Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
/*
 * Copyright (c) 2018 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: Apache-2.0
 */

/**
 * @brief Driver for Nordic Semiconductor nRF UARTE
 */

#include <uart.h>
#include <hal/nrf_gpio.h>
#include <hal/nrf_uarte.h>
#include <nrfx_timer.h>
#include <misc/util.h>
#include <kernel.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(uart_nrfx_uarte, LOG_LEVEL_ERR);

/* Generalize PPI or DPPI channel management */
#if defined(CONFIG_HAS_HW_NRF_PPI)
#include <nrfx_ppi.h>
#define gppi_channel_t nrf_ppi_channel_t
#define gppi_channel_alloc nrfx_ppi_channel_alloc
#define gppi_channel_enable nrfx_ppi_channel_enable
#elif defined(CONFIG_HAS_HW_NRF_DPPIC)
#include <nrfx_dppi.h>
#define gppi_channel_t u8_t
#define gppi_channel_alloc nrfx_dppi_channel_alloc
#define gppi_channel_enable nrfx_dppi_channel_enable
#else
#error "No PPI or DPPI"
#endif


#if (defined(CONFIG_UART_0_NRF_UARTE) &&         \
     defined(CONFIG_UART_0_INTERRUPT_DRIVEN)) || \
    (defined(CONFIG_UART_1_NRF_UARTE) &&         \
     defined(CONFIG_UART_1_INTERRUPT_DRIVEN)) || \
    (defined(CONFIG_UART_2_NRF_UARTE) &&         \
     defined(CONFIG_UART_2_INTERRUPT_DRIVEN)) || \
    (defined(CONFIG_UART_3_NRF_UARTE) &&         \
     defined(CONFIG_UART_3_INTERRUPT_DRIVEN))
	#define UARTE_INTERRUPT_DRIVEN	1
#endif

/*
 * RX timeout is divided into time slabs, this define tells how many divisions
 * should be made. More divisions - higher timeout accuracy and processor usage.
 */
#define RX_TIMEOUT_DIV 5

#ifdef CONFIG_UART_ASYNC_API
struct uarte_async_cb {
	uart_callback_t user_callback;
	void *user_data;

	/* tx_buf has to be volatile it is used as busy flag in uart_tx and
	 * uart_poll_out. If both tx_buf and tx_size is set then there is
	 * currently ongoing asynchronous transmission. If only tx_size
	 * is bigger than 0 and tx_buf is NULL, then there is ongoing
	 * transmission by uart_poll_out
	 */
	const u8_t *volatile tx_buf;
	size_t tx_size;
	struct k_timer tx_timeout_timer;

	u8_t *rx_buf;
	size_t rx_buf_len;
	size_t rx_offset;
	u8_t *rx_next_buf;
	size_t rx_next_buf_len;
	u32_t rx_total_byte_cnt; /* Total number of bytes received */
	u32_t rx_total_user_byte_cnt; /* Total number of bytes passed to user */
	u32_t rx_timeout; /* Timeout set by user */
	s32_t rx_timeout_slab; /* rx_timeout divided by RX_TIMEOUT_DIV */
	s32_t rx_timeout_left; /* Current time left until user callback */
	struct k_timer rx_timeout_timer;
	union {
		gppi_channel_t ppi;
		u32_t cnt;
	} rx_cnt;

	bool rx_enabled;
	bool hw_rx_counting;
	/* Flag to ensure that RX timeout won't be executed during ENDRX ISR */
	volatile bool is_in_irq;
};
#endif

#ifdef UARTE_INTERRUPT_DRIVEN
struct uarte_nrfx_int_driven {
	uart_irq_callback_user_data_t cb; /**< Callback function pointer */
	void *cb_data; /**< Callback function arg */
	u8_t *tx_buffer;
	u16_t tx_buff_size;
	volatile bool disable_tx_irq;
};
#endif

/* Device data structure */
struct uarte_nrfx_data {
	struct uart_config uart_config;
#ifdef UARTE_INTERRUPT_DRIVEN
	struct uarte_nrfx_int_driven *int_driven;
#endif
#ifdef CONFIG_UART_ASYNC_API
	struct uarte_async_cb *async;
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
	u32_t pm_state;
#endif
	u8_t rx_data;
};

/**
 * @brief Structure for UARTE configuration.
 */
struct uarte_nrfx_config {
	NRF_UARTE_Type *uarte_regs; /* Instance address */
	bool rts_cts_pins_set;
	bool gpio_mgmt;
#ifdef CONFIG_UART_ASYNC_API
	nrfx_timer_t timer;
#endif
};

struct uarte_init_config {
	u32_t  pseltxd; /* TXD pin number */
	u32_t  pselrxd; /* RXD pin number */
	u32_t  pselcts; /* CTS pin number */
	u32_t  pselrts; /* RTS pin number */
};

static inline struct uarte_nrfx_data *get_dev_data(struct device *dev)
{
	return dev->driver_data;
}

static inline const struct uarte_nrfx_config *get_dev_config(struct device *dev)
{
	return dev->config->config_info;
}

static inline NRF_UARTE_Type *get_uarte_instance(struct device *dev)
{
	const struct uarte_nrfx_config *config = get_dev_config(dev);

	return config->uarte_regs;
}

#ifdef UARTE_INTERRUPT_DRIVEN
/**
 * @brief Interrupt service routine.
 *
 * This simply calls the callback function, if one exists.
 *
 * @param arg Argument to ISR.
 *
 * @return N/A
 */
static void uarte_nrfx_isr_int(void *arg)
{
	struct device *dev = arg;
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (data->int_driven->disable_tx_irq &&
	    nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
		nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDTX_MASK);

		/* If there is nothing to send, driver will save an energy
		 * when TX is stopped.
		 */
		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);

		data->int_driven->disable_tx_irq = false;

		return;
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
	}

	if (data->int_driven->cb) {
		data->int_driven->cb(data->int_driven->cb_data);
	}
}
#endif /* UARTE_INTERRUPT_DRIVEN */

