Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*
 * Copyright (c) 2017 Oticon A/S
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * SW side of the IRQ handling
 */

#include <stdint.h>
#include "irq_offload.h"
#include "kernel_structs.h"
#include "kernel_internal.h"
#include "kswap.h"
#include "irq_ctrl.h"
#include "posix_core.h"
#include "board_soc.h"
#include "sw_isr_table.h"
#include "soc.h"
#include "bs_tracing.h"
#include <tracing.h>
#include "bstests.h"

static bool CPU_will_be_awaken_from_WFE;

typedef void (*normal_irq_f_ptr)(void *);
typedef int (*direct_irq_f_ptr)(void);

static struct _isr_list irq_vector_table[NRF_HW_NBR_IRQs];

static int currently_running_irq = -1;

const char *irqnames[] = { /*just for the traces*/
	"POWER_CLOCK", /*0 */
	"RADIO",       /*1 */
	"UART0",       /*2 */
	"SPI0_TWI0",   /*3 */
	"SPI1_TWI1",   /*4 */
	"NFCT",        /*5 */
	"GPIOTE",      /*6 */
	"ADC",         /*7 */
	"TIMER0",      /*8 */
	"TIMER1",      /*9 */
	"TIMER2",      /*10*/
	"RTC0",        /*11*/
	"TEMP",        /*12*/
	"RNG",         /*13*/
	"ECB",         /*14*/
	"CCM_AAR",     /*15*/
	"WDT",         /*16*/
	"RTC1",        /*17*/
	"QDEC",        /*18*/
	"LPCOMP",      /*19*/
	"SWI0",        /*20*/
	"SWI1",        /*21*/
	"SWI2",        /*22*/
	"SWI3",        /*23*/
	"SWI4",        /*24*/
	"SWI5",        /*25*/
	"TIMER3",      /*26*/
	"TIMER4",      /*27*/
	"PWM0",        /*28*/
	"PDM",         /*29*/
	"MWU",         /*30*/
	"PWM1",        /*31*/
	"PWM2",        /*32*/
	"SPIM2_SPIS2_SPI2", /*33*/
	"RTC2",        /*34*/
	"I2S",         /*35*/
	"FPU"          /*36*/
};

static inline void vector_to_irq(int irq_nbr, int *may_swap)
{
	/**
	 * Call the test IRQ sniffer, and if it returns
	 * true ignore the interrupt
	 */
	bool ret;

	ret = bst_irq_sniffer(irq_nbr);
	if (ret) {
		return;
	}

	bs_trace_raw_time(6, "Vectoring to irq %i (%s)\n", irq_nbr,
			  irqnames[irq_nbr]);

	/*
	 * As in this architecture an irq (code) executes in 0 time,
	 * it is a bit senseless to call z_int_latency_start/stop()
	 */
	/* z_int_latency_start(); */
	sys_trace_isr_enter();

	if (irq_vector_table[irq_nbr].func == NULL) { /* LCOV_EXCL_BR_LINE */
		/* LCOV_EXCL_START */
		posix_print_error_and_exit("Received irq %i without a "
					"registered handler\n",
					irq_nbr);
		/* LCOV_EXCL_STOP */
	} else {
		if (irq_vector_table[irq_nbr].flags & ISR_FLAG_DIRECT) {
			*may_swap |= ((direct_irq_f_ptr)
					irq_vector_table[irq_nbr].func)();
		} else {
#ifdef CONFIG_SYS_POWER_MANAGEMENT
			posix_irq_check_idle_exit();
#endif
			((normal_irq_f_ptr)irq_vector_table[irq_nbr].func)
					(irq_vector_table[irq_nbr].param);
			*may_swap = 1;
		}
	}

	sys_trace_isr_exit();
	/* z_int_latency_stop(); */

	bs_trace_raw_time(7, "Irq %i (%s) ended\n", irq_nbr, irqnames[irq_nbr]);
}

/**
 * When an interrupt is raised, this function is called to handle it and, if
 * needed, swap to a re-enabled thread
 *
 * Note that even that this function is executing in a Zephyr thread,  it is
 * effectively the model of the interrupt controller passing context to the IRQ
 * handler and therefore its priority handling
 */
void posix_irq_handler(void)
{
	u64_t irq_lock;
	int irq_nbr;
	static int may_swap;

