Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/***************************************************************************//**
 * @file em_iadc.c
 * @brief Incremental Analog to Digital Converter (IADC) Peripheral API
 * @version 5.6.0
 *******************************************************************************
 * # License
 * <b>Copyright 2017 Silicon Laboratories, Inc. http://www.silabs.com</b>
 *******************************************************************************
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 *
 * DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
 * obligation to support this Software. Silicon Labs is providing the
 * Software "AS IS", with no express or implied warranties of any kind,
 * including, but not limited to, any implied warranties of merchantability
 * or fitness for any particular purpose or warranties against infringement
 * of any proprietary rights of a third party.
 *
 * Silicon Labs will not be liable for any consequential, incidental, or
 * special damages, or any other relief, or for any claim by any third party,
 * arising from your use of this Software.
 *
 ******************************************************************************/

#include "em_iadc.h"
#if defined(IADC_COUNT) && (IADC_COUNT > 0)

#include "em_assert.h"
#include "em_cmu.h"
#include "em_common.h"
#include <stddef.h>

/***************************************************************************//**
 * @addtogroup emlib
 * @{
 ******************************************************************************/

/***************************************************************************//**
 * @addtogroup IADC
 * @brief Incremental Analog to Digital Converter (IADC) Peripheral API
 * @details
 *  This module contains functions to control the IADC peripheral of Silicon
 *  Labs 32-bit MCUs and SoCs. The IADC is used to convert analog signals into a
 *  digital representation.
 * @{
 ******************************************************************************/

/*******************************************************************************
 *******************************   DEFINES   ***********************************
 ******************************************************************************/

/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */

// Validation of IADC register block pointer reference for assert statements.
#if (IADC_COUNT == 1)
#define IADC_REF_VALID(ref)    ((ref) == IADC0)
#elif (IADC_COUNT == 2)
#define IADC_REF_VALID(ref)    (((ref) == IADC0) || ((ref) == IADC1))
#endif

// Max IADC clock rates
#define IADC_CLK_MAX_FREQ                   40000000UL
#define IADC_ANA_CLK_HIGH_SPEED_MAX_FREQ    20000000UL
#define IADC_ANA_CLK_NORMAL_MAX_FREQ        10000000UL
#define IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ  5000000UL
#define IADC_ANA_CLK_MAX_FREQ(adcMode) (                          \
    (adcMode) == iadcCfgModeNormal ? IADC_ANA_CLK_NORMAL_MAX_FREQ \
    : IADC_ANA_CLK_HIGH_ACCURACY_MAX_FREQ                         \
    )

// TODO these should be defined in device headers somewhere
#define IADC0_SCANENTRIES IADC0_ENTRIES
#define IADC0_FIFOENTRIES 0x4UL

#define IADC1_SCANENTRIES IADC1_ENTRIES
#define IADC1_FIFOENTRIES 0x4UL

#define IADC_SCANENTRIES(iadc) (        \
    (iadc) == IADC0 ? IADC0_SCANENTRIES \
    : 0UL)
#define IADC_CONFIGNUM(iadc) (        \
    (iadc) == IADC0 ? IADC0_CONFIGNUM \
    : 0UL)
#define IADC_FIFOENTRIES(iadc) (        \
    (iadc) == IADC0 ? IADC0_FIFOENTRIES \
    : 0UL)
#define IADC_CMU_CLOCK(iadc) (       \
    (iadc) == IADC0 ? cmuClock_IADC0 \
    : cmuClock_IADC0)

// Gain and offset correction
// TODO These defines must be replaced with production calibrated values
//   from the DI page once these are defined

// High speed and normal mode gain correction
// Same value is used for all oversampling rates
#define IADC_OSRHS_GAIN_CORRECTION        0x8000UL

// High speed and normal mode offset correction
static const uint32_t highSpeedOffsetCorrection[6] =
{
  0x2C000, /* 2x */
  0x36000, /* 4x */
  0x3B000, /* 8x */
  0x3D800, /* 16x */
  0x3EC00, /* 32x */
  0x3F600  /* 64x */
};

/** @endcond */

/*******************************************************************************
 ***************************   LOCAL FUNCTIONS   *******************************
 ******************************************************************************/

