Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*
 * Copyright (c) 2012-2016 Wind River Systems, Inc.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @file
 * @brief Test kernel mutex APIs
 *
 *
 * This module demonstrates the kernel's priority inheritance algorithm.
 * A thread that owns a mutex is promoted to the priority level of the
 * highest-priority thread attempting to lock the mutex.
 *
 * In addition, recursive locking capabilities and the use of a private mutex
 * are also tested.
 *
 * This module tests the following mutex routines:
 *
 *    sys_mutex_lock
 *    sys_mutex_unlock
 *
 * Timeline for priority inheritance testing:
 *   - 0.0  sec: thread_05, thread_06, thread_07, thread_08, thread_09, sleep
 *             : main thread takes mutex_1 then sleeps
 *   - 0.0  sec: thread_11 sleeps
 *   - 0.5  sec: thread_09 wakes and waits on mutex_1
 *   - 1.0  sec: main thread (@ priority 9) takes mutex_2 then sleeps
 *   - 1.5  sec: thread_08 wakes and waits on mutex_2
 *   - 2.0  sec: main thread (@ priority 8) takes mutex_3 then sleeps
 *   - 2.5  sec: thread_07 wakes and waits on mutex_3
 *   - 3.0  sec: main thread (@ priority 7) takes mutex_4 then sleeps
 *   - 3.5  sec: thread_05 wakes and waits on mutex_4
 *   - 3.5  sec: thread_11 wakes and waits on mutex_3
 *   - 3.75 sec: thread_06 wakes and waits on mutex_4
 *   - 4.0  sec: main thread wakes (@ priority 5) then sleeps
 *   - 4.5  sec: thread_05 times out
 *   - 5.0  sec: main thread wakes (@ priority 6) then gives mutex_4
 *             : main thread (@ priority 7) sleeps
 *   - 5.5  sec: thread_07 times out on mutex_3
 *   - 6.0  sec: main thread (@ priority 8) gives mutex_3
 *             : main thread (@ priority 8) gives mutex_2
 *             : main thread (@ priority 9) gives mutex_1
 *             : main thread (@ priority 10) sleeps
 */

#include <tc_util.h>
#include <zephyr.h>
#include <ztest.h>
#include <misc/mutex.h>

#define STACKSIZE (512 + CONFIG_TEST_EXTRA_STACKSIZE)

static ZTEST_DMEM int tc_rc = TC_PASS;         /* test case return code */

ZTEST_BMEM SYS_MUTEX_DEFINE(private_mutex);


ZTEST_BMEM SYS_MUTEX_DEFINE(mutex_1);
ZTEST_BMEM SYS_MUTEX_DEFINE(mutex_2);
ZTEST_BMEM SYS_MUTEX_DEFINE(mutex_3);
ZTEST_BMEM SYS_MUTEX_DEFINE(mutex_4);

#ifdef CONFIG_USERSPACE
static SYS_MUTEX_DEFINE(no_access_mutex);
#endif
static ZTEST_BMEM SYS_MUTEX_DEFINE(not_my_mutex);
static ZTEST_BMEM SYS_MUTEX_DEFINE(bad_count_mutex);

/**
 *
 * thread_05 -
 *
 * @return  N/A
 */

void thread_05(void)
{
	int rv;

	k_sleep(K_MSEC(3500));

	/* Wait and boost owner priority to 5 */
	rv = sys_mutex_lock(&mutex_4, K_SECONDS(1));
	if (rv != -EAGAIN) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to timeout on mutex 0x%x\n",
			 (u32_t)&mutex_4);
		return;
	}
}


/**
 *
 * thread_06 -
 *
 * @return  N/A
 */

void thread_06(void)
{
	int rv;

	k_sleep(K_MSEC(3750));

