    {
        if (bestPre == (1U << i))
        {
            bestPre = i;
            break;
        }
    }
    base->MCFGR1 = (base->MCFGR1 & ~LPI2C_MCFGR1_PRESCALE_MASK) | LPI2C_MCFGR1_PRESCALE(bestPre);

    /* Restore master mode. */
    if (wasEnabled)
    {
        LPI2C_MasterEnable(base, true);
    }
}

/*!
 * brief Sends a START signal and slave address on the I2C bus.
 *
 * This function is used to initiate a new master mode transfer. First, the bus state is checked to ensure
 * that another master is not occupying the bus. Then a START signal is transmitted, followed by the
 * 7-bit address specified in the a address parameter. Note that this function does not actually wait
 * until the START and address are successfully sent on the bus before returning.
 *
 * param base The LPI2C peripheral base address.
 * param address 7-bit slave device address, in bits [6:0].
 * param dir Master transfer direction, either #kLPI2C_Read or #kLPI2C_Write. This parameter is used to set
 *      the R/w bit (bit 0) in the transmitted slave address.
 * retval #kStatus_Success START signal and address were successfully enqueued in the transmit FIFO.
 * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
 */
status_t LPI2C_MasterStart(LPI2C_Type *base, uint8_t address, lpi2c_direction_t dir)
{
    /* Return an error if the bus is already in use not by us. */
    status_t result = LPI2C_CheckForBusyBus(base);
    if (result)
    {
        return result;
    }

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    /* Wait until there is room in the fifo. */
    result = LPI2C_MasterWaitForTxReady(base);
    if (result)
    {
        return result;
    }

    /* Issue start command. */
    base->MTDR = kStartCmd | (((uint32_t)address << 1U) | (uint32_t)dir);

    return kStatus_Success;
}

/*!
 * brief Sends a STOP signal on the I2C bus.
 *
 * This function does not return until the STOP signal is seen on the bus, or an error occurs.
 *
 * param base The LPI2C peripheral base address.
 * retval #kStatus_Success The STOP signal was successfully sent on the bus and the transaction terminated.
 * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
 * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
 * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
 * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
 * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
 */
status_t LPI2C_MasterStop(LPI2C_Type *base)
{
    /* Wait until there is room in the fifo. */
    status_t result = LPI2C_MasterWaitForTxReady(base);
    if (result)
    {
        return result;
    }

    /* Send the STOP signal */
    base->MTDR = kStopCmd;

/* Wait for the stop detected flag to set, indicating the transfer has completed on the bus. */
/* Also check for errors while waiting. */
#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

#if LPI2C_WAIT_TIMEOUT
    while ((result == kStatus_Success) && (--waitTimes))
#else
    while (result == kStatus_Success)
#endif
    {
        uint32_t status = LPI2C_MasterGetStatusFlags(base);

        /* Check for error flags. */
        result = LPI2C_MasterCheckAndClearError(base, status);

        /* Check if the stop was sent successfully. */
        if (status & kLPI2C_MasterStopDetectFlag)
        {
            LPI2C_MasterClearStatusFlags(base, kLPI2C_MasterStopDetectFlag);
            break;
        }
    }

#if LPI2C_WAIT_TIMEOUT
    if (waitTimes == 0)
    {
        return kStatus_LPI2C_Timeout;
    }
#endif

    return result;
}

/*!
 * brief Performs a polling receive transfer on the I2C bus.
 *
 * param base  The LPI2C peripheral base address.
 * param rxBuff The pointer to the data to be transferred.
 * param rxSize The length in bytes of the data to be transferred.
 * retval #kStatus_Success Data was received successfully.
 * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
 * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
 * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
 * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
 * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
 */
status_t LPI2C_MasterReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize)
{
    status_t result;
    uint8_t *buf;

    assert(rxBuff);

    /* Handle empty read. */
    if (!rxSize)
    {
        return kStatus_Success;
    }

    /* Wait until there is room in the command fifo. */
    result = LPI2C_MasterWaitForTxReady(base);
    if (result)
    {
        return result;
    }

    /* Issue command to receive data. */
    base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(rxSize - 1);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    /* Receive data */
    buf = (uint8_t *)rxBuff;
    while (rxSize--)
    {
        /* Read LPI2C receive fifo register. The register includes a flag to indicate whether */
        /* the FIFO is empty, so we can both get the data and check if we need to keep reading */
        /* using a single register read. */
        uint32_t value;
        do
        {
            /* Check for errors. */
            result = LPI2C_MasterCheckAndClearError(base, LPI2C_MasterGetStatusFlags(base));
            if (result)
            {
                return result;
            }

            value = base->MRDR;
#if LPI2C_WAIT_TIMEOUT
        } while ((value & LPI2C_MRDR_RXEMPTY_MASK) && (--waitTimes));
        if (waitTimes == 0)
        {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (value & LPI2C_MRDR_RXEMPTY_MASK);
#endif

        *buf++ = value & LPI2C_MRDR_DATA_MASK;
    }

    return kStatus_Success;
}

/*!
 * brief Performs a polling send transfer on the I2C bus.
 *
 * Sends up to a txSize number of bytes to the previously addressed slave device. The slave may
 * reply with a NAK to any byte in order to terminate the transfer early. If this happens, this
 * function returns #kStatus_LPI2C_Nak.
 *
 * param base  The LPI2C peripheral base address.
 * param txBuff The pointer to the data to be transferred.
 * param txSize The length in bytes of the data to be transferred.
 * retval #kStatus_Success Data was sent successfully.
 * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
 * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
 * retval #kStatus_LPI2C_FifoError FIFO under run or over run.
 * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
 * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
 */
status_t LPI2C_MasterSend(LPI2C_Type *base, void *txBuff, size_t txSize)
{
    uint8_t *buf = (uint8_t *)txBuff;

    assert(txBuff);

    /* Send data buffer */
    while (txSize--)
    {
        /* Wait until there is room in the fifo. This also checks for errors. */
        status_t result = LPI2C_MasterWaitForTxReady(base);
        if (result)
        {
            return result;
        }