/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */

static void IADC_disable(IADC_TypeDef *iadc)
{
  iadc->EN_CLR = IADC_EN_EN;
}

static void IADC_enable(IADC_TypeDef *iadc)
{
  iadc->EN_SET = IADC_EN_EN;
}

static IADC_Result_t IADC_ConvertRawDataToResult(uint32_t rawData,
                                                 IADC_Alignment_t alignment)
{
  IADC_Result_t result;

  switch (alignment) {
    case iadcAlignRight12:
      // Mask out ID and replace with sign extension
      result.data = (rawData & 0x00FFFFFFUL)
                    | ((rawData & 0x00800000UL) != 0x0UL ? 0xFF000000UL : 0x0UL);
      // Mask out data and shift down
      result.id   = (uint8_t) (rawData & 0xFF000000UL) >> 24;
      break;
    case iadcAlignLeft12:
      result.data = rawData & 0xFFFFFF00UL;
      result.id   = (uint8_t) (rawData & 0x000000FFUL);
      break;
    default:
      break;
  }
  return result;
}

/** @endcond */

/*******************************************************************************
 **************************   GLOBAL FUNCTIONS   *******************************
 ******************************************************************************/

/***************************************************************************//**
 * @brief
 *   Initialize IADC.
 *
 * @details
 *   Initializes common parts for both single conversion and scan sequence.
 *   In addition, single and/or scan control configuration must be done, please
 *   refer to @ref IADC_initSingle() and @ref IADC_initScan() respectively.
 *
 * @note
 *   This function will stop any ongoing conversions.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] init
 *   Pointer to IADC initialization structure.
 *
 * @param[in] allConfigs
 *   Pointer to structure holding all configs.
 ******************************************************************************/
void IADC_init(IADC_TypeDef *iadc,
               const IADC_Init_t *init,
               const IADC_AllConfigs_t *allConfigs)
{
  uint32_t tmp;
  uint32_t config;
  uint8_t wantedPrescale;
  uint8_t srcClkPrescale;
  uint8_t adcClkPrescale;
  uint8_t timebase;
  IADC_CfgAdcMode_t adcMode;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  // Calculate min allowed SRC_CLK prescaler setting
  srcClkPrescale = IADC_calcSrcClkPrescale(iadc, IADC_CLK_MAX_FREQ, 0);

  wantedPrescale = init->srcClkPrescale;
  // Use wanted SRC_CLK prescaler setting instead if it is high enough
  if (wantedPrescale >= srcClkPrescale) {
    srcClkPrescale = wantedPrescale;
  }

  IADC_disable(iadc);

  timebase = init->timebase;
  if (timebase == 0) {
    // Calculate timebase based on CMU_IADCCLKCTRL
    timebase = IADC_calcTimebase(iadc, 0);
  }

  tmp = (((uint32_t)(init->warmup) << _IADC_CTRL_WARMUPMODE_SHIFT)
         & _IADC_CTRL_WARMUPMODE_MASK)
        | (((uint32_t)(timebase) << _IADC_CTRL_TIMEBASE_SHIFT)
           & _IADC_CTRL_TIMEBASE_MASK)
        | (((uint32_t)(srcClkPrescale) << _IADC_CTRL_HSCLKRATE_SHIFT)
           & _IADC_CTRL_HSCLKRATE_MASK);

  if (init->iadcClkSuspend0) {
    tmp |= IADC_CTRL_ADCCLKSUSPEND0;
  }
  if (init->iadcClkSuspend1) {
    tmp |= IADC_CTRL_ADCCLKSUSPEND1;
  }
  if (init->debugHalt) {
    tmp |= IADC_CTRL_DBGHALT;
  }
  iadc->CTRL = tmp;

  iadc->TIMER = ((uint32_t) (init->timerCycles) << _IADC_TIMER_TIMER_SHIFT)
                & _IADC_TIMER_TIMER_MASK;

  iadc->CMPTHR = (((uint32_t) (init->greaterThanEqualThres) << _IADC_CMPTHR_ADGT_SHIFT)
                  & _IADC_CMPTHR_ADGT_MASK)
                 | (((uint32_t) (init->lessThanEqualThres) << _IADC_CMPTHR_ADLT_SHIFT)
                    & _IADC_CMPTHR_ADLT_MASK);