/**
 * @brief Set the baud rate
 *
 * This routine set the given baud rate for the UARTE.
 *
 * @param dev UARTE device struct
 * @param baudrate Baud rate
 *
 * @return 0 on success or error code
 */
static int baudrate_set(struct device *dev, u32_t baudrate)
{
	nrf_uarte_baudrate_t nrf_baudrate; /* calculated baudrate divisor */
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	switch (baudrate) {
	case 300:
		/* value not supported by Nordic HAL */
		nrf_baudrate = 0x00014000;
		break;
	case 600:
		/* value not supported by Nordic HAL */
		nrf_baudrate = 0x00027000;
		break;
	case 1200:
		nrf_baudrate = NRF_UARTE_BAUDRATE_1200;
		break;
	case 2400:
		nrf_baudrate = NRF_UARTE_BAUDRATE_2400;
		break;
	case 4800:
		nrf_baudrate = NRF_UARTE_BAUDRATE_4800;
		break;
	case 9600:
		nrf_baudrate = NRF_UARTE_BAUDRATE_9600;
		break;
	case 14400:
		nrf_baudrate = NRF_UARTE_BAUDRATE_14400;
		break;
	case 19200:
		nrf_baudrate = NRF_UARTE_BAUDRATE_19200;
		break;
	case 28800:
		nrf_baudrate = NRF_UARTE_BAUDRATE_28800;
		break;
	case 31250:
		nrf_baudrate = NRF_UARTE_BAUDRATE_31250;
		break;
	case 38400:
		nrf_baudrate = NRF_UARTE_BAUDRATE_38400;
		break;
	case 56000:
		nrf_baudrate = NRF_UARTE_BAUDRATE_56000;
		break;
	case 57600:
		nrf_baudrate = NRF_UARTE_BAUDRATE_57600;
		break;
	case 76800:
		nrf_baudrate = NRF_UARTE_BAUDRATE_76800;
		break;
	case 115200:
		nrf_baudrate = NRF_UARTE_BAUDRATE_115200;
		break;
	case 230400:
		nrf_baudrate = NRF_UARTE_BAUDRATE_230400;
		break;
	case 250000:
		nrf_baudrate = NRF_UARTE_BAUDRATE_250000;
		break;
	case 460800:
		nrf_baudrate = NRF_UARTE_BAUDRATE_460800;
		break;
	case 921600:
		nrf_baudrate = NRF_UARTE_BAUDRATE_921600;
		break;
	case 1000000:
		nrf_baudrate = NRF_UARTE_BAUDRATE_1000000;
		break;
	default:
		return -EINVAL;
	}

	nrf_uarte_baudrate_set(uarte, nrf_baudrate);

	return 0;
}

static int uarte_nrfx_configure(struct device *dev,
				const struct uart_config *cfg)
{
	nrf_uarte_parity_t parity;
	nrf_uarte_hwfc_t hwfc;
#ifdef UARTE_CONFIG_STOP_Two
	bool two_stop_bits = false;
#endif

	switch (cfg->stop_bits) {
	case UART_CFG_STOP_BITS_1:
		break;
#ifdef UARTE_CONFIG_STOP_Two
	case UART_CFG_STOP_BITS_2:
		two_stop_bits = true;
		break;
#endif
	default:
		return -ENOTSUP;
	}

	if (cfg->data_bits != UART_CFG_DATA_BITS_8) {
		return -ENOTSUP;
	}

	switch (cfg->flow_ctrl) {
	case UART_CFG_FLOW_CTRL_NONE:
		hwfc = NRF_UARTE_HWFC_DISABLED;
		break;
	case UART_CFG_FLOW_CTRL_RTS_CTS:
		if (get_dev_config(dev)->rts_cts_pins_set) {
			hwfc = NRF_UARTE_HWFC_ENABLED;
		} else {
			return -ENOTSUP;
		}
		break;
	default:
		return -ENOTSUP;
	}

	switch (cfg->parity) {
	case UART_CFG_PARITY_NONE:
		parity = NRF_UARTE_PARITY_EXCLUDED;
		break;
	case UART_CFG_PARITY_EVEN:
		parity = NRF_UARTE_PARITY_INCLUDED;
		break;
	default:
		return -ENOTSUP;
	}

	if (baudrate_set(dev, cfg->baudrate) != 0) {
		return -ENOTSUP;
	}

	nrf_uarte_configure(get_uarte_instance(dev), parity, hwfc);

#ifdef UARTE_CONFIG_STOP_Two
	if (two_stop_bits) {
		/* TODO Change this to nrfx HAL function when available */
		get_uarte_instance(dev)->CONFIG |=
			UARTE_CONFIG_STOP_Two << UARTE_CONFIG_STOP_Pos;
	}
#endif
	get_dev_data(dev)->uart_config = *cfg;

	return 0;
}

static int uarte_nrfx_config_get(struct device *dev, struct uart_config *cfg)
{
	*cfg = get_dev_data(dev)->uart_config;
	return 0;
}


static int uarte_nrfx_err_check(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	/* register bitfields maps to the defines in uart.h */
	return nrf_uarte_errorsrc_get_and_clear(uarte);
}

#ifdef CONFIG_UART_ASYNC_API

static inline bool hw_rx_counting_enabled(struct uarte_nrfx_data *data)
{
	if (IS_ENABLED(CONFIG_UARTE_NRF_HW_ASYNC)) {
		return data->async->hw_rx_counting;
	} else {
		return false;
	}
}

static void timer_handler(nrf_timer_event_t event_type, void *p_context) { }
static void rx_timeout(struct k_timer *timer);
static void tx_timeout(struct k_timer *timer);

static int uarte_nrfx_rx_counting_init(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	const struct uarte_nrfx_config *cfg = get_dev_config(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	int ret;

	if (hw_rx_counting_enabled(data)) {
		nrfx_timer_config_t tmr_config = NRFX_TIMER_DEFAULT_CONFIG;

		tmr_config.mode = NRF_TIMER_MODE_COUNTER;
		tmr_config.bit_width = NRF_TIMER_BIT_WIDTH_32;
		ret = nrfx_timer_init(&cfg->timer,
				      &tmr_config,
				      timer_handler);
		if (ret != NRFX_SUCCESS) {
			LOG_ERR("Timer already initialized, "
				"switching to software byte counting.");
			data->async->hw_rx_counting = false;
		} else {
			nrfx_timer_enable(&cfg->timer);
			nrfx_timer_clear(&cfg->timer);
		}
	}