        /* Write byte into LPI2C master data register. */
        base->MTDR = *buf++;
    }

    return kStatus_Success;
}

/*!
 * brief Performs a master polling transfer on the I2C bus.
 *
 * note The API does not return until the transfer succeeds or fails due
 * to error happens during transfer.
 *
 * param base The LPI2C peripheral base address.
 * param transfer Pointer to the transfer structure.
 * retval #kStatus_Success Data was received successfully.
 * retval #kStatus_LPI2C_Busy Another master is currently utilizing the bus.
 * retval #kStatus_LPI2C_Nak The slave device sent a NAK in response to a byte.
 * retval #kStatus_LPI2C_FifoError FIFO under run or overrun.
 * retval #kStatus_LPI2C_ArbitrationLost Arbitration lost error.
 * retval #kStatus_LPI2C_PinLowTimeout SCL or SDA were held low longer than the timeout.
 */
status_t LPI2C_MasterTransferBlocking(LPI2C_Type *base, lpi2c_master_transfer_t *transfer)
{
    status_t result = kStatus_Success;
    uint16_t commandBuffer[7];
    uint32_t cmdCount = 0;

    assert(transfer);
    assert(transfer->subaddressSize <= sizeof(transfer->subaddress));

    /* Return an error if the bus is already in use not by us. */
    result = LPI2C_CheckForBusyBus(base);
    if (result)
    {
        return result;
    }

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    lpi2c_direction_t direction = transfer->subaddressSize ? kLPI2C_Write : transfer->direction;
    if (!(transfer->flags & kLPI2C_TransferNoStartFlag))
    {
        commandBuffer[cmdCount++] =
            (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)direction);
    }

    /* Subaddress, MSB first. */
    if (transfer->subaddressSize)
    {
        uint32_t subaddressRemaining = transfer->subaddressSize;
        while (subaddressRemaining--)
        {
            uint8_t subaddressByte = (transfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
            commandBuffer[cmdCount++] = subaddressByte;
        }
    }

    /* Reads need special handling. */
    if ((transfer->dataSize) && (transfer->direction == kLPI2C_Read))
    {
        /* Need to send repeated start if switching directions to read. */
        if (direction == kLPI2C_Write)
        {
            commandBuffer[cmdCount++] =
                (uint16_t)kStartCmd |
                (uint16_t)((uint16_t)((uint16_t)transfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
        }
    }

    /* Send command buffer */
    uint32_t index = 0;
    while (cmdCount--)
    {
        /* Wait until there is room in the fifo. This also checks for errors. */
        result = LPI2C_MasterWaitForTxReady(base);
        if (result)
        {
            return result;
        }

        /* Write byte into LPI2C master data register. */
        base->MTDR = commandBuffer[index];
        index++;
    }

    /* Transmit data. */
    if ((transfer->direction == kLPI2C_Write) && (transfer->dataSize > 0))
    {
        /* Send Data. */
        result = LPI2C_MasterSend(base, transfer->data, transfer->dataSize);
    }

    /* Receive Data. */
    if ((transfer->direction == kLPI2C_Read) && (transfer->dataSize > 0))
    {
        result = LPI2C_MasterReceive(base, transfer->data, transfer->dataSize);
    }

    if (result)
    {
        return result;
    }

    if ((transfer->flags & kLPI2C_TransferNoStopFlag) == 0)
    {
        result = LPI2C_MasterStop(base);
    }

    return result;
}

/*!
 * brief Creates a new handle for the LPI2C master non-blocking APIs.
 *
 * The creation of a handle is for use with the non-blocking APIs. Once a handle
 * is created, there is not a corresponding destroy handle. If the user wants to
 * terminate a transfer, the LPI2C_MasterTransferAbort() API shall be called.
 *
 *
 * note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
 * that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
 * enable the associated INTMUX IRQ in application.
 *
 * param base The LPI2C peripheral base address.
 * param[out] handle Pointer to the LPI2C master driver handle.
 * param callback User provided pointer to the asynchronous callback function.
 * param userData User provided pointer to the application callback data.
 */
void LPI2C_MasterTransferCreateHandle(LPI2C_Type *base,
                                      lpi2c_master_handle_t *handle,
                                      lpi2c_master_transfer_callback_t callback,
                                      void *userData)
{
    uint32_t instance;

    assert(handle);

    /* Clear out the handle. */
    memset(handle, 0, sizeof(*handle));

    /* Look up instance number */
    instance = LPI2C_GetInstance(base);

    /* Save base and instance. */
    handle->completionCallback = callback;
    handle->userData = userData;

    /* Save this handle for IRQ use. */
    s_lpi2cMasterHandle[instance] = handle;

    /* Set irq handler. */
    s_lpi2cMasterIsr = LPI2C_MasterTransferHandleIRQ;

    /* Clear internal IRQ enables and enable NVIC IRQ. */
    LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

    /* Enable NVIC IRQ, this only enables the IRQ directly connected to the NVIC.
     In some cases the LPI2C IRQ is configured through INTMUX, user needs to enable
     INTMUX IRQ in application code. */
    EnableIRQ(kLpi2cIrqs[instance]);
}

/*!
 * @brief Execute states until FIFOs are exhausted.
 * @param handle Master nonblocking driver handle.
 * @param[out] isDone Set to true if the transfer has completed.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_PinLowTimeout
 * @retval #kStatus_LPI2C_ArbitrationLost
 * @retval #kStatus_LPI2C_Nak
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_RunTransferStateMachine(LPI2C_Type *base, lpi2c_master_handle_t *handle, bool *isDone)
{
    uint32_t status;
    status_t result = kStatus_Success;
    lpi2c_master_transfer_t *xfer;
    size_t txCount;
    size_t rxCount;
    size_t txFifoSize = FSL_FEATURE_LPI2C_FIFO_SIZEn(base);
    bool state_complete = false;

    /* Set default isDone return value. */
    *isDone = false;

    /* Check for errors. */
    status = LPI2C_MasterGetStatusFlags(base);
    result = LPI2C_MasterCheckAndClearError(base, status);
    if (result)
    {
        return result;
    }

    /* Get pointer to private data. */
    xfer = &handle->transfer;

    /* Get fifo counts and compute room in tx fifo. */
    LPI2C_MasterGetFifoCounts(base, &rxCount, &txCount);
    txCount = txFifoSize - txCount;

    while (!state_complete)
    {
        /* Execute the state. */
        switch (handle->state)
        {
            case kSendCommandState:
            {
                /* Make sure there is room in the tx fifo for the next command. */
                if (!txCount--)
                {
                    state_complete = true;
                    break;
                }