  // Write configurations
  for (config = 0; config < IADC_CONFIGNUM(iadc); config++) {
    // Find min allowed ADC_CLK prescaler setting for given mode
    adcMode = allConfigs->configs[config].adcMode;
    wantedPrescale = allConfigs->configs[config].adcClkPrescale;
    adcClkPrescale = IADC_calcAdcClkPrescale(iadc,
                                             IADC_ANA_CLK_MAX_FREQ(adcMode),
                                             0,
                                             adcMode,
                                             srcClkPrescale);

    // Use wanted ADC_CLK prescaler setting instead if it is high enough
    adcClkPrescale = SL_MAX(adcClkPrescale, wantedPrescale);

    tmp = iadc->CFG[config].CFG & ~(_IADC_CFG_ADCMODE_MASK | _IADC_CFG_OSRHS_MASK
                                    | _IADC_CFG_ANALOGGAIN_MASK | _IADC_CFG_REFSEL_MASK
                                    | _IADC_CFG_TWOSCOMPL_MASK);
    iadc->CFG[config].CFG = tmp
                            | (((uint32_t)(adcMode) << _IADC_CFG_ADCMODE_SHIFT) & _IADC_CFG_ADCMODE_MASK)
                            | (((uint32_t)(allConfigs->configs[config].osrHighSpeed) << _IADC_CFG_OSRHS_SHIFT)
                               & _IADC_CFG_OSRHS_MASK)
                            | (((uint32_t)(allConfigs->configs[config].analogGain) << _IADC_CFG_ANALOGGAIN_SHIFT)
                               & _IADC_CFG_ANALOGGAIN_MASK)
                            | (((uint32_t)(allConfigs->configs[config].reference) << _IADC_CFG_REFSEL_SHIFT)
                               & _IADC_CFG_REFSEL_MASK)
                            | (((uint32_t)(allConfigs->configs[config].twosComplement) << _IADC_CFG_TWOSCOMPL_SHIFT)
                               & _IADC_CFG_TWOSCOMPL_MASK);

    // Gain and offset correction is applied according to adcMode and oversampling rate.
    switch (adcMode) {
      case iadcCfgModeNormal:
        iadc->CFG[config].SCALE = (((uint32_t) highSpeedOffsetCorrection[allConfigs->configs[config].osrHighSpeed] << _IADC_SCALE_OFFSET_SHIFT)
                                   & _IADC_SCALE_OFFSET_MASK)
                                  | (((uint32_t) (IADC_OSRHS_GAIN_CORRECTION & 0x1FFFUL) << _IADC_SCALE_GAIN13LSB_SHIFT)
                                     & _IADC_SCALE_GAIN13LSB_MASK)
                                  | (((uint32_t) ((IADC_OSRHS_GAIN_CORRECTION & 0x8000UL) >> 15) << _IADC_SCALE_GAIN3MSB_SHIFT)
                                     & _IADC_SCALE_GAIN3MSB_MASK);
        break;
      default:
        break;
    }
    iadc->CFG[config].SCHED = (((uint32_t)(adcClkPrescale) << _IADC_SCHED_PRESCALE_SHIFT)
                               & _IADC_SCHED_PRESCALE_MASK);
  }
  IADC_enable(iadc);
}

/***************************************************************************//**
 * @brief
 *   Initialize IADC scan sequence.
 *
 * @details
 *   This function will configure scan mode and set up entries in the scan
 *   table. The scan table mask can be updated by calling IADC_updateScanMask.
 *
 * @note
 *   This function will stop any ongoing conversions.
 *
 * @note If an even numbered pin is selected for the positive input, the
 *   negative input must use an odd numbered pin and vice versa.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] init
 *   Pointer to IADC initialization structure.
 *
 * @param[in] scanTable
 *   Pointer to IADC scan table structure.
 ******************************************************************************/
void IADC_initScan(IADC_TypeDef *iadc,
                   const IADC_InitScan_t *init,
                   const IADC_ScanTable_t *scanTable)
{
  uint32_t i;
  uint32_t tmp;
  EFM_ASSERT(IADC_REF_VALID(iadc));