	/*
	 * Wait for the mutex.  There is a higher priority level thread waiting
	 * on the mutex, so request will not immediately contribute to raising
	 * the priority of the owning thread (main thread).  When thread_05
	 * times out this thread will become the highest priority waiting
	 * thread. The priority of the owning thread (main thread) will not
	 * drop back to 7, but will instead drop to 6.
	 */

	rv = sys_mutex_lock(&mutex_4, K_SECONDS(2));
	if (rv != 0) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to take mutex 0x%x\n", (u32_t)&mutex_4);
		return;
	}

	sys_mutex_unlock(&mutex_4);
}

/**
 *
 * thread_07 -
 *
 * @return  N/A
 */

void thread_07(void)
{
	int rv;

	k_sleep(K_MSEC(2500));

	/*
	 * Wait and boost owner priority to 7.  While waiting, another thread of
	 * a very low priority level will also wait for the mutex.  thread_07 is
	 * expected to time out around the 5.5 second mark.  When it times out,
	 * thread_11 will become the only waiting thread for this mutex and the
	 * priority of the owning main thread will drop to 8.
	 */

	rv = sys_mutex_lock(&mutex_3, K_SECONDS(3));
	if (rv != -EAGAIN) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to timeout on mutex 0x%x\n",
			 (u32_t)&mutex_3);
		return;
	}

}

/**
 *
 * thread_08 -
 *
 * @return  N/A
 */

void thread_08(void)
{
	int rv;

	k_sleep(K_MSEC(1500));

	/* Wait and boost owner priority to 8 */
	rv = sys_mutex_lock(&mutex_2, K_FOREVER);
	if (rv != 0) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to take mutex 0x%x\n", (u32_t)&mutex_2);
		return;
	}

	sys_mutex_unlock(&mutex_2);
}

/**
 *
 * thread_09 -
 *
 * @return  N/A
 */

void thread_09(void)
{
	int rv;

	k_sleep(K_MSEC(500));	/* Allow lower priority thread to run */

	/*<mutex_1> is already locked. */
	rv = sys_mutex_lock(&mutex_1, K_NO_WAIT);
	if (rv != -EBUSY) {	/* This attempt to lock the mutex */
		/* should not succeed. */
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to NOT take locked mutex 0x%x\n",
			 (u32_t)&mutex_1);
		return;
	}

	/* Wait and boost owner priority to 9 */
	rv = sys_mutex_lock(&mutex_1, K_FOREVER);
	if (rv != 0) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to take mutex 0x%x\n", (u32_t)&mutex_1);
		return;
	}

	sys_mutex_unlock(&mutex_1);
}

/**
 *
 * thread_11 -
 *
 * @return N/A
 */

void thread_11(void)
{
	int rv;

	k_sleep(K_MSEC(3500));
	rv = sys_mutex_lock(&mutex_3, K_FOREVER);
	if (rv != 0) {
		tc_rc = TC_FAIL;
		TC_ERROR("Failed to take mutex 0x%x\n", (u32_t)&mutex_2);
		return;
	}
	sys_mutex_unlock(&mutex_3);
}

K_THREAD_STACK_DEFINE(thread_12_stack_area, STACKSIZE);
struct k_thread thread_12_thread_data;
extern void thread_12(void);

/**
 *
 * @brief Main thread to test thread_mutex_xxx interfaces
 *
 * This thread will lock on mutex_1, mutex_2, mutex_3 and mutex_4. It later
 * recursively locks private_mutex, releases it, then re-locks it.
 *
 * @return  N/A
 */

void test_mutex(void)
{
	/*
	 * Main thread(test_main) priority was 10 but ztest thread runs at
	 * priority -1. To run the test smoothly make both main and ztest
	 * threads run at same priority level.
	 */
	k_thread_priority_set(k_current_get(), 10);

	int rv;
	int i;
	struct sys_mutex *mutexes[4] = { &mutex_1, &mutex_2, &mutex_3,
					 &mutex_4 };
	struct sys_mutex *givemutex[3] = { &mutex_3, &mutex_2, &mutex_1 };
	int priority[4] = { 9, 8, 7, 5 };
	int droppri[3] = { 8, 8, 9 };
#ifdef CONFIG_USERSPACE
	int thread_flags = K_USER | K_INHERIT_PERMS;
#else
	int thread_flags = 0;
#endif