                /* Issue command. buf is a uint8_t* pointing at the uint16 command array. */
                base->MTDR = *(uint16_t *)handle->buf;
                handle->buf += sizeof(uint16_t);

                /* Count down until all commands are sent. */
                if (--handle->remainingBytes == 0)
                {
                    /* Choose next state and set up buffer pointer and count. */
                    if (xfer->dataSize)
                    {
                        /* Either a send or receive transfer is next. */
                        handle->state = kTransferDataState;
                        handle->buf = (uint8_t *)xfer->data;
                        handle->remainingBytes = xfer->dataSize;
                        if (xfer->direction == kLPI2C_Read)
                        {
                            /* Disable TX interrupt */
                            LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
                        }
                    }
                    else
                    {
                        /* No transfer, so move to stop state. */
                        handle->state = kStopState;
                    }
                }
                break;
            }

            case kIssueReadCommandState:
                /* Make sure there is room in the tx fifo for the read command. */
                if (!txCount--)
                {
                    state_complete = true;
                    break;
                }

                base->MTDR = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);

                /* Move to transfer state. */
                handle->state = kTransferDataState;
                if (xfer->direction == kLPI2C_Read)
                {
                    /* Disable TX interrupt */
                    LPI2C_MasterDisableInterrupts(base, kLPI2C_MasterTxReadyFlag);
                }
                break;

            case kTransferDataState:
                if (xfer->direction == kLPI2C_Write)
                {
                    /* Make sure there is room in the tx fifo. */
                    if (!txCount--)
                    {
                        state_complete = true;
                        break;
                    }

                    /* Put byte to send in fifo. */
                    base->MTDR = *(handle->buf)++;
                }
                else
                {
                    /* XXX handle receive sizes > 256, use kIssueReadCommandState */
                    /* Make sure there is data in the rx fifo. */
                    if (!rxCount--)
                    {
                        state_complete = true;
                        break;
                    }

                    /* Read byte from fifo. */
                    *(handle->buf)++ = base->MRDR & LPI2C_MRDR_DATA_MASK;
                }

                /* Move to stop when the transfer is done. */
                if (--handle->remainingBytes == 0)
                {
                    handle->state = kStopState;
                }
                break;

            case kStopState:
                /* Only issue a stop transition if the caller requested it. */
                if ((xfer->flags & kLPI2C_TransferNoStopFlag) == 0)
                {
                    /* Make sure there is room in the tx fifo for the stop command. */
                    if (!txCount--)
                    {
                        state_complete = true;
                        break;
                    }

                    base->MTDR = kStopCmd;
                }
                else
                {
                    /* Caller doesn't want to send a stop, so we're done now. */
                    *isDone = true;
                    state_complete = true;
                    break;
                }
                handle->state = kWaitForCompletionState;
                break;

            case kWaitForCompletionState:
                /* We stay in this state until the stop state is detected. */
                if (status & kLPI2C_MasterStopDetectFlag)
                {
                    *isDone = true;
                }
                state_complete = true;
                break;
            default:
                assert(false);
                break;
        }
    }
    return result;
}

/*!
 * @brief Prepares the transfer state machine and fills in the command buffer.
 * @param handle Master nonblocking driver handle.
 */
static void LPI2C_InitTransferStateMachine(lpi2c_master_handle_t *handle)
{
    lpi2c_master_transfer_t *xfer = &handle->transfer;

    /* Handle no start option. */
    if (xfer->flags & kLPI2C_TransferNoStartFlag)
    {
        if (xfer->direction == kLPI2C_Read)
        {
            /* Need to issue read command first. */
            handle->state = kIssueReadCommandState;
        }
        else
        {
            /* Start immediately in the data transfer state. */
            handle->state = kTransferDataState;
        }

        handle->buf = (uint8_t *)xfer->data;
        handle->remainingBytes = xfer->dataSize;
    }
    else
    {
        uint16_t *cmd = (uint16_t *)&handle->commandBuffer;
        uint32_t cmdCount = 0;

        /* Initial direction depends on whether a subaddress was provided, and of course the actual */
        /* data transfer direction. */
        lpi2c_direction_t direction = xfer->subaddressSize ? kLPI2C_Write : xfer->direction;

        /* Start command. */
        cmd[cmdCount++] =
            (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);

        /* Subaddress, MSB first. */
        if (xfer->subaddressSize)
        {
            uint32_t subaddressRemaining = xfer->subaddressSize;
            while (subaddressRemaining--)
            {
                uint8_t subaddressByte = (xfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
                cmd[cmdCount++] = subaddressByte;
            }
        }

        /* Reads need special handling. */
        if ((xfer->dataSize) && (xfer->direction == kLPI2C_Read))
        {
            /* Need to send repeated start if switching directions to read. */
            if (direction == kLPI2C_Write)
            {
                cmd[cmdCount++] = (uint16_t)kStartCmd |
                                  (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
            }

            /* Read command. */
            cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
        }

        /* Set up state machine for transferring the commands. */
        handle->state = kSendCommandState;
        handle->remainingBytes = cmdCount;
        handle->buf = (uint8_t *)&handle->commandBuffer;
    }
}

/*!
 * brief Performs a non-blocking transaction on the I2C bus.
 *
 * param base The LPI2C peripheral base address.
 * param handle Pointer to the LPI2C master driver handle.
 * param transfer The pointer to the transfer descriptor.
 * retval #kStatus_Success The transaction was started successfully.
 * retval #kStatus_LPI2C_Busy Either another master is currently utilizing the bus, or a non-blocking
 *      transaction is already in progress.
 */
status_t LPI2C_MasterTransferNonBlocking(LPI2C_Type *base,
                                         lpi2c_master_handle_t *handle,
                                         lpi2c_master_transfer_t *transfer)
{
    status_t result;

    assert(handle);
    assert(transfer);
    assert(transfer->subaddressSize <= sizeof(transfer->subaddress));

    /* Return busy if another transaction is in progress. */
    if (handle->state != kIdleState)
    {
        return kStatus_LPI2C_Busy;
    }

    /* Return an error if the bus is already in use not by us. */
    result = LPI2C_CheckForBusyBus(base);
    if (result)
    {
        return result;
    }