  IADC_disable(iadc);

  iadc->SCANFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT)
                       & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
                      | (init->showId ? IADC_SCANFIFOCFG_SHOWID : 0UL)
                      | (((uint32_t) (init->dataValidLevel) << _IADC_SCANFIFOCFG_DVL_SHIFT)
                         & _IADC_SCANFIFOCFG_DVL_MASK)
                      | (init->fifoDmaWakeup ? IADC_SCANFIFOCFG_DMAWUFIFOSCAN : 0UL);

  // Clear bitfields for scan conversion in IADCn->TRIGGER and set new values
  iadc->TRIGGER = (iadc->TRIGGER & ~(_IADC_TRIGGER_SCANTRIGSEL_MASK
                                     | _IADC_TRIGGER_SCANTRIGACTION_MASK))
                  | (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SCANTRIGSEL_SHIFT)
                     & _IADC_TRIGGER_SCANTRIGSEL_MASK)
                  | (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SCANTRIGACTION_SHIFT)
                     & _IADC_TRIGGER_SCANTRIGACTION_MASK);

  // Write scan table
  for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
    iadc->SCANTABLE[i].SCAN = (((uint32_t) (scanTable->entries[i].negInput) << _IADC_SCAN_PINNEG_SHIFT)
                               & (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
                              | (((uint32_t) (scanTable->entries[i].posInput) << _IADC_SCAN_PINPOS_SHIFT)
                                 & (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
                              | (((uint32_t) (scanTable->entries[i].configId) << _IADC_SCAN_CFG_SHIFT)
                                 & _IADC_SCAN_CFG_MASK)
                              | (scanTable->entries[i].compare ? IADC_SCAN_CMP : 0UL);
  }

  IADC_enable(iadc);

  // Set scan mask
  tmp = 0;
  for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
    if (scanTable->entries[i].includeInScan) {
      tmp |= (1UL << i) << _IADC_MASKREQ_MASKREQ_SHIFT;
    }
  }
  iadc->MASKREQ = tmp;

  if (init->start) {
    IADC_command(iadc, iadcCmdStartScan);
  }
}

/***************************************************************************//**
 * @brief
 *   Initialize single IADC conversion.
 *
 * @details
 *   This function will initialize the single conversion and configure the
 *   single input selection.
 *
 * @note
 *   This function will stop any ongoing conversions.
 *
 * @note If an even numbered pin is selected for the positive input, the
 *   negative input must use an odd numbered pin and vice versa.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] init
 *   Pointer to IADC single initialization structure.
 *
 * @param[in] singleInput
 *   Pointer to IADC single input selection initialization structure.
 ******************************************************************************/
void IADC_initSingle(IADC_TypeDef *iadc,
                     const IADC_InitSingle_t *init,
                     const IADC_SingleInput_t *input)
{
  EFM_ASSERT(IADC_REF_VALID(iadc));

  IADC_disable(iadc);

  iadc->SINGLEFIFOCFG = (((uint32_t) (init->alignment) << _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT)
                         & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
                        | (init->showId ? IADC_SINGLEFIFOCFG_SHOWID : 0UL)
                        | (((uint32_t) (init->dataValidLevel) << _IADC_SINGLEFIFOCFG_DVL_SHIFT)
                           & _IADC_SINGLEFIFOCFG_DVL_MASK)
                        | (init->fifoDmaWakeup ? IADC_SINGLEFIFOCFG_DMAWUFIFOSINGLE : 0UL);

  // Clear bitfields for single conversion in IADCn->TRIGGER and set new values
  iadc->TRIGGER = (iadc->TRIGGER & (_IADC_TRIGGER_SINGLETRIGSEL_MASK
                                    | _IADC_TRIGGER_SINGLETRIGACTION_MASK
                                    | _IADC_TRIGGER_SINGLETAILGATE_MASK))
                  | (((uint32_t) (init->triggerSelect) << _IADC_TRIGGER_SINGLETRIGSEL_SHIFT)
                     & _IADC_TRIGGER_SINGLETRIGSEL_MASK)
                  | (((uint32_t) (init->triggerAction) << _IADC_TRIGGER_SINGLETRIGACTION_SHIFT)
                     & _IADC_TRIGGER_SINGLETRIGACTION_MASK)
                  | (init->singleTailgate ? IADC_TRIGGER_SINGLETAILGATE : 0UL);