	if (hw_rx_counting_enabled(data)) {
		ret = gppi_channel_alloc(&data->async->rx_cnt.ppi);
		if (ret != NRFX_SUCCESS) {
			LOG_ERR("Failed to allocate PPI Channel, "
				"switching to software byte counting.");
			data->async->hw_rx_counting = false;
			nrfx_timer_uninit(&cfg->timer);
		}
	}

	if (hw_rx_counting_enabled(data)) {
#if CONFIG_HAS_HW_NRF_PPI
		ret = nrfx_ppi_channel_assign(
			data->async->rx_cnt.ppi,
			nrf_uarte_event_address_get(uarte,
						    NRF_UARTE_EVENT_RXDRDY),
			nrfx_timer_task_address_get(&cfg->timer,
						    NRF_TIMER_TASK_COUNT));

		if (ret != NRFX_SUCCESS) {
			return -EIO;
		}
#else
		nrf_uarte_publish_set(uarte,
				      NRF_UARTE_EVENT_RXDRDY,
				      data->async->rx_cnt.ppi);
		nrf_timer_subscribe_set(cfg->timer.p_reg,
					NRF_TIMER_TASK_COUNT,
					data->async->rx_cnt.ppi);

#endif
		ret = gppi_channel_enable(data->async->rx_cnt.ppi);
		if (ret != NRFX_SUCCESS) {
			return -EIO;
		}
	} else {
		nrf_uarte_int_enable(uarte, NRF_UARTE_INT_RXDRDY_MASK);
	}

	return 0;
}

static int uarte_nrfx_init(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	int ret = uarte_nrfx_rx_counting_init(dev);

	if (ret != 0) {
		return ret;
	}
	nrf_uarte_int_enable(uarte,
			     NRF_UARTE_INT_ENDRX_MASK |
			     NRF_UARTE_INT_RXSTARTED_MASK |
			     NRF_UARTE_INT_ERROR_MASK |
			     NRF_UARTE_INT_ENDTX_MASK |
			     NRF_UARTE_INT_TXSTOPPED_MASK |
			     NRF_UARTE_INT_RXTO_MASK);
	nrf_uarte_enable(uarte);

	k_timer_init(&data->async->rx_timeout_timer, rx_timeout, NULL);
	k_timer_user_data_set(&data->async->rx_timeout_timer, dev);
	k_timer_init(&data->async->tx_timeout_timer, tx_timeout, NULL);
	k_timer_user_data_set(&data->async->tx_timeout_timer, dev);

	return 0;
}

static int uarte_nrfx_tx(struct device *dev, const u8_t *buf, size_t len,
			 u32_t timeout)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (!nrfx_is_in_ram(buf)) {
		return -ENOTSUP;
	}

	if (data->async->tx_buf || data->async->tx_size) {
		return -EBUSY;
	}
	data->async->tx_buf = buf;
	data->async->tx_size = len;
	nrf_uarte_tx_buffer_set(uarte, buf, len);
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);
	if (data->uart_config.flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
		k_timer_start(&data->async->tx_timeout_timer, timeout, 0);
	}
	return 0;
}

static int uarte_nrfx_tx_abort(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (data->async->tx_buf == NULL) {
		return -EFAULT;
	}
	k_timer_stop(&data->async->tx_timeout_timer);
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);

	return 0;
}

static int uarte_nrfx_rx_enable(struct device *dev, u8_t *buf, size_t len,
				u32_t timeout)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	const struct uarte_nrfx_config *cfg = get_dev_config(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (hw_rx_counting_enabled(data)) {
		nrfx_timer_clear(&cfg->timer);
	} else {
		data->async->rx_cnt.cnt = 0;
	}
	data->async->rx_total_byte_cnt = 0;
	data->async->rx_total_user_byte_cnt = 0;

	data->async->rx_timeout = timeout;
	data->async->rx_timeout_slab =
		MAX(timeout / RX_TIMEOUT_DIV,
		    NRFX_CEIL_DIV(1000, CONFIG_SYS_CLOCK_TICKS_PER_SEC));

	data->async->rx_buf = buf;
	data->async->rx_buf_len = len;
	data->async->rx_offset = 0;
	data->async->rx_next_buf = NULL;
	data->async->rx_next_buf_len = 0;
	nrf_uarte_rx_buffer_set(uarte, buf, len);

	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);

	data->async->rx_enabled = true;
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
	return 0;
}

static int uarte_nrfx_rx_buf_rsp(struct device *dev, u8_t *buf, size_t len)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (data->async->rx_next_buf == NULL) {
		data->async->rx_next_buf = buf;
		data->async->rx_next_buf_len = len;
		nrf_uarte_rx_buffer_set(uarte, buf, len);
		nrf_uarte_shorts_enable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
	} else {
		return -EBUSY;
	}
	return 0;
}

static int uarte_nrfx_callback_set(struct device *dev, uart_callback_t callback,
				  void *user_data)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);

	data->async->user_callback = callback;
	data->async->user_data = user_data;

	return 0;
}

static int uarte_nrfx_rx_disable(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (data->async->rx_buf == NULL) {
		return -EFAULT;
	}
	if (data->async->rx_next_buf != NULL) {
		nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
	}

	k_timer_stop(&data->async->rx_timeout_timer);
	data->async->rx_enabled = false;

	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);

	return 0;
}

static void tx_timeout(struct k_timer *timer)
{
	struct device *dev = k_timer_user_data_get(timer);
	(void) uarte_nrfx_tx_abort(dev);
}

static void user_callback(struct device *dev, struct uart_event *evt)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (data->async->user_callback) {
		data->async->user_callback(evt, data->async->user_data);
	}
}

/**
 * Whole timeout is divided by RX_TIMEOUT_DIV into smaller units, rx_timeout
 * is executed periodically every rx_timeout_slab ms. If between executions
 * data was received, then we start counting down time from start, if not, then
 * we subtract rx_timeout_slab from rx_timeout_left.
 * If rx_timeout_left is less than rx_timeout_slab it means that receiving has
 * timed out and we should tell user about that.
 */
static void rx_timeout(struct k_timer *timer)
{
	struct device *dev = k_timer_user_data_get(timer);
	struct uarte_nrfx_data *data = get_dev_data(dev);
	const struct uarte_nrfx_config *cfg = get_dev_config(dev);
	u32_t read;

	if (data->async->is_in_irq) {
		return;
	}

	/* Disable ENDRX ISR, in case ENDRX event is generated, it will be
	 * handled after rx_timeout routine is complete.
	 */
	nrf_uarte_int_disable(get_uarte_instance(dev),
			      NRF_UARTE_INT_ENDRX_MASK);

	if (hw_rx_counting_enabled(data)) {
		read = nrfx_timer_capture(&cfg->timer, 0);
	} else {
		read = data->async->rx_cnt.cnt;
	}