	TC_START("Test kernel Mutex API");

	PRINT_LINE;

	/*
	 * 1st iteration: Take mutex_1; thread_09 waits on mutex_1
	 * 2nd iteration: Take mutex_2: thread_08 waits on mutex_2
	 * 3rd iteration: Take mutex_3; thread_07 waits on mutex_3
	 * 4th iteration: Take mutex_4; thread_05 waits on mutex_4
	 */

	for (i = 0; i < 4; i++) {
		rv = sys_mutex_lock(mutexes[i], K_NO_WAIT);
		zassert_equal(rv, 0, "Failed to lock mutex 0x%x\n",
			      (u32_t)mutexes[i]);
		k_sleep(K_SECONDS(1));

		rv = k_thread_priority_get(k_current_get());
		zassert_equal(rv, priority[i], "expected priority %d, not %d\n",
			      priority[i], rv);

		/* Catch any errors from other threads */
		zassert_equal(tc_rc, TC_PASS, NULL);
	}

	/* ~ 4 seconds have passed */

	TC_PRINT("Done LOCKING!  Current priority = %d\n",
		 k_thread_priority_get(k_current_get()));

	k_sleep(K_SECONDS(1));       /* thread_05 should time out */

	/* ~ 5 seconds have passed */

	rv = k_thread_priority_get(k_current_get());
	zassert_equal(rv, 6, "%s timed out and out priority should drop.\n",
		      "thread_05");
	zassert_equal(rv, 6, "Expected priority %d, not %d\n", 6, rv);

	sys_mutex_unlock(&mutex_4);
	rv = k_thread_priority_get(k_current_get());
	zassert_equal(rv, 7, "Gave %s and priority should drop.\n", "mutex_4");
	zassert_equal(rv, 7, "Expected priority %d, not %d\n", 7, rv);

	k_sleep(K_SECONDS(1));       /* thread_07 should time out */

	/* ~ 6 seconds have passed */

	for (i = 0; i < 3; i++) {
		rv = k_thread_priority_get(k_current_get());
		zassert_equal(rv, droppri[i], "Expected priority %d, not %d\n",
			      droppri[i], rv);
		sys_mutex_unlock(givemutex[i]);

		zassert_equal(tc_rc, TC_PASS, NULL);
	}

	rv = k_thread_priority_get(k_current_get());
	zassert_equal(rv, 10, "Expected priority %d, not %d\n", 10, rv);

	k_sleep(K_SECONDS(1));     /* Give thread_11 time to run */

	zassert_equal(tc_rc, TC_PASS, NULL);

	/* test recursive locking using a private mutex */

	TC_PRINT("Testing recursive locking\n");

	rv = sys_mutex_lock(&private_mutex, K_NO_WAIT);
	zassert_equal(rv, 0, "Failed to lock private mutex");

	rv = sys_mutex_lock(&private_mutex, K_NO_WAIT);
	zassert_equal(rv, 0, "Failed to recursively lock private mutex");

	/* Start thread */
	k_thread_create(&thread_12_thread_data, thread_12_stack_area, STACKSIZE,
			(k_thread_entry_t)thread_12, NULL, NULL, NULL,
			K_PRIO_PREEMPT(12), thread_flags, K_NO_WAIT);
	k_sleep(1);     /* Give thread_12 a chance to block on the mutex */

	sys_mutex_unlock(&private_mutex);
	sys_mutex_unlock(&private_mutex); /* thread_12 should now have lock */

	rv = sys_mutex_lock(&private_mutex, K_NO_WAIT);
	zassert_equal(rv, -EBUSY, "Unexpectedly got lock on private mutex");

	rv = sys_mutex_lock(&private_mutex, K_SECONDS(1));
	zassert_equal(rv, 0, "Failed to re-obtain lock on private mutex");

	sys_mutex_unlock(&private_mutex);