  IADC_updateSingleInput(iadc, input);

  IADC_enable(iadc);

  if (init->start) {
    IADC_command(iadc, iadcCmdStartSingle);
  }
}

/***************************************************************************//**
 * @brief
 *   Update IADC single input selection.
 *
 * @details
 *   This function updates the single input selection. The function can be
 *   called while single and/or scan conversions are ongoing and the new input
 *   configuration will take place on the next single conversion.
 *
 * @note If an even numbered pin is selected for the positive input, the
 *   negative input must use an odd numbered pin and vice versa.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] input
 *   Pointer to single input selection structure.
 ******************************************************************************/
void IADC_updateSingleInput(IADC_TypeDef *iadc,
                            const IADC_SingleInput_t *input)
{
  bool enabled;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  enabled = (iadc->EN & IADC_EN_EN) != 0UL;

  // IADCn->SINGLE has WSYNC type and can only be written while enabled
  IADC_enable(iadc);

  iadc->SINGLE = (((uint32_t) (input->negInput) << _IADC_SINGLE_PINNEG_SHIFT)
                  & (_IADC_SINGLE_PORTNEG_MASK | _IADC_SINGLE_PINNEG_MASK))
                 | (((uint32_t) (input->posInput) << _IADC_SINGLE_PINPOS_SHIFT)
                    & (_IADC_SINGLE_PORTPOS_MASK | _IADC_SINGLE_PINPOS_MASK))
                 | (((uint32_t) (input->configId) << _IADC_SINGLE_CFG_SHIFT)
                    & _IADC_SINGLE_CFG_MASK)
                 | (input->compare ? IADC_SINGLE_CMP : 0UL);

  // Restore enabled state
  if (!enabled) {
    IADC_disable(iadc);
  }
}

/***************************************************************************//**
 * @brief
 *   Set mask of IADC scan table entries to include in scan.
 *
 * @details
 *   Set mask of scan table entries to include in next scan. This function
 *   can be called while scan conversions are ongoing, but the new scan mask
 *   will take effect once the ongoing scan is completed.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] mask
 *   Mask of scan table entries to include in scan.
 ******************************************************************************/
void IADC_setScanMask(IADC_TypeDef *iadc, uint32_t mask)
{
  bool enabled;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  EFM_ASSERT(mask <= ((1UL << IADC_SCANENTRIES(iadc)) - 1UL));

  enabled = (iadc->EN & IADC_EN_EN) != 0UL;

  // IADC must be enabled to update scan table mask
  IADC_enable(iadc);

  iadc->MASKREQ = (mask << _IADC_MASKREQ_MASKREQ_SHIFT)
                  & _IADC_MASKREQ_MASKREQ_MASK;

  // Restore enabled state
  if (!enabled) {
    IADC_disable(iadc);
  }
}

/***************************************************************************//**
 * @brief
 *   Add/update entry in scan table.
 *
 * @details
 *   This function will update or add an entry in the scan table with a specific
 *   ID.
 *
 * @note
 *   This function will stop any ongoing conversions.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] id
 *   Id of scan table entry to add.
 *
 * @param[in] entry
 *   Pointer to scan table entry structure.
 ******************************************************************************/
void IADC_updateScanEntry(IADC_TypeDef *iadc,
                          uint8_t id,
                          IADC_ScanTableEntry_t *entry)
{
  bool enabled;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  enabled = (iadc->EN & IADC_EN_EN) != 0UL;

  // IADC must be disabled to update scan table
  IADC_disable(iadc);