	/* Check if data was received since last function call */
	if (read != data->async->rx_total_byte_cnt) {
		data->async->rx_total_byte_cnt = read;
		data->async->rx_timeout_left = data->async->rx_timeout;
	}

	/* Check if there is data that was not sent to user yet
	 * Note though that 'len' is a count of data bytes received, but not
	 * necessarily the amount available in the current buffer
	 */
	s32_t len = data->async->rx_total_byte_cnt
		    - data->async->rx_total_user_byte_cnt;

	/* Check for current buffer being full.
	 * if the UART receives characters before the the ENDRX is handled
	 * and the 'next' buffer is set up, then the SHORT between ENDRX and
	 * STARTRX will mean that data will be going into to the 'next' buffer
	 * until the ENDRX event gets a chance to be handled.
	 */
	bool clipped = false;

	if (len + data->async->rx_offset > data->async->rx_buf_len) {
		len = data->async->rx_buf_len - data->async->rx_offset;
		clipped = true;
	}

	if (len > 0) {
		if (clipped ||
			(data->async->rx_timeout_left
				< data->async->rx_timeout_slab)) {
			/* rx_timeout ms elapsed since last receiving */
			struct uart_event evt = {
				.type = UART_RX_RDY,
				.data.rx.buf = data->async->rx_buf,
				.data.rx.len = len,
				.data.rx.offset = data->async->rx_offset
			};
			data->async->rx_offset += len;
			data->async->rx_total_user_byte_cnt += len;
			user_callback(dev, &evt);
		} else {
			data->async->rx_timeout_left -=
				data->async->rx_timeout_slab;
		}

		/* If theres nothing left to report until the buffers are
		 * switched then the timer can be stopped
		 */
		if (clipped) {
			k_timer_stop(&data->async->rx_timeout_timer);
		}
	}

	nrf_uarte_int_enable(get_uarte_instance(dev),
			     NRF_UARTE_INT_ENDRX_MASK);
}

#define UARTE_ERROR_FROM_MASK(mask)					\
	((mask) & NRF_UARTE_ERROR_OVERRUN_MASK ? UART_ERROR_OVERRUN	\
	 : (mask) & NRF_UARTE_ERROR_PARITY_MASK ? UART_ERROR_PARITY	\
	 : (mask) & NRF_UARTE_ERROR_FRAMING_MASK ? UART_ERROR_FRAMING	\
	 : (mask) & NRF_UARTE_ERROR_BREAK_MASK ? UART_BREAK		\
	 : 0)

static void error_isr(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	u32_t err = nrf_uarte_errorsrc_get_and_clear(uarte);
	struct uart_event evt = {
		.type = UART_RX_STOPPED,
		.data.rx_stop.reason = UARTE_ERROR_FROM_MASK(err),
	};
	user_callback(dev, &evt);
	(void) uarte_nrfx_rx_disable(dev);
}

static void rxstarted_isr(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	struct uart_event evt = {
		.type = UART_RX_BUF_REQUEST,
	};
	user_callback(dev, &evt);
	if (data->async->rx_timeout) {
		data->async->rx_timeout_left = data->async->rx_timeout;
		k_timer_start(&data->async->rx_timeout_timer,
			      data->async->rx_timeout_slab,
			      data->async->rx_timeout_slab);
	}
}

static void endrx_isr(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	if (!data->async->rx_enabled) {
		return;
	}

	data->async->is_in_irq = true;

	/* ensure rx timer is stopped - it will be restarted in RXSTARTED
	 * handler if needed
	 */
	k_timer_stop(&data->async->rx_timeout_timer);

	/* this is the amount that the EasyDMA controller has copied into the
	 * buffer
	 */
	const int rx_amount = nrf_uarte_rx_amount_get(uarte);

	/* The 'rx_offset' can be bigger than 'rx_amount', so it the length
	 * of data we report back the the user may need to be clipped.
	 * This can happen because the 'rx_offset' count derives from RXRDY
	 * events, which can occur already for the next buffer before we are
	 * here to handle this buffer. (The next buffer is now already active
	 * because of the ENDRX_STARTRX shortcut)
	 */
	int rx_len = rx_amount - data->async->rx_offset;

	if (rx_len < 0) {
		rx_len = 0;
	}

	data->async->rx_total_user_byte_cnt += rx_len;

	if (!hw_rx_counting_enabled(data)) {
		/* Prevent too low value of rx_cnt.cnt which may occur due to
		 * latencies in handling of the RXRDY interrupt. Because whole
		 * buffer was filled we can be sure that rx_total_user_byte_cnt
		 * is current total number of received bytes.
		 */
		data->async->rx_cnt.cnt = data->async->rx_total_user_byte_cnt;
	}

	/* Only send the RX_RDY event if there is something to send */
	if (rx_len > 0) {
		struct uart_event evt = {
			.type = UART_RX_RDY,
			.data.rx.buf = data->async->rx_buf,
			.data.rx.len = rx_len,
			.data.rx.offset = data->async->rx_offset,
		};
		user_callback(dev, &evt);
	}

	struct uart_event evt = {
		.type = UART_RX_BUF_RELEASED,
		.data.rx_buf.buf = data->async->rx_buf,
	};
	user_callback(dev, &evt);

	/* If there is a next buffer, then STARTRX will have already been
	 * invoked by the short (the next buffer will be filling up already)
	 * and here we just do the swap of which buffer the driver is following,
	 * the next rx_timeout() will update the rx_offset.
	 */
	if (data->async->rx_next_buf) {
		data->async->rx_buf = data->async->rx_next_buf;
		data->async->rx_buf_len = data->async->rx_next_buf_len;
		data->async->rx_next_buf = NULL;
		data->async->rx_next_buf_len = 0;

		data->async->rx_offset = 0;