	TC_PRINT("Recursive locking tests successful\n");
}

void test_supervisor_access(void)
{
	int rv;

#ifdef CONFIG_USERSPACE
	/* coverage for get_k_mutex checks */
	rv = sys_mutex_lock((struct sys_mutex *)NULL, K_NO_WAIT);
	zassert_true(rv == -EINVAL, "accepted bad mutex pointer");
	rv = sys_mutex_lock((struct sys_mutex *)k_current_get(), K_NO_WAIT);
	zassert_true(rv == -EINVAL, "accepted object that was not a mutex");
	rv = sys_mutex_unlock((struct sys_mutex *)NULL);
	zassert_true(rv == -EINVAL, "accepted bad mutex pointer");
	rv = sys_mutex_unlock((struct sys_mutex *)k_current_get());
	zassert_true(rv == -EINVAL, "accepted object that was not a mutex");
#endif /* CONFIG_USERSPACE */

	rv = sys_mutex_unlock(&not_my_mutex);
	zassert_true(rv == -EPERM, "unlocked a mutex that wasn't owner");
	rv = sys_mutex_unlock(&bad_count_mutex);
	zassert_true(rv == -EINVAL, "mutex wasn't locked");
}

void test_user_access(void)
{
#ifdef CONFIG_USERSPACE
	int rv;

	rv = sys_mutex_lock(&no_access_mutex, K_NO_WAIT);
	zassert_true(rv == -EACCES, "accessed mutex not in memory domain");
	rv = sys_mutex_unlock(&no_access_mutex);
	zassert_true(rv == -EACCES, "accessed mutex not in memory domain");
#else
	ztest_test_skip();
#endif /* CONFIG_USERSPACE */
}

K_THREAD_DEFINE(THREAD_05, STACKSIZE, thread_05, NULL, NULL, NULL,
		5, K_USER, K_NO_WAIT);

K_THREAD_DEFINE(THREAD_06, STACKSIZE, thread_06, NULL, NULL, NULL,
		6, K_USER, K_NO_WAIT);

K_THREAD_DEFINE(THREAD_07, STACKSIZE, thread_07, NULL, NULL, NULL,
		7, K_USER, K_NO_WAIT);

K_THREAD_DEFINE(THREAD_08, STACKSIZE, thread_08, NULL, NULL, NULL,
		8, K_USER, K_NO_WAIT);

K_THREAD_DEFINE(THREAD_09, STACKSIZE, thread_09, NULL, NULL, NULL,
		9, K_USER, K_NO_WAIT);

K_THREAD_DEFINE(THREAD_11, STACKSIZE, thread_11, NULL, NULL, NULL,
		11, K_USER, K_NO_WAIT);

/*test case main entry*/
void test_main(void)
{
#ifdef CONFIG_USERSPACE
	k_thread_access_grant(k_current_get(),
			      &thread_12_thread_data, &thread_12_stack_area);

	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_05);
	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_06);
	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_07);
	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_08);
	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_09);
	k_mem_domain_add_thread(&ztest_mem_domain, THREAD_11);
#endif
	sys_mutex_lock(&not_my_mutex, K_NO_WAIT);

	/* We deliberately disable userspace, even on platforms that
	 * support it, so that the alternate implementation of sys_mutex
	 * (which is just a very thin wrapper to k_mutex) is exercised.
	 * This requires us to not attempt to start the tests in user
	 * mode, as this will otherwise fail an assertion in the thread code.
	 */
#ifdef CONFIG_USERSPACE
	ztest_test_suite(mutex_complex,
			 ztest_user_unit_test(test_mutex),
			 ztest_user_unit_test(test_user_access),
			 ztest_unit_test(test_supervisor_access));

	ztest_run_test_suite(mutex_complex);
#else
	ztest_test_suite(mutex_complex,
			 ztest_unit_test(test_mutex),
			 ztest_unit_test(test_user_access),
			 ztest_unit_test(test_supervisor_access));

	ztest_run_test_suite(mutex_complex);
#endif


}