  // Update entry in scan table
  iadc->SCANTABLE[id].SCAN = (((uint32_t) (entry->negInput) << _IADC_SCAN_PINNEG_SHIFT)
                              & (_IADC_SCAN_PORTNEG_MASK | _IADC_SCAN_PINNEG_MASK))
                             | (((uint32_t) (entry->posInput) << _IADC_SCAN_PINPOS_SHIFT)
                                & (_IADC_SCAN_PORTPOS_MASK | _IADC_SCAN_PINPOS_MASK))
                             | (((uint32_t) (entry->configId) << _IADC_SCAN_CFG_SHIFT)
                                & _IADC_SCAN_CFG_MASK)
                             | (entry->compare ? IADC_SCAN_CMP : 0UL);

  // IADC must be enabled to update scan table mask
  IADC_enable(iadc);

  if (entry->includeInScan) {
    iadc->MASKREQ_SET = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
  } else {
    iadc->MASKREQ_CLR = (1UL << (id & 0x1FUL)) << _IADC_MASKREQ_MASKREQ_SHIFT;
  }

  // Restore enabled state
  if (!enabled) {
    IADC_disable(iadc);
  }
}

/***************************************************************************//**
 * @brief
 *   Reset IADC to same state as after a HW reset.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 ******************************************************************************/
void IADC_reset(IADC_TypeDef *iadc)
{
  uint32_t i;
  EFM_ASSERT(IADC_REF_VALID(iadc));

  // Write all WSYNC registers to reset value while enabled
  IADC_enable(iadc);

  // Stop conversions and timer, before resetting other registers.
  iadc->CMD = IADC_CMD_SINGLESTOP | IADC_CMD_SCANSTOP | IADC_CMD_TIMERDIS;

  // Wait for all IADC operations to stop
  while ((iadc->STATUS & (IADC_STATUS_CONVERTING
                          | IADC_STATUS_SCANQUEUEPENDING
                          | IADC_STATUS_SINGLEQUEUEPENDING
                          | IADC_STATUS_TIMERACTIVE))
         != 0UL) {
  }

  // Reset all WSYNC registers
  iadc->MASKREQ = _IADC_MASKREQ_RESETVALUE;
  iadc->SINGLE  = _IADC_SINGLE_RESETVALUE;

  // Wait for SINGLE and MASQREQ writes to propagate to working registers
  while ((iadc->STATUS & (IADC_STATUS_MASKREQWRITEPENDING
                          | IADC_STATUS_SINGLEWRITEPENDING))
         != 0UL) {
  }

  // Pull from FIFOs until they are empty
  while ((iadc->STATUS & IADC_STATUS_SINGLEFIFODV) != 0UL) {
    (void) IADC_pullSingleFifoData(iadc);
  }

  while ((iadc->STATUS & IADC_STATUS_SCANFIFODV) != 0UL) {
    (void) IADC_pullScanFifoData(iadc);
  }

  // Read data registers to clear data valid flags
  (void) IADC_readSingleData(iadc);
  (void) IADC_readScanData(iadc);

  // Write all WSTATIC registers to reset value while disabled
  IADC_disable(iadc);

  // Reset all WSTATIC registers
  iadc->CTRL            = _IADC_CTRL_RESETVALUE;
  iadc->TIMER           = _IADC_TIMER_RESETVALUE;
  iadc->TRIGGER         = _IADC_TRIGGER_RESETVALUE;

  iadc->CMPTHR          = _IADC_CMPTHR_RESETVALUE;
  iadc->SINGLEFIFOCFG   = _IADC_SINGLEFIFOCFG_RESETVALUE;
  iadc->SCANFIFOCFG     = _IADC_SCANFIFOCFG_RESETVALUE;

  for (i = 0; i < IADC_CONFIGNUM(iadc); i++) {
    iadc->CFG[i].CFG    = _IADC_CFG_RESETVALUE;
    iadc->CFG[i].SCALE  = _IADC_SCALE_RESETVALUE;
    iadc->CFG[i].SCHED  = _IADC_SCHED_RESETVALUE;
  }

  for (i = 0; i < IADC_SCANENTRIES(iadc); i++) {
    iadc->SCANTABLE[i].SCAN = _IADC_SCAN_RESETVALUE;
  }

  // Clear interrupt flags and disable interrupts
  IADC_clearInt(iadc, _IADC_IF_MASK);
  IADC_disableInt(iadc, _IADC_IEN_MASK);
}