		/* Remove the short until the subsequent next buffer is setup */
		nrf_uarte_shorts_disable(uarte, NRF_UARTE_SHORT_ENDRX_STARTRX);
	} else {
		data->async->rx_buf = NULL;
		evt.type = UART_RX_DISABLED;
		user_callback(dev, &evt);
	}

	data->async->is_in_irq = false;
}

/* This handler is called when the reception is interrupted, in contrary to
 * finishing the reception after filling all provided buffers, in which case
 * the events UART_RX_BUF_RELEASED and UART_RX_DISABLED are reported
 * from endrx_isr.
 */
static void rxto_isr(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	struct uart_event evt = {
		.type = UART_RX_BUF_RELEASED,
		.data.rx_buf.buf = data->async->rx_buf,
	};
	user_callback(dev, &evt);

	data->async->rx_buf = NULL;
	if (data->async->rx_next_buf) {
		evt.type = UART_RX_BUF_RELEASED;
		evt.data.rx_buf.buf = data->async->rx_next_buf;
		user_callback(dev, &evt);
		data->async->rx_next_buf = NULL;
	}
	evt.type = UART_RX_DISABLED;

	user_callback(dev, &evt);
}

static void txstopped_isr(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (!data->async->tx_buf) {
		return;
	}

	size_t amount = nrf_uarte_tx_amount_get(get_uarte_instance(dev));

	struct uart_event evt = {
		.data.tx.buf = data->async->tx_buf,
		.data.tx.len = amount,
	};
	if (amount == data->async->tx_size) {
		evt.type = UART_TX_DONE;
	} else {
		evt.type = UART_TX_ABORTED;
	}
	data->async->tx_buf = NULL;
	data->async->tx_size = 0;
	user_callback(dev, &evt);
}

static void endtx_isr(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
	k_timer_stop(&data->async->tx_timeout_timer);
}

static void uarte_nrfx_isr_async(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (!hw_rx_counting_enabled(data)
	    && nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXDRDY)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXDRDY);
		data->async->rx_cnt.cnt++;
		return;
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ERROR)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ERROR);
		error_isr(dev);
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
		endrx_isr(dev);
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXSTARTED)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXSTARTED);
		rxstarted_isr(dev);
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
		rxto_isr(dev);
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);
		endtx_isr(dev);
	}

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_TXSTOPPED)) {
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_TXSTOPPED);
		txstopped_isr(dev);
	}
}

#endif /* CONFIG_UART_ASYNC_API */

/**
 * @brief Poll the device for input.
 *
 * @param dev UARTE device struct
 * @param c Pointer to character
 *
 * @return 0 if a character arrived, -1 if the input buffer is empty.
 */
static int uarte_nrfx_poll_in(struct device *dev, unsigned char *c)
{

	const struct uarte_nrfx_data *data = get_dev_data(dev);
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

#ifdef CONFIG_UART_ASYNC_API
	if (data->async) {
		return -ENOTSUP;
	}
#endif

	if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
		return -1;
	}

	*c = data->rx_data;

	/* clear the interrupt */
	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);

	return 0;
}

/**
 * @brief Output a character in polled mode.
 *
 * @param dev UARTE device struct
 * @param c Character to send
 */
static void uarte_nrfx_poll_out(struct device *dev, unsigned char c)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

#ifdef CONFIG_UART_ASYNC_API
	const struct uarte_nrfx_data *data = get_dev_data(dev);

	if (data->async) {
		while (data->async->tx_buf) {
			/* If there is ongoing transmission, and we are in
			 * isr, then call uarte interrupt routine, otherwise
			 * busy wait until transmission is finished.
			 */
			if (k_is_in_isr()) {
				uarte_nrfx_isr_async(dev);
			}
		}
		/* Set tx_size but don't set tx_buf to differentiate this
		 * transmission from the one started with uarte_nrfx_tx,
		 * this way uarte_nrfx_tx will return -EBUSY and poll out will
		 * work when interrupted.
		 */
		data->async->tx_size = 1;
		nrf_uarte_int_disable(uarte,
				      NRF_UARTE_INT_ENDTX_MASK |
				      NRF_UARTE_INT_TXSTOPPED_MASK);
	}
#endif
	/* The UART API dictates that poll_out should wait for the transmitter
	 * to be empty before sending a character. However, the only way of
	 * telling if the transmitter became empty in the UARTE peripheral is
	 * to check if the ENDTX event for the previous transmission was set.
	 * Since this event is not cleared automatically when a new transmission
	 * is started, it must be cleared in software, and this leads to a rare
	 * yet possible race condition if the thread is preempted right after
	 * clearing the event but before sending a new character. The preempting
	 * thread, if it also called poll_out, would then wait for the ENDTX
	 * event that had no chance to become set.

	 * Because of this race condition, the while loop has to be placed
	 * after the write to TXD, and we can't wait for an empty transmitter
	 * before writing. This is a trade-off between losing a byte once in a
	 * blue moon against hanging up the whole thread permanently
	 */

	/* reset transmitter ready state */
	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);

	/* send a character */
	nrf_uarte_tx_buffer_set(uarte, &c, 1);
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);

	/* Wait for transmitter to be ready */
	while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
	}

	/* If there is nothing to send, driver will save an energy
	 * when TX is stopped.
	 */
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);

#ifdef CONFIG_UART_ASYNC_API
	if (data->async) {
		data->async->tx_size = 0;
		nrf_uarte_int_enable(uarte,
				     NRF_UARTE_INT_ENDTX_MASK |
				     NRF_UARTE_INT_TXSTOPPED_MASK);

	}
#endif
}
#ifdef UARTE_INTERRUPT_DRIVEN
/** Interrupt driven FIFO fill function */
static int uarte_nrfx_fifo_fill(struct device *dev,
				const u8_t *tx_data,
				int len)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX)) {
		return 0;
	}

	if (len > data->int_driven->tx_buff_size) {
		len = data->int_driven->tx_buff_size;
	}

	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDTX);

	/* Copy data to RAM buffer for EasyDMA transfer */
	for (int i = 0; i < len; i++) {
		data->int_driven->tx_buffer[i] = tx_data[i];
	}

	nrf_uarte_tx_buffer_set(uarte, data->int_driven->tx_buffer, len);

	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);

	return len;
}

/** Interrupt driven FIFO read function */
static int uarte_nrfx_fifo_read(struct device *dev,
				u8_t *rx_data,
				const int size)
{
	int num_rx = 0;
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	const struct uarte_nrfx_data *data = get_dev_data(dev);

	if (nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX)) {
		/* Clear the interrupt */
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);