    /* Disable LPI2C IRQ sources while we configure stuff. */
    LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

    /* Save transfer into handle. */
    handle->transfer = *transfer;

    /* Generate commands to send. */
    LPI2C_InitTransferStateMachine(handle);

    /* Clear all flags. */
    LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);

    /* Turn off auto-stop option. */
    base->MCFGR1 &= ~LPI2C_MCFGR1_AUTOSTOP_MASK;

    /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
    LPI2C_MasterEnableInterrupts(base, kMasterIrqFlags);

    return result;
}

/*!
 * brief Returns number of bytes transferred so far.
 * param base The LPI2C peripheral base address.
 * param handle Pointer to the LPI2C master driver handle.
 * param[out] count Number of bytes transferred so far by the non-blocking transaction.
 * retval #kStatus_Success
 * retval #kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress.
 */
status_t LPI2C_MasterTransferGetCount(LPI2C_Type *base, lpi2c_master_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (handle->state == kIdleState)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    uint8_t state;
    uint16_t remainingBytes;
    uint32_t dataSize;

    /* Cache some fields with IRQs disabled. This ensures all field values */
    /* are synchronized with each other during an ongoing transfer. */
    uint32_t irqs = LPI2C_MasterGetEnabledInterrupts(base);
    LPI2C_MasterDisableInterrupts(base, irqs);
    state = handle->state;
    remainingBytes = handle->remainingBytes;
    dataSize = handle->transfer.dataSize;
    LPI2C_MasterEnableInterrupts(base, irqs);

    /* Get transfer count based on current transfer state. */
    switch (state)
    {
        case kIdleState:
        case kSendCommandState:
        case kIssueReadCommandState: /* XXX return correct value for this state when >256 reads are supported */
            *count = 0;
            break;

        case kTransferDataState:
            *count = dataSize - remainingBytes;
            break;

        case kStopState:
        case kWaitForCompletionState:
        default:
            *count = dataSize;
            break;
    }

    return kStatus_Success;
}

/*!
 * brief Terminates a non-blocking LPI2C master transmission early.
 *
 * note It is not safe to call this function from an IRQ handler that has a higher priority than the
 *      LPI2C peripheral's IRQ priority.
 *
 * param base The LPI2C peripheral base address.
 * param handle Pointer to the LPI2C master driver handle.
 * retval #kStatus_Success A transaction was successfully aborted.
 * retval #kStatus_LPI2C_Idle There is not a non-blocking transaction currently in progress.
 */
void LPI2C_MasterTransferAbort(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
    if (handle->state != kIdleState)
    {
        /* Disable internal IRQ enables. */
        LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

        /* Reset fifos. */
        base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;

        /* Send a stop command to finalize the transfer. */
        base->MTDR = kStopCmd;

        /* Reset handle. */
        handle->state = kIdleState;
    }
}

/*!
 * brief Reusable routine to handle master interrupts.
 * note This function does not need to be called unless you are reimplementing the
 *  nonblocking API's interrupt handler routines to add special functionality.
 * param base The LPI2C peripheral base address.
 * param handle Pointer to the LPI2C master driver handle.
 */
void LPI2C_MasterTransferHandleIRQ(LPI2C_Type *base, lpi2c_master_handle_t *handle)
{
    bool isDone;
    status_t result;

    /* Don't do anything if we don't have a valid handle. */
    if (!handle)
    {
        return;
    }

    if (handle->state == kIdleState)
    {
        return;
    }

    result = LPI2C_RunTransferStateMachine(base, handle, &isDone);

    if (isDone || (result != kStatus_Success))
    {
        /* XXX need to handle data that may be in rx fifo below watermark level? */

        /* XXX handle error, terminate xfer */

        /* Disable internal IRQ enables. */
        LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);

        /* Set handle to idle state. */
        handle->state = kIdleState;

        /* Invoke callback. */
        if (handle->completionCallback)
        {
            handle->completionCallback(base, handle, result, handle->userData);
        }
    }
}

/*!
 * brief Provides a default configuration for the LPI2C slave peripheral.
 *
 * This function provides the following default configuration for the LPI2C slave peripheral:
 * code
 *  slaveConfig->enableSlave               = true;
 *  slaveConfig->address0                  = 0U;
 *  slaveConfig->address1                  = 0U;
 *  slaveConfig->addressMatchMode          = kLPI2C_MatchAddress0;
 *  slaveConfig->filterDozeEnable          = true;
 *  slaveConfig->filterEnable              = true;
 *  slaveConfig->enableGeneralCall         = false;
 *  slaveConfig->sclStall.enableAck        = false;
 *  slaveConfig->sclStall.enableTx         = true;
 *  slaveConfig->sclStall.enableRx         = true;
 *  slaveConfig->sclStall.enableAddress    = true;
 *  slaveConfig->ignoreAck                 = false;
 *  slaveConfig->enableReceivedAddressRead = false;
 *  slaveConfig->sdaGlitchFilterWidth_ns   = 0;
 *  slaveConfig->sclGlitchFilterWidth_ns   = 0;
 *  slaveConfig->dataValidDelay_ns         = 0;
 *  slaveConfig->clockHoldTime_ns          = 0;
 * endcode
 *
 * After calling this function, override any settings  to customize the configuration,
 * prior to initializing the master driver with LPI2C_SlaveInit(). Be sure to override at least the a
 * address0 member of the configuration structure with the desired slave address.
 *
 * param[out] slaveConfig User provided configuration structure that is set to default values. Refer to
 *      #lpi2c_slave_config_t.
 */
void LPI2C_SlaveGetDefaultConfig(lpi2c_slave_config_t *slaveConfig)
{
    /* Initializes the configure structure to zero. */
    memset(slaveConfig, 0, sizeof(*slaveConfig));

    slaveConfig->enableSlave = true;
    slaveConfig->address0 = 0U;
    slaveConfig->address1 = 0U;
    slaveConfig->addressMatchMode = kLPI2C_MatchAddress0;
    slaveConfig->filterDozeEnable = true;
    slaveConfig->filterEnable = true;
    slaveConfig->enableGeneralCall = false;
    slaveConfig->sclStall.enableAck = false;
    slaveConfig->sclStall.enableTx = true;
    slaveConfig->sclStall.enableRx = true;
    slaveConfig->sclStall.enableAddress = false;
    slaveConfig->ignoreAck = false;
    slaveConfig->enableReceivedAddressRead = false;
    slaveConfig->sdaGlitchFilterWidth_ns = 0; /* TODO determine default width values */
    slaveConfig->sclGlitchFilterWidth_ns = 0;
    slaveConfig->dataValidDelay_ns = 0;
    slaveConfig->clockHoldTime_ns = 0;
}