	irq_lock = hw_irq_ctrl_get_current_lock();

	if (irq_lock) {
		/* "spurious" wakes can happen with interrupts locked */
		return;
	}

	if (_kernel.nested == 0) {
		may_swap = 0;
	}

	_kernel.nested++;

	while ((irq_nbr = hw_irq_ctrl_get_highest_prio_irq()) != -1) {
		int last_current_running_prio = hw_irq_ctrl_get_cur_prio();
		int last_running_irq = currently_running_irq;

		hw_irq_ctrl_set_cur_prio(hw_irq_ctrl_get_prio(irq_nbr));
		hw_irq_ctrl_clear_irq(irq_nbr);

		currently_running_irq = irq_nbr;
		vector_to_irq(irq_nbr, &may_swap);
		currently_running_irq = last_running_irq;

		hw_irq_ctrl_set_cur_prio(last_current_running_prio);
	}

	_kernel.nested--;

	/* Call swap if all the following is true:
	 * 1) may_swap was enabled
	 * 2) We are not nesting irq_handler calls (interrupts)
	 * 3) Next thread to run in the ready queue is not this thread
	 * 4) we are in a irq postfix (not just in a WFE)
	 */
	if (may_swap
		&& (hw_irq_ctrl_get_cur_prio() == 256)
		&& (CPU_will_be_awaken_from_WFE == false)
		&& (_kernel.ready_q.cache != _current)) {

		z_swap_irqlock(irq_lock);
	}
}

/**
 * Thru this function the IRQ controller can raise an immediate  interrupt which
 * will interrupt the SW itself
 * (this function should only be called from the HW model code, from SW threads)
 */
void posix_irq_handler_im_from_sw(void)
{
	/*
	 * if a higher priority interrupt than the possibly currently running is
	 * pending we go immediately into irq_handler() to vector into its
	 * handler
	 */
	if (hw_irq_ctrl_get_highest_prio_irq() != -1) {
		if (!posix_is_cpu_running()) { /* LCOV_EXCL_BR_LINE */
			/* LCOV_EXCL_START */
			posix_print_error_and_exit("programming error: %s "
					"called from a HW model thread\n",
					__func__);
			/* LCOV_EXCL_STOP */
		}
		posix_irq_handler();
	}
}

/**
 * @brief Disable all interrupts on the CPU
 *
 * This routine disables interrupts.  It can be called from either interrupt,
 * task or fiber level.  This routine returns an architecture-dependent
 * lock-out key representing the "interrupt disable state" prior to the call;
 * this key can be passed to irq_unlock() to re-enable interrupts.
 *
 * The lock-out key should only be used as the argument to the irq_unlock()
 * API. It should never be used to manually re-enable interrupts or to inspect
 * or manipulate the contents of the source register.
 *
 * This function can be called recursively: it will return a key to return the
 * state of interrupt locking to the previous level.
 *
 * WARNINGS
 * Invoking a kernel routine with interrupts locked may result in
 * interrupts being re-enabled for an unspecified period of time.  If the
 * called routine blocks, interrupts will be re-enabled while another
 * thread executes, or while the system is idle.
 *
 * The "interrupt disable state" is an attribute of a thread.  Thus, if a
 * fiber or task disables interrupts and subsequently invokes a kernel
 * routine that causes the calling thread to block, the interrupt
 * disable state will be restored when the thread is later rescheduled
 * for execution.
 *
 * @return An architecture-dependent lock-out key representing the
 * "interrupt disable state" prior to the call.
 *
 */
unsigned int posix_irq_lock(void)
{
	return hw_irq_ctrl_change_lock(true);
}

unsigned int z_arch_irq_lock(void)
{
	return posix_irq_lock();
}

/**
 *
 * @brief Enable all interrupts on the CPU
 *
 * This routine re-enables interrupts on the CPU.  The @a key parameter is a
 * board-dependent lock-out key that is returned by a previous invocation of
 * board_irq_lock().
 *
 * This routine can be called from either interrupt, task or fiber level.
 *
 * @return N/A
 *
 */
void posix_irq_unlock(unsigned int key)
{
	hw_irq_ctrl_change_lock(key);
}