/***************************************************************************//**
 * @brief
 *   Calculate timebase value in order to get a timebase providing at least 1us.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] cmuClkFreq Frequency in Hz of reference CLK_CMU_ADC clock. Set to 0 to
 *   use currently defined CMU clock setting for the IADC.
 *
 * @return
 *   Timebase value to use for IADC in order to achieve at least 1 us.
 ******************************************************************************/
uint8_t IADC_calcTimebase(IADC_TypeDef *iadc, uint32_t cmuClkFreq)
{
  EFM_ASSERT(IADC_REF_VALID(iadc));

  if (cmuClkFreq == 0UL) {
    cmuClkFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));

    // Just in case, make sure we get non-zero freq for below calculation
    if (cmuClkFreq == 0UL) {
      cmuClkFreq = 1;
    }
  }
  // Determine number of ADCCLK cycle >= 1us
  cmuClkFreq += 999999UL;
  cmuClkFreq /= 1000000UL;

  // Convert to N+1 format
  cmuClkFreq -= 1UL;

  // Limit to max allowed register setting
  cmuClkFreq = SL_MIN(cmuClkFreq, (_IADC_CTRL_TIMEBASE_MASK >> _IADC_CTRL_TIMEBASE_SHIFT));

  // Return timebase value
  return (uint8_t) cmuClkFreq;
}

/***************************************************************************//**
 * @brief
 *   Calculate prescaler for CLK_SRC_ADC high speed clock
 *
 * @details
 *   The IADC high speed clock is given by: CLK_SRC_ADC / (srcClkPrescaler + 1).
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] srcClkFreq CLK_SRC_ADC frequency wanted. The frequency will
 *   automatically be adjusted to be within valid range according to reference
 *   manual.
 *
 * @param[in] cmuClkFreq Frequency in Hz of reference CLK_CMU_ADC. Set to 0
 *   to use currently defined CMU clock setting for the IADC.
 *
 * @return
 *   Divider value to use for IADC in order to achieve a high speed clock value
 *   <= @p srcClkFreq.
 ******************************************************************************/
uint8_t IADC_calcSrcClkPrescale(IADC_TypeDef *iadc,
                                uint32_t srcClkFreq,
                                uint32_t cmuClkFreq)
{
  uint32_t ret;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  // Make sure wanted CLK_SRC_ADC clock is below max allowed frequency
  srcClkFreq = SL_MIN(srcClkFreq, IADC_CLK_MAX_FREQ);

  // Use current CLK_CMU_ADC frequency?
  if (cmuClkFreq == 0UL) {
    cmuClkFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
  }

  ret = (cmuClkFreq + srcClkFreq - 1UL) / srcClkFreq;
  if (ret != 0UL) {
    ret--;
  }

  // Limit to max allowed register setting
  if (ret > _IADC_CTRL_HSCLKRATE_DIV4) {
    ret = _IADC_CTRL_HSCLKRATE_DIV4;
  }

  return (uint8_t)ret;
}

/***************************************************************************//**
 * @brief
 *   Calculate prescaler for ADC_CLK clock.
 *
 * @details
 *   The ADC_CLK is given by: CLK_SRC_ADC / (adcClkprescale + 1).
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @param[in] adcClkFreq  ADC_CLK frequency wanted. The frequency will
 *   automatically be adjusted to be within valid range according to reference
 *   manual.
 *
 * @param[in] CmuClkFreq Frequency in Hz of CLK_CMU_ADC Set to 0 to
 *   use currently defined IADC clock setting (in CMU).
 *
 * @param[in] adcMode Mode for IADC config.
 *
 * @param[in] srcClkPrescaler Precaler setting for ADC_CLK
 *
 * @return
 *   Divider value to use for IADC in order to achieve a ADC_CLK frequency
 *   <= @p adcClkFreq.
 ******************************************************************************/
uint8_t IADC_calcAdcClkPrescale(IADC_TypeDef *iadc,
                                uint32_t adcClkFreq,
                                uint32_t cmuClkFreq,
                                IADC_CfgAdcMode_t adcMode,
                                uint8_t srcClkPrescaler)
{
  uint32_t ret;
  uint32_t resFreq;

  EFM_ASSERT(IADC_REF_VALID(iadc));