/*!
 * brief Initializes the LPI2C slave peripheral.
 *
 * This function enables the peripheral clock and initializes the LPI2C slave peripheral as described by the user
 * provided configuration.
 *
 * param base The LPI2C peripheral base address.
 * param slaveConfig User provided peripheral configuration. Use LPI2C_SlaveGetDefaultConfig() to get a set of defaults
 *      that you can override.
 * param sourceClock_Hz Frequency in Hertz of the LPI2C functional clock. Used to calculate the filter widths,
 *      data valid delay, and clock hold time.
 */
void LPI2C_SlaveInit(LPI2C_Type *base, const lpi2c_slave_config_t *slaveConfig, uint32_t sourceClock_Hz)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Ungate the clock. */
    CLOCK_EnableClock(kLpi2cClocks[instance]);
#if defined(LPI2C_PERIPH_CLOCKS)
    /* Ungate the functional clock in initialize function. */
    CLOCK_EnableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Restore to reset conditions. */
    LPI2C_SlaveReset(base);

    /* Configure peripheral. */
    base->SAMR = LPI2C_SAMR_ADDR0(slaveConfig->address0) | LPI2C_SAMR_ADDR1(slaveConfig->address1);

    base->SCFGR1 =
        LPI2C_SCFGR1_ADDRCFG(slaveConfig->addressMatchMode) | LPI2C_SCFGR1_IGNACK(slaveConfig->ignoreAck) |
        LPI2C_SCFGR1_RXCFG(slaveConfig->enableReceivedAddressRead) | LPI2C_SCFGR1_GCEN(slaveConfig->enableGeneralCall) |
        LPI2C_SCFGR1_ACKSTALL(slaveConfig->sclStall.enableAck) | LPI2C_SCFGR1_TXDSTALL(slaveConfig->sclStall.enableTx) |
        LPI2C_SCFGR1_RXSTALL(slaveConfig->sclStall.enableRx) |
        LPI2C_SCFGR1_ADRSTALL(slaveConfig->sclStall.enableAddress);

    base->SCFGR2 =
        LPI2C_SCFGR2_FILTSDA(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sdaGlitchFilterWidth_ns,
                                                     (LPI2C_SCFGR2_FILTSDA_MASK >> LPI2C_SCFGR2_FILTSDA_SHIFT), 1)) |
        LPI2C_SCFGR2_FILTSCL(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->sclGlitchFilterWidth_ns,
                                                     (LPI2C_SCFGR2_FILTSCL_MASK >> LPI2C_SCFGR2_FILTSCL_SHIFT), 1)) |
        LPI2C_SCFGR2_DATAVD(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->dataValidDelay_ns,
                                                    (LPI2C_SCFGR2_DATAVD_MASK >> LPI2C_SCFGR2_DATAVD_SHIFT), 1)) |
        LPI2C_SCFGR2_CLKHOLD(LPI2C_GetCyclesForWidth(sourceClock_Hz, slaveConfig->clockHoldTime_ns,
                                                     (LPI2C_SCFGR2_CLKHOLD_MASK >> LPI2C_SCFGR2_CLKHOLD_SHIFT), 1));

    /* Save SCR to last so we don't enable slave until it is configured */
    base->SCR = LPI2C_SCR_FILTDZ(slaveConfig->filterDozeEnable) | LPI2C_SCR_FILTEN(slaveConfig->filterEnable) |
                LPI2C_SCR_SEN(slaveConfig->enableSlave);
}

/*!
* brief Deinitializes the LPI2C slave peripheral.
*
 * This function disables the LPI2C slave peripheral and gates the clock. It also performs a software
 * reset to restore the peripheral to reset conditions.
 *
 * param base The LPI2C peripheral base address.
 */
void LPI2C_SlaveDeinit(LPI2C_Type *base)
{
    LPI2C_SlaveReset(base);

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)

    uint32_t instance = LPI2C_GetInstance(base);

    /* Gate the clock. */
    CLOCK_DisableClock(kLpi2cClocks[instance]);

#if defined(LPI2C_PERIPH_CLOCKS)
    /* Gate the functional clock. */
    CLOCK_DisableClock(kLpi2cPeriphClocks[instance]);
#endif

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}

/*!
 * @brief Convert provided flags to status code, and clear any errors if present.
 * @param base The LPI2C peripheral base address.
 * @param status Current status flags value that will be checked.
 * @retval #kStatus_Success
 * @retval #kStatus_LPI2C_BitError
 * @retval #kStatus_LPI2C_FifoError
 */
static status_t LPI2C_SlaveCheckAndClearError(LPI2C_Type *base, uint32_t flags)
{
    status_t result = kStatus_Success;

    flags &= kSlaveErrorFlags;
    if (flags)
    {
        if (flags & kLPI2C_SlaveBitErrFlag)
        {
            result = kStatus_LPI2C_BitError;
        }
        else if (flags & kLPI2C_SlaveFifoErrFlag)
        {
            result = kStatus_LPI2C_FifoError;
        }
        else
        {
            assert(false);
        }

        /* Clear the errors. */
        LPI2C_SlaveClearStatusFlags(base, flags);
    }

    return result;
}

/*!
 * brief Performs a polling send transfer on the I2C bus.
 *
 * param base  The LPI2C peripheral base address.
 * param txBuff The pointer to the data to be transferred.
 * param txSize The length in bytes of the data to be transferred.
 * param[out] actualTxSize
 * return Error or success status returned by API.
 */
status_t LPI2C_SlaveSend(LPI2C_Type *base, void *txBuff, size_t txSize, size_t *actualTxSize)
{
    uint8_t *buf = (uint8_t *)txBuff;
    size_t remaining = txSize;

    assert(txBuff);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    while (remaining)
    {
        uint32_t flags;
        status_t result;