		/* Receive a character */
		rx_data[num_rx++] = (u8_t)data->rx_data;

		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
	}

	return num_rx;
}

/** Interrupt driven transfer enabling function */
static void uarte_nrfx_irq_tx_enable(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	data->int_driven->disable_tx_irq = false;
	nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDTX_MASK);
}

/** Interrupt driven transfer disabling function */
static void uarte_nrfx_irq_tx_disable(struct device *dev)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);
	/* TX IRQ will be disabled after current transmission is finished */
	data->int_driven->disable_tx_irq = true;
}

/** Interrupt driven transfer ready function */
static int uarte_nrfx_irq_tx_ready_complete(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	/* ENDTX flag is always on so that ISR is called when we enable TX IRQ.
	 * Because of that we have to explicitly check if ENDTX interrupt is
	 * enabled, otherwise this function would always return true no matter
	 * what would be the source of interrupt.
	 */
	return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDTX) &&
	       nrf_uarte_int_enable_check(uarte, NRF_UARTE_INT_ENDTX_MASK);
}

static int uarte_nrfx_irq_rx_ready(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	return nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_ENDRX);
}

/** Interrupt driven receiver enabling function */
static void uarte_nrfx_irq_rx_enable(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ENDRX_MASK);
}

/** Interrupt driven receiver disabling function */
static void uarte_nrfx_irq_rx_disable(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ENDRX_MASK);
}

/** Interrupt driven error enabling function */
static void uarte_nrfx_irq_err_enable(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	nrf_uarte_int_enable(uarte, NRF_UARTE_INT_ERROR_MASK);
}

/** Interrupt driven error disabling function */
static void uarte_nrfx_irq_err_disable(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	nrf_uarte_int_disable(uarte, NRF_UARTE_INT_ERROR_MASK);
}

/** Interrupt driven pending status function */
static int uarte_nrfx_irq_is_pending(struct device *dev)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);

	return ((nrf_uarte_int_enable_check(uarte,
					    NRF_UARTE_INT_ENDTX_MASK) &&
		 uarte_nrfx_irq_tx_ready_complete(dev))
		||
		(nrf_uarte_int_enable_check(uarte,
					    NRF_UARTE_INT_ENDRX_MASK) &&
		 uarte_nrfx_irq_rx_ready(dev)));
}

/** Interrupt driven interrupt update function */
static int uarte_nrfx_irq_update(struct device *dev)
{
	return 1;
}

/** Set the callback function */
static void uarte_nrfx_irq_callback_set(struct device *dev,
					uart_irq_callback_user_data_t cb,
					void *cb_data)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);

	data->int_driven->cb = cb;
	data->int_driven->cb_data = cb_data;
}
#endif /* UARTE_INTERRUPT_DRIVEN */

static const struct uart_driver_api uart_nrfx_uarte_driver_api = {
	.poll_in		= uarte_nrfx_poll_in,
	.poll_out		= uarte_nrfx_poll_out,
	.err_check		= uarte_nrfx_err_check,
	.configure              = uarte_nrfx_configure,
	.config_get             = uarte_nrfx_config_get,
#ifdef CONFIG_UART_ASYNC_API
	.callback_set		= uarte_nrfx_callback_set,
	.tx			= uarte_nrfx_tx,
	.tx_abort		= uarte_nrfx_tx_abort,
	.rx_enable		= uarte_nrfx_rx_enable,
	.rx_buf_rsp		= uarte_nrfx_rx_buf_rsp,
	.rx_disable		= uarte_nrfx_rx_disable,
#endif /* CONFIG_UART_ASYNC_API */
#ifdef UARTE_INTERRUPT_DRIVEN
	.fifo_fill		= uarte_nrfx_fifo_fill,
	.fifo_read		= uarte_nrfx_fifo_read,
	.irq_tx_enable		= uarte_nrfx_irq_tx_enable,
	.irq_tx_disable		= uarte_nrfx_irq_tx_disable,
	.irq_tx_ready		= uarte_nrfx_irq_tx_ready_complete,
	.irq_rx_enable		= uarte_nrfx_irq_rx_enable,
	.irq_rx_disable		= uarte_nrfx_irq_rx_disable,
	.irq_tx_complete	= uarte_nrfx_irq_tx_ready_complete,
	.irq_rx_ready		= uarte_nrfx_irq_rx_ready,
	.irq_err_enable		= uarte_nrfx_irq_err_enable,
	.irq_err_disable	= uarte_nrfx_irq_err_disable,
	.irq_is_pending		= uarte_nrfx_irq_is_pending,
	.irq_update		= uarte_nrfx_irq_update,
	.irq_callback_set	= uarte_nrfx_irq_callback_set,
#endif /* UARTE_INTERRUPT_DRIVEN */
};

static int uarte_instance_init(struct device *dev,
			       const struct uarte_init_config *config,
			       u8_t interrupts_active)
{
	int err;
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	nrf_gpio_pin_write(config->pseltxd, 1);
	nrf_gpio_cfg_output(config->pseltxd);

	nrf_gpio_cfg_input(config->pselrxd, NRF_GPIO_PIN_NOPULL);

	nrf_uarte_txrx_pins_set(uarte,
				config->pseltxd,
				config->pselrxd);

	if (config->pselcts != NRF_UARTE_PSEL_DISCONNECTED &&
	    config->pselrts != NRF_UARTE_PSEL_DISCONNECTED) {
		nrf_gpio_pin_write(config->pselrts, 1);
		nrf_gpio_cfg_output(config->pselrts);

		nrf_gpio_cfg_input(config->pselcts, NRF_GPIO_PIN_NOPULL);

		nrf_uarte_hwfc_pins_set(uarte,
					config->pselrts,
					config->pselcts);
	}

	err = uarte_nrfx_configure(dev, &get_dev_data(dev)->uart_config);
	if (err) {
		return err;
	}

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
	data->pm_state = DEVICE_PM_ACTIVE_STATE;
#endif


#ifdef CONFIG_UART_ASYNC_API
	if (data->async) {
		return uarte_nrfx_init(dev);
	}
#endif
	/* Enable receiver and transmitter */
	nrf_uarte_enable(uarte);

	nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_ENDRX);

	nrf_uarte_rx_buffer_set(uarte, &data->rx_data, 1);
	nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);