void z_arch_irq_unlock(unsigned int key)
{
	posix_irq_unlock(key);
}


void posix_irq_full_unlock(void)
{
	hw_irq_ctrl_change_lock(false);
}

void z_arch_irq_enable(unsigned int irq)
{
	hw_irq_ctrl_enable_irq(irq);
}

void z_arch_irq_disable(unsigned int irq)
{
	hw_irq_ctrl_disable_irq(irq);
}

int z_arch_irq_is_enabled(unsigned int irq)
{
	return hw_irq_ctrl_is_irq_enabled(irq);
}

void z_arch_isr_direct_header(void)
{
	/* Nothing to be done */
}

int posix_get_current_irq(void)
{
	return currently_running_irq;
}

/**
 * Configure a static interrupt.
 *
 * z_isr_declare will populate the interrupt table table with the interrupt's
 * parameters, the vector table and the software ISR table.
 *
 * We additionally set the priority in the interrupt controller at
 * runtime.
 *
 * @param irq_p IRQ line number
 * @param flags [plug it directly (1), or as a SW managed interrupt (0)]
 * @param isr_p Interrupt service routine
 * @param isr_param_p ISR parameter
 * @param flags_p IRQ options
 */
void z_isr_declare(unsigned int irq_p, int flags, void isr_p(void *),
		void *isr_param_p)
{
	irq_vector_table[irq_p].irq   = irq_p;
	irq_vector_table[irq_p].func  = isr_p;
	irq_vector_table[irq_p].param = isr_param_p;
	irq_vector_table[irq_p].flags = flags;
}

/*
 * @internal
 *
 * @brief Set an interrupt's priority
 *
 * Lower values take priority over higher values.
 *
 * @return N/A
 */
void z_irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags)
{
	hw_irq_ctrl_prio_set(irq, prio);
}

/**
 * Similar to ARM's NVIC_SetPendingIRQ
 * set a pending IRQ from SW
 *
 * Note that this will interrupt immediately if the interrupt is not masked and
 * IRQs are not locked, and this interrupt has higher priority than a possibly
 * currently running interrupt
 */
void posix_sw_set_pending_IRQ(unsigned int IRQn)
{
	hw_irq_ctrl_raise_im_from_sw(IRQn);
}

/**
 * Similar to ARM's NVIC_ClearPendingIRQ
 * clear a pending irq from SW
 */
void posix_sw_clear_pending_IRQ(unsigned int IRQn)
{
	hw_irq_ctrl_clear_irq(IRQn);
}

/**
 * Storage for functions offloaded to IRQ
 */
static irq_offload_routine_t off_routine;
static void *off_parameter;

/**
 * IRQ handler for the SW interrupt assigned to irq_offload()
 */
static void offload_sw_irq_handler(void *a)
{
	ARG_UNUSED(a);
	off_routine(off_parameter);
}

/**
 * @brief Run a function in interrupt context
 *
 * Raise the SW IRQ assigned to handled this
 */
void irq_offload(irq_offload_routine_t routine, void *parameter)
{
	off_routine = routine;
	off_parameter = parameter;
	z_isr_declare(OFFLOAD_SW_IRQ, 0, offload_sw_irq_handler, NULL);
	z_arch_irq_enable(OFFLOAD_SW_IRQ);
	posix_sw_set_pending_IRQ(OFFLOAD_SW_IRQ);
	z_arch_irq_disable(OFFLOAD_SW_IRQ);
}

/**
 * Replacement for ARMs NVIC_SetPendingIRQ()
 *
 * Sets the interrupt IRQn as pending
 * Note:
 * This will interrupt immediately if the interrupt
 * is not masked and irqs are not locked, and this interrupt is higher
 * priority than a possibly currently running interrupt
 */
void NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
	hw_irq_ctrl_raise_im_from_sw(IRQn);
}

/**
 *  Replacement for ARMs NVIC_ClearPendingIRQ()
 *  Clear pending interrupt IRQn
 */
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
	hw_irq_ctrl_clear_irq(IRQn);
}

/*
 * Very simple model of the WFE and SEV ARM instructions
 * which seems good enough for the Nordic controller
 */
static bool CPU_event_set_flag;

void __WFE(void)
{
	if (CPU_event_set_flag == false) {
		CPU_will_be_awaken_from_WFE = true;
		posix_halt_cpu();
		CPU_will_be_awaken_from_WFE = false;
	}
	CPU_event_set_flag = false;
}

void __SEV(void)
{
	CPU_event_set_flag = true;
}