        /* Wait until we can transmit. */
        do
        {
            /* Check for errors */
            flags = LPI2C_SlaveGetStatusFlags(base);
            result = LPI2C_SlaveCheckAndClearError(base, flags);
            if (result)
            {
                if (actualTxSize)
                {
                    *actualTxSize = txSize - remaining;
                }
                return result;
            }
#if LPI2C_WAIT_TIMEOUT
        } while (
            (!(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
            (--waitTimes));
        if (waitTimes == 0)
        {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (
            !(flags & (kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif

        /* Send a byte. */
        if (flags & kLPI2C_SlaveTxReadyFlag)
        {
            base->STDR = *buf++;
            --remaining;
        }

        /* Exit loop if we see a stop or restart */
        if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))
        {
            LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
            break;
        }
    }

    if (actualTxSize)
    {
        *actualTxSize = txSize - remaining;
    }

    return kStatus_Success;
}

/*!
 * brief Performs a polling receive transfer on the I2C bus.
 *
 * param base  The LPI2C peripheral base address.
 * param rxBuff The pointer to the data to be transferred.
 * param rxSize The length in bytes of the data to be transferred.
 * param[out] actualRxSize
 * return Error or success status returned by API.
 */
status_t LPI2C_SlaveReceive(LPI2C_Type *base, void *rxBuff, size_t rxSize, size_t *actualRxSize)
{
    uint8_t *buf = (uint8_t *)rxBuff;
    size_t remaining = rxSize;

    assert(rxBuff);

#if LPI2C_WAIT_TIMEOUT
    uint32_t waitTimes = LPI2C_WAIT_TIMEOUT;
#endif

    while (remaining)
    {
        uint32_t flags;
        status_t result;

        /* Wait until we can receive. */
        do
        {
            /* Check for errors */
            flags = LPI2C_SlaveGetStatusFlags(base);
            result = LPI2C_SlaveCheckAndClearError(base, flags);
            if (result)
            {
                if (actualRxSize)
                {
                    *actualRxSize = rxSize - remaining;
                }
                return result;
            }
#if LPI2C_WAIT_TIMEOUT
        } while (
            (!(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))) &&
            (--waitTimes));
        if (waitTimes == 0)
        {
            return kStatus_LPI2C_Timeout;
        }
#else
        } while (
            !(flags & (kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag)));
#endif

        /* Receive a byte. */
        if (flags & kLPI2C_SlaveRxReadyFlag)
        {
            *buf++ = base->SRDR & LPI2C_SRDR_DATA_MASK;
            --remaining;
        }

        /* Exit loop if we see a stop or restart */
        if (flags & (kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag))
        {
            LPI2C_SlaveClearStatusFlags(base, kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag);
            break;
        }
    }

    if (actualRxSize)
    {
        *actualRxSize = rxSize - remaining;
    }

    return kStatus_Success;
}

/*!
 * brief Creates a new handle for the LPI2C slave non-blocking APIs.
 *
 * The creation of a handle is for use with the non-blocking APIs. Once a handle
 * is created, there is not a corresponding destroy handle. If the user wants to
 * terminate a transfer, the LPI2C_SlaveTransferAbort() API shall be called.
 *
 * note The function also enables the NVIC IRQ for the input LPI2C. Need to notice
 * that on some SoCs the LPI2C IRQ is connected to INTMUX, in this case user needs to
 * enable the associated INTMUX IRQ in application.

 * param base The LPI2C peripheral base address.
 * param[out] handle Pointer to the LPI2C slave driver handle.
 * param callback User provided pointer to the asynchronous callback function.
 * param userData User provided pointer to the application callback data.
 */
void LPI2C_SlaveTransferCreateHandle(LPI2C_Type *base,
                                     lpi2c_slave_handle_t *handle,
                                     lpi2c_slave_transfer_callback_t callback,
                                     void *userData)
{
    uint32_t instance;

    assert(handle);

    /* Clear out the handle. */
    memset(handle, 0, sizeof(*handle));

    /* Look up instance number */
    instance = LPI2C_GetInstance(base);

    /* Save base and instance. */
    handle->callback = callback;
    handle->userData = userData;

    /* Save this handle for IRQ use. */
    s_lpi2cSlaveHandle[instance] = handle;

    /* Set irq handler. */
    s_lpi2cSlaveIsr = LPI2C_SlaveTransferHandleIRQ;

    /* Clear internal IRQ enables and enable NVIC IRQ. */
    LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);
    EnableIRQ(kLpi2cIrqs[instance]);

    /* Nack by default. */
    base->STAR = LPI2C_STAR_TXNACK_MASK;
}

/*!
 * brief Starts accepting slave transfers.
 *
 * Call this API after calling I2C_SlaveInit() and LPI2C_SlaveTransferCreateHandle() to start processing
 * transactions driven by an I2C master. The slave monitors the I2C bus and pass events to the
 * callback that was passed into the call to LPI2C_SlaveTransferCreateHandle(). The callback is always invoked
 * from the interrupt context.
 *
 * The set of events received by the callback is customizable. To do so, set the a eventMask parameter to
 * the OR'd combination of #lpi2c_slave_transfer_event_t enumerators for the events you wish to receive.
 * The #kLPI2C_SlaveTransmitEvent and #kLPI2C_SlaveReceiveEvent events are always enabled and do not need
 * to be included in the mask. Alternatively, you can pass 0 to get a default set of only the transmit and
 * receive events that are always enabled. In addition, the #kLPI2C_SlaveAllEvents constant is provided as
 * a convenient way to enable all events.
 *
 * param base The LPI2C peripheral base address.
 * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
 * param eventMask Bit mask formed by OR'ing together #lpi2c_slave_transfer_event_t enumerators to specify
 *      which events to send to the callback. Other accepted values are 0 to get a default set of
 *      only the transmit and receive events, and #kLPI2C_SlaveAllEvents to enable all events.
 *
 * retval #kStatus_Success Slave transfers were successfully started.
 * retval #kStatus_LPI2C_Busy Slave transfers have already been started on this handle.
 */
status_t LPI2C_SlaveTransferNonBlocking(LPI2C_Type *base, lpi2c_slave_handle_t *handle, uint32_t eventMask)
{
    uint32_t status;

    assert(handle);