#ifdef UARTE_INTERRUPT_DRIVEN
	if (interrupts_active) {
		/* Set ENDTX event by requesting fake (zero-length) transfer.
		 * Pointer to RAM variable (data->tx_buffer) is set because
		 * otherwise such operation may result in HardFault or RAM
		 * corruption.
		 */
		nrf_uarte_tx_buffer_set(uarte, data->int_driven->tx_buffer, 0);
		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTTX);

		/* switch off transmitter to save an energy */
		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPTX);
	}
#endif
	return 0;
}

#ifdef CONFIG_DEVICE_POWER_MANAGEMENT

static void uarte_nrfx_pins_enable(struct device *dev, bool enable)
{
	if (!get_dev_config(dev)->gpio_mgmt) {
		return;
	}

	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	u32_t tx_pin = nrf_uarte_tx_pin_get(uarte);
	u32_t rx_pin = nrf_uarte_rx_pin_get(uarte);
	u32_t cts_pin = nrf_uarte_cts_pin_get(uarte);
	u32_t rts_pin = nrf_uarte_rts_pin_get(uarte);

	if (enable) {
		nrf_gpio_pin_write(tx_pin, 1);
		nrf_gpio_cfg_output(tx_pin);
		nrf_gpio_cfg_input(rx_pin, NRF_GPIO_PIN_NOPULL);

		if (get_dev_config(dev)->rts_cts_pins_set) {
			nrf_gpio_pin_write(rts_pin, 1);
			nrf_gpio_cfg_output(rts_pin);
			nrf_gpio_cfg_input(cts_pin,
					   NRF_GPIO_PIN_NOPULL);
		}
	} else {
		nrf_gpio_cfg_default(tx_pin);
		nrf_gpio_cfg_default(rx_pin);
		if (get_dev_config(dev)->rts_cts_pins_set) {
			nrf_gpio_cfg_default(cts_pin);
			nrf_gpio_cfg_default(rts_pin);
		}
	}
}

static void uarte_nrfx_set_power_state(struct device *dev, u32_t new_state)
{
	NRF_UARTE_Type *uarte = get_uarte_instance(dev);
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (new_state == DEVICE_PM_ACTIVE_STATE) {
		uarte_nrfx_pins_enable(dev, true);
		nrf_uarte_enable(uarte);
#ifdef CONFIG_UART_ASYNC_API
		if (hw_rx_counting_enabled(get_dev_data(dev))) {
			nrfx_timer_enable(&get_dev_config(dev)->timer);
		}
		if (get_dev_data(dev)->async) {
			return;
		}
#endif
		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STARTRX);
	} else {
		assert(new_state == DEVICE_PM_LOW_POWER_STATE ||
		       new_state == DEVICE_PM_SUSPEND_STATE ||
		       new_state == DEVICE_PM_OFF_STATE);

		/* if pm is already not active, driver will stay indefinitely
		 * in while loop waiting for event NRF_UARTE_EVENT_RXTO
		 */
		if (data->pm_state != DEVICE_PM_ACTIVE_STATE) {
			return;
		}

		/* Disabling UART requires stopping RX, but stop RX event is
		 * only sent after each RX if async UART API is used.
		 */
#ifdef CONFIG_UART_ASYNC_API
		if (hw_rx_counting_enabled(get_dev_data(dev))) {
			nrfx_timer_disable(&get_dev_config(dev)->timer);
		}
		if (get_dev_data(dev)->async) {
			nrf_uarte_disable(uarte);
			uarte_nrfx_pins_enable(dev, false);
			return;
		}
#endif
		nrf_uarte_task_trigger(uarte, NRF_UARTE_TASK_STOPRX);
		while (!nrf_uarte_event_check(uarte, NRF_UARTE_EVENT_RXTO)) {
			/* Busy wait for event to register */
		}
		nrf_uarte_event_clear(uarte, NRF_UARTE_EVENT_RXTO);
		nrf_uarte_disable(uarte);
		uarte_nrfx_pins_enable(dev, false);
	}
}

static int uarte_nrfx_pm_control(struct device *dev, u32_t ctrl_command,
				 void *context, device_pm_cb cb, void *arg)
{
	struct uarte_nrfx_data *data = get_dev_data(dev);

	if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
		u32_t new_state = *((const u32_t *)context);

		if (new_state != data->pm_state) {
			uarte_nrfx_set_power_state(dev, new_state);
			data->pm_state = new_state;
		}
	} else {
		assert(ctrl_command == DEVICE_PM_GET_POWER_STATE);
		*((u32_t *)context) = data->pm_state;
	}