  // Make sure wanted analog clock is below max allowed frequency for the given
  // mode.
  if (adcClkFreq > IADC_ANA_CLK_MAX_FREQ(adcMode)) {
    adcClkFreq = IADC_ANA_CLK_MAX_FREQ(adcMode);
  }

  // Use current CLK_CMU_ADC frequency?
  if (cmuClkFreq == 0UL) {
    resFreq = CMU_ClockFreqGet(IADC_CMU_CLOCK(iadc));
  } else {
    resFreq = cmuClkFreq;
  }

  // Apply CLK_SRC_ADC prescaler
  resFreq /= srcClkPrescaler + 1UL;

  ret = (resFreq + adcClkFreq - 1UL) / adcClkFreq;
  if (ret != 0UL) {
    ret--;
  }

  // Limit to max allowed register setting
  ret = SL_MIN(ret, (_IADC_SCHED_PRESCALE_MASK >> _IADC_SCHED_PRESCALE_SHIFT));

  return (uint8_t)ret;
}

/***************************************************************************//**
 * @brief
 *   Pull result from single data FIFO. The result struct includes both the data
 *   and the ID (0x20) if showId was set when initializing single mode.
 *
 * @note
 *   Check data valid flag before calling this function.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @return
 *   Single conversion result struct holding data and id.
 ******************************************************************************/
IADC_Result_t IADC_pullSingleFifoResult(IADC_TypeDef *iadc)
{
  uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
                       >> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
  return IADC_ConvertRawDataToResult(iadc->SINGLEFIFODATA,
                                     (IADC_Alignment_t) alignment);
}

/***************************************************************************//**
 * @brief
 *   Read most recent single conversion result. The result struct includes both
 *   the data and the ID (0x20) if showId was set when initializing single mode.
 *   Calling this function will not affect the state of the single data FIFO.
 *
 * @note
 *   Check data valid flag before calling this function.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @return
 *   Single conversion result struct holding data and id.
 ******************************************************************************/
IADC_Result_t IADC_readSingleResult(IADC_TypeDef *iadc)
{
  uint32_t alignment = (iadc->SINGLEFIFOCFG & _IADC_SINGLEFIFOCFG_ALIGNMENT_MASK)
                       >> _IADC_SINGLEFIFOCFG_ALIGNMENT_SHIFT;
  return IADC_ConvertRawDataToResult(iadc->SINGLEDATA,
                                     (IADC_Alignment_t) alignment);
}

/***************************************************************************//**
 * @brief
 *   Pull result from scan data FIFO. The result struct includes both the data
 *   and the ID (0x20) if showId was set when initializing scan entry.
 *
 * @note
 *   Check data valid flag before calling this function.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @return
 *   Scan conversion result struct holding data and id.
 ******************************************************************************/
IADC_Result_t IADC_pullScanFifoResult(IADC_TypeDef *iadc)
{
  uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
                       >> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
  return IADC_ConvertRawDataToResult(iadc->SCANFIFODATA,
                                     (IADC_Alignment_t) alignment);
}

/***************************************************************************//**
 * @brief
 *   Read most recent scan conversion result. The result struct includes both
 *   the data and the ID (0x20) if showId was set when initializing scan entry.
 *   Calling this function will not affect the state of the scan data FIFO.
 *
 * @note
 *   Check data valid flag before calling this function.
 *
 * @param[in] iadc
 *   Pointer to IADC peripheral register block.
 *
 * @return
 *   Scan conversion result struct holding data and id.
 ******************************************************************************/
IADC_Result_t IADC_readScanResult(IADC_TypeDef *iadc)
{
  uint32_t alignment = (iadc->SCANFIFOCFG & _IADC_SCANFIFOCFG_ALIGNMENT_MASK)
                       >> _IADC_SCANFIFOCFG_ALIGNMENT_SHIFT;
  return IADC_ConvertRawDataToResult(iadc->SCANDATA,
                                     (IADC_Alignment_t) alignment);
}

/** @} (end addtogroup IADC) */
/** @} (end addtogroup emlib) */
#endif /* defined(IADC_COUNT) && (IADC_COUNT > 0) */