    /* Return busy if another transaction is in progress. */
    if (handle->isBusy)
    {
        return kStatus_LPI2C_Busy;
    }

    /* Return an error if the bus is already in use not by us. */
    status = LPI2C_SlaveGetStatusFlags(base);
    if ((status & kLPI2C_SlaveBusBusyFlag) && (!(status & kLPI2C_SlaveBusyFlag)))
    {
        return kStatus_LPI2C_Busy;
    }

    /* Disable LPI2C IRQ sources while we configure stuff. */
    LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);

    /* Clear transfer in handle. */
    memset(&handle->transfer, 0, sizeof(handle->transfer));

    /* Record that we're busy. */
    handle->isBusy = true;

    /* Set up event mask. tx and rx are always enabled. */
    handle->eventMask = eventMask | kLPI2C_SlaveTransmitEvent | kLPI2C_SlaveReceiveEvent;

    /* Ack by default. */
    base->STAR = 0;

    /* Clear all flags. */
    LPI2C_SlaveClearStatusFlags(base, kSlaveClearFlags);

    /* Enable LPI2C internal IRQ sources. NVIC IRQ was enabled in CreateHandle() */
    LPI2C_SlaveEnableInterrupts(base, kSlaveIrqFlags);

    return kStatus_Success;
}

/*!
 * brief Gets the slave transfer status during a non-blocking transfer.
 * param base The LPI2C peripheral base address.
 * param handle Pointer to i2c_slave_handle_t structure.
 * param[out] count Pointer to a value to hold the number of bytes transferred. May be NULL if the count is not
 *      required.
 * retval #kStatus_Success
 * retval #kStatus_NoTransferInProgress
 */
status_t LPI2C_SlaveTransferGetCount(LPI2C_Type *base, lpi2c_slave_handle_t *handle, size_t *count)
{
    assert(handle);

    if (!count)
    {
        return kStatus_InvalidArgument;
    }

    /* Catch when there is not an active transfer. */
    if (!handle->isBusy)
    {
        *count = 0;
        return kStatus_NoTransferInProgress;
    }

    /* For an active transfer, just return the count from the handle. */
    *count = handle->transferredCount;

    return kStatus_Success;
}

/*!
 * brief Aborts the slave non-blocking transfers.
 * note This API could be called at any time to stop slave for handling the bus events.
 * param base The LPI2C peripheral base address.
 * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
 * retval #kStatus_Success
 * retval #kStatus_LPI2C_Idle
 */
void LPI2C_SlaveTransferAbort(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
    assert(handle);

    /* Return idle if no transaction is in progress. */
    if (handle->isBusy)
    {
        /* Disable LPI2C IRQ sources. */
        LPI2C_SlaveDisableInterrupts(base, kSlaveIrqFlags);

        /* Nack by default. */
        base->STAR = LPI2C_STAR_TXNACK_MASK;

        /* Reset transfer info. */
        memset(&handle->transfer, 0, sizeof(handle->transfer));

        /* We're no longer busy. */
        handle->isBusy = false;
    }
}

/*!
 * brief Reusable routine to handle slave interrupts.
 * note This function does not need to be called unless you are reimplementing the
 *  non blocking API's interrupt handler routines to add special functionality.
 * param base The LPI2C peripheral base address.
 * param handle Pointer to #lpi2c_slave_handle_t structure which stores the transfer state.
 */
void LPI2C_SlaveTransferHandleIRQ(LPI2C_Type *base, lpi2c_slave_handle_t *handle)
{
    uint32_t flags;
    lpi2c_slave_transfer_t *xfer;

    /* Check for a valid handle in case of a spurious interrupt. */
    if (!handle)
    {
        return;
    }

    xfer = &handle->transfer;

    /* Get status flags. */
    flags = LPI2C_SlaveGetStatusFlags(base);

    if (flags & (kLPI2C_SlaveBitErrFlag | kLPI2C_SlaveFifoErrFlag))
    {
        xfer->event = kLPI2C_SlaveCompletionEvent;
        xfer->completionStatus = LPI2C_SlaveCheckAndClearError(base, flags);

        if ((handle->eventMask & kLPI2C_SlaveCompletionEvent) && (handle->callback))
        {
            handle->callback(base, xfer, handle->userData);
        }
        return;
    }
    if (flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag))
    {
        xfer->event = (flags & kLPI2C_SlaveRepeatedStartDetectFlag) ? kLPI2C_SlaveRepeatedStartEvent :
                                                                      kLPI2C_SlaveCompletionEvent;
        xfer->receivedAddress = 0;
        xfer->completionStatus = kStatus_Success;
        xfer->transferredCount = handle->transferredCount;

        if (xfer->event == kLPI2C_SlaveCompletionEvent)
        {
            handle->isBusy = false;
        }

        if (handle->wasTransmit)
        {
            /* Subtract one from the transmit count to offset the fact that LPI2C asserts the */
            /* tx flag before it sees the nack from the master-receiver, thus causing one more */
            /* count that the master actually receives. */
            --xfer->transferredCount;
            handle->wasTransmit = false;
        }

        /* Clear the flag. */
        LPI2C_SlaveClearStatusFlags(base, flags & (kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag));

        /* Revert to sending an Ack by default, in case we sent a Nack for receive. */
        base->STAR = 0;

        if ((handle->eventMask & xfer->event) && (handle->callback))
        {
            handle->callback(base, xfer, handle->userData);
        }

        /* Clean up transfer info on completion, after the callback has been invoked. */
        memset(&handle->transfer, 0, sizeof(handle->transfer));
    }
    if (flags & kLPI2C_SlaveAddressValidFlag)
    {
        xfer->event = kLPI2C_SlaveAddressMatchEvent;
        xfer->receivedAddress = base->SASR & LPI2C_SASR_RADDR_MASK;

        if ((handle->eventMask & kLPI2C_SlaveAddressMatchEvent) && (handle->callback))
        {
            handle->callback(base, xfer, handle->userData);
        }
    }
    if (flags & kLPI2C_SlaveTransmitAckFlag)
    {
        xfer->event = kLPI2C_SlaveTransmitAckEvent;

        if ((handle->eventMask & kLPI2C_SlaveTransmitAckEvent) && (handle->callback))
        {
            handle->callback(base, xfer, handle->userData);
        }
    }