	if (cb) {
		cb(dev, 0, context, arg);
	}

	return 0;
}
#endif /* CONFIG_DEVICE_POWER_MANAGEMENT */

#define UART_NRF_UARTE_DEVICE(idx)					       \
	DEVICE_DECLARE(uart_nrfx_uarte##idx);				       \
	UARTE_INT_DRIVEN(idx);						       \
	UARTE_ASYNC(idx);						       \
	static struct uarte_nrfx_data uarte_##idx##_data = {		       \
		UARTE_CONFIG(idx),					       \
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_ASYNC),	       \
			    (.async = &uarte##idx##_async,),		       \
			    ())						       \
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN),  \
			    (.int_driven = &uarte##idx##_int_driven,),	       \
			    ())						       \
	};								       \
	static const struct uarte_nrfx_config uarte_##idx##z_config = {	       \
		.uarte_regs = (NRF_UARTE_Type *)			       \
			DT_NORDIC_NRF_UARTE_UART_##idx##_BASE_ADDRESS,	       \
		.rts_cts_pins_set = IS_ENABLED(UARTE_##idx##_CONFIG_RTS_CTS),  \
		.gpio_mgmt = IS_ENABLED(CONFIG_UART_##idx##_GPIO_MANAGEMENT),  \
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC),      \
			(.timer = NRFX_TIMER_INSTANCE(			       \
				CONFIG_UART_##idx##_NRF_HW_ASYNC_TIMER),),     \
			())						       \
	};								       \
	static int uarte_##idx##_init(struct device *dev)		       \
	{								       \
		const struct uarte_init_config init_config = {		       \
			.pseltxd = DT_NORDIC_NRF_UARTE_UART_##idx##_TX_PIN,    \
			.pselrxd = DT_NORDIC_NRF_UARTE_UART_##idx##_RX_PIN,    \
			UARTE_NRF_RTS_CTS_PINS(idx),			       \
		};							       \
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN),  \
			(IRQ_CONNECT(					       \
				NRFX_IRQ_NUMBER_GET(NRF_UARTE##idx),	       \
				DT_NORDIC_NRF_UARTE_UART_##idx##_IRQ_PRIORITY, \
				uarte_nrfx_isr_int,			       \
				DEVICE_GET(uart_nrfx_uarte##idx),	       \
				0);					       \
			irq_enable(DT_NORDIC_NRF_UARTE_UART_##idx##_IRQ);), ())\
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_ASYNC),	       \
			(IRQ_CONNECT(					       \
				NRFX_IRQ_NUMBER_GET(NRF_UARTE##idx),	       \
				DT_NORDIC_NRF_UARTE_UART_##idx##_IRQ_PRIORITY, \
				uarte_nrfx_isr_async,			       \
				DEVICE_GET(uart_nrfx_uarte##idx),	       \
				0);					       \
			irq_enable(DT_NORDIC_NRF_UARTE_UART_##idx##_IRQ);), ())\
		return uarte_instance_init(				       \
			dev,						       \
			&init_config,					       \
			IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN));     \
	}								       \
	DEVICE_DEFINE(uart_nrfx_uarte##idx,				       \
		      DT_NORDIC_NRF_UARTE_UART_##idx##_LABEL,		       \
		      uarte_##idx##_init,				       \
		      uarte_nrfx_pm_control,				       \
		      &uarte_##idx##_data,				       \
		      &uarte_##idx##z_config,				       \
		      PRE_KERNEL_1,					       \
		      CONFIG_KERNEL_INIT_PRIORITY_DEVICE,		       \
		      &uart_nrfx_uarte_driver_api)

#define UARTE_CONFIG(idx)						       \
	.uart_config = {						       \
		.baudrate = DT_NORDIC_NRF_UARTE_UART_##idx##_CURRENT_SPEED,    \
		.data_bits = UART_CFG_DATA_BITS_8,			       \
		.stop_bits = UART_CFG_STOP_BITS_1,			       \
		.parity = IS_ENABLED(CONFIG_UART_##idx##_NRF_PARITY_BIT)       \
			  ? UART_CFG_PARITY_EVEN			       \
			  : UART_CFG_PARITY_NONE,			       \
		.flow_ctrl = IS_ENABLED(CONFIG_UART_##idx##_NRF_FLOW_CONTROL)  \
			     ? UART_CFG_FLOW_CTRL_RTS_CTS		       \
			     : UART_CFG_FLOW_CTRL_NONE,			       \
	}

#define UARTE_NRF_RTS_CTS_PINS(idx)					       \
	.pselcts = COND_CODE_1(IS_ENABLED(UARTE_##idx##_CONFIG_RTS_CTS),       \
			       (DT_NORDIC_NRF_UARTE_UART_##idx##_CTS_PIN),     \
			       (NRF_UARTE_PSEL_DISCONNECTED)),		       \
	.pselrts = COND_CODE_1(IS_ENABLED(UARTE_##idx##_CONFIG_RTS_CTS),       \
			       (DT_NORDIC_NRF_UARTE_UART_##idx##_RTS_PIN),     \
			       (NRF_UARTE_PSEL_DISCONNECTED))

#define UARTE_ASYNC(idx)						       \
	COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_ASYNC),		       \
		(struct uarte_async_cb uarte##idx##_async = {		       \
		COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_NRF_HW_ASYNC),      \
			(.hw_rx_counting = true),			       \
			(.hw_rx_counting = false)),			       \
		}), ())

#define UARTE_INT_DRIVEN(idx)						       \
	COND_CODE_1(IS_ENABLED(CONFIG_UART_##idx##_INTERRUPT_DRIVEN),	       \
		(static u8_t uarte##idx##_tx_buffer[\
			MIN(CONFIG_UART_##idx##_NRF_TX_BUFFER_SIZE,	       \
			    BIT_MASK(UARTE##idx##_EASYDMA_MAXCNT_SIZE))];      \
		 static struct uarte_nrfx_int_driven			       \
			uarte##idx##_int_driven = {			       \
				.tx_buffer = uarte##idx##_tx_buffer,	       \
				.tx_buff_size = sizeof(uarte##idx##_tx_buffer),\
			};),						       \
		())

#ifdef CONFIG_UART_0_NRF_UARTE
	#if defined(DT_NORDIC_NRF_UARTE_UART_0_RTS_PIN) && \
	    defined(DT_NORDIC_NRF_UARTE_UART_0_CTS_PIN)
		#define UARTE_0_CONFIG_RTS_CTS 1
	#endif

	UART_NRF_UARTE_DEVICE(0);
#endif /* CONFIG_UART_0_NRF_UARTE */

#ifdef CONFIG_UART_1_NRF_UARTE
	#if defined(DT_NORDIC_NRF_UARTE_UART_1_RTS_PIN) && \
	    defined(DT_NORDIC_NRF_UARTE_UART_1_CTS_PIN)
		#define UARTE_1_CONFIG_RTS_CTS 1
	#endif

	UART_NRF_UARTE_DEVICE(1);
#endif /* CONFIG_UART_1_NRF_UARTE */

#ifdef CONFIG_UART_2_NRF_UARTE
	#if defined(DT_NORDIC_NRF_UARTE_UART_2_RTS_PIN) && \
	    defined(DT_NORDIC_NRF_UARTE_UART_2_CTS_PIN)
		#define UARTE_2_CONFIG_RTS_CTS 1
	#endif

	UART_NRF_UARTE_DEVICE(2);
#endif /* CONFIG_UART_2_NRF_UARTE */

#ifdef CONFIG_UART_3_NRF_UARTE
	#if defined(DT_NORDIC_NRF_UARTE_UART_3_RTS_PIN) && \
	    defined(DT_NORDIC_NRF_UARTE_UART_3_CTS_PIN)
		#define UARTE_3_CONFIG_RTS_CTS 1
	#endif

	UART_NRF_UARTE_DEVICE(3);
#endif /* CONFIG_UART_3_NRF_UARTE */