    /* Handle transmit and receive. */
    if (flags & kLPI2C_SlaveTxReadyFlag)
    {
        handle->wasTransmit = true;

        /* If we're out of data, invoke callback to get more. */
        if ((!xfer->data) || (!xfer->dataSize))
        {
            xfer->event = kLPI2C_SlaveTransmitEvent;
            if (handle->callback)
            {
                handle->callback(base, xfer, handle->userData);
            }

            /* Clear the transferred count now that we have a new buffer. */
            handle->transferredCount = 0;
        }

        /* Transmit a byte. */
        if ((xfer->data) && (xfer->dataSize))
        {
            base->STDR = *xfer->data++;
            --xfer->dataSize;
            ++handle->transferredCount;
        }
    }
    if (flags & kLPI2C_SlaveRxReadyFlag)
    {
        /* If we're out of room in the buffer, invoke callback to get another. */
        if ((!xfer->data) || (!xfer->dataSize))
        {
            xfer->event = kLPI2C_SlaveReceiveEvent;
            if (handle->callback)
            {
                handle->callback(base, xfer, handle->userData);
            }

            /* Clear the transferred count now that we have a new buffer. */
            handle->transferredCount = 0;
        }

        /* Receive a byte. */
        if ((xfer->data) && (xfer->dataSize))
        {
            *xfer->data++ = base->SRDR;
            --xfer->dataSize;
            ++handle->transferredCount;
        }
        else
        {
            /* We don't have any room to receive more data, so send a nack. */
            base->STAR = LPI2C_STAR_TXNACK_MASK;
        }
    }
}

/*!
 * @brief Shared IRQ handler that can call both master and slave ISRs.
 *
 * The master and slave ISRs are called through function pointers in order to decouple
 * this code from the ISR functions. Without this, the linker would always pull in both
 * ISRs and every function they call, even if only the functional API was used.
 *
 * @param base The LPI2C peripheral base address.
 * @param instance The LPI2C peripheral instance number.
 */
static void LPI2C_CommonIRQHandler(LPI2C_Type *base, uint32_t instance)
{
    /* Check for master IRQ. */
    if ((base->MCR & LPI2C_MCR_MEN_MASK) && s_lpi2cMasterIsr)
    {
        /* Master mode. */
        s_lpi2cMasterIsr(base, s_lpi2cMasterHandle[instance]);
    }

    /* Check for slave IRQ. */
    if ((base->SCR & LPI2C_SCR_SEN_MASK) && s_lpi2cSlaveIsr)
    {
        /* Slave mode. */
        s_lpi2cSlaveIsr(base, s_lpi2cSlaveHandle[instance]);
    }
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}

#if defined(LPI2C0)
/* Implementation of LPI2C0 handler named in startup code. */
void LPI2C0_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C0, 0);
}
#endif

#if defined(LPI2C1)
/* Implementation of LPI2C1 handler named in startup code. */
void LPI2C1_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C1, 1);
}
#endif

#if defined(LPI2C2)
/* Implementation of LPI2C2 handler named in startup code. */
void LPI2C2_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C2, 2);
}
#endif

#if defined(LPI2C3)
/* Implementation of LPI2C3 handler named in startup code. */
void LPI2C3_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C3, 3);
}
#endif

#if defined(LPI2C4)
/* Implementation of LPI2C4 handler named in startup code. */
void LPI2C4_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(LPI2C4, 4);
}
#endif

#if defined(CM4_0__LPI2C)
/* Implementation of CM4_0__LPI2C handler named in startup code. */
void M4_0_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4_0__LPI2C, LPI2C_GetInstance(CM4_0__LPI2C));
}
#endif

#if defined(CM4__LPI2C)
/* Implementation of CM4__LPI2C handler named in startup code. */
void M4_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4__LPI2C, LPI2C_GetInstance(CM4__LPI2C));
}
#endif

#if defined(CM4_1__LPI2C)
/* Implementation of CM4_1__LPI2C handler named in startup code. */
void M4_1_LPI2C_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(CM4_1__LPI2C, LPI2C_GetInstance(CM4_1__LPI2C));
}
#endif

#if defined(DMA__LPI2C0)
/* Implementation of DMA__LPI2C0 handler named in startup code. */
void DMA_I2C0_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C0, LPI2C_GetInstance(DMA__LPI2C0));
}
#endif

#if defined(DMA__LPI2C1)
/* Implementation of DMA__LPI2C1 handler named in startup code. */
void DMA_I2C1_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C1, LPI2C_GetInstance(DMA__LPI2C1));
}
#endif

#if defined(DMA__LPI2C2)
/* Implementation of DMA__LPI2C2 handler named in startup code. */
void DMA_I2C2_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C2, LPI2C_GetInstance(DMA__LPI2C2));
}
#endif

#if defined(DMA__LPI2C3)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C3_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C3, LPI2C_GetInstance(DMA__LPI2C3));
}
#endif

#if defined(DMA__LPI2C4)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void DMA_I2C4_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(DMA__LPI2C4, LPI2C_GetInstance(DMA__LPI2C4));
}
#endif

#if defined(ADMA__LPI2C0)
/* Implementation of DMA__LPI2C0 handler named in startup code. */
void ADMA_I2C0_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C0, LPI2C_GetInstance(ADMA__LPI2C0));
}
#endif

#if defined(ADMA__LPI2C1)
/* Implementation of DMA__LPI2C1 handler named in startup code. */
void ADMA_I2C1_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C1, LPI2C_GetInstance(ADMA__LPI2C1));
}
#endif

#if defined(ADMA__LPI2C2)
/* Implementation of DMA__LPI2C2 handler named in startup code. */
void ADMA_I2C2_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C2, LPI2C_GetInstance(ADMA__LPI2C2));
}
#endif

#if defined(ADMA__LPI2C3)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void ADMA_I2C3_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C3, LPI2C_GetInstance(ADMA__LPI2C3));
}
#endif

#if defined(ADMA__LPI2C4)
/* Implementation of DMA__LPI2C3 handler named in startup code. */
void ADMA_I2C4_INT_DriverIRQHandler(void)
{
    LPI2C_CommonIRQHandler(ADMA__LPI2C4, LPI2C_GetInstance(ADMA__LPI2C4));
}
#endif