Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 | /* * Copyright (c) 2016 Nordic Semiconductor ASA * Copyright (c) 2016 Vinayak Kariappa Chettimada * * SPDX-License-Identifier: Apache-2.0 */ #include <soc.h> #include <errno.h> #include <atomic.h> #include <device.h> #include <clock_control.h> #include <misc/__assert.h> #include <nrf_clock.h> #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) #include <nrf_power.h> #include <drivers/clock_control/nrf_clock_control.h> #endif static u8_t m16src_ref; static u8_t m16src_grd; static u8_t k32src_initialized; static int m16src_start(struct device *dev, clock_control_subsys_t sub_system) { bool blocking; u32_t imask; u32_t stat; /* If the clock is already started then just increment refcount. * If the start and stop don't happen in pairs, a rollover will * be caught and in that case system should assert. */ /* Test for reference increment from zero and resource guard not taken. */ imask = irq_lock(); if (m16src_ref++) { irq_unlock(imask); goto hf_already_started; } if (m16src_grd) { m16src_ref--; irq_unlock(imask); return -EAGAIN; } m16src_grd = 1U; irq_unlock(imask); /* If blocking then spin-wait in CPU sleep until 16MHz clock settles. */ blocking = POINTER_TO_UINT(sub_system); if (blocking) { u32_t intenset; irq_disable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; intenset = NRF_CLOCK->INTENSET; nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { __WFE(); __SEV(); __WFE(); } NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; if (!(intenset & CLOCK_INTENSET_HFCLKSTARTED_Msk)) { nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK); } NVIC_ClearPendingIRQ(DT_NORDIC_NRF_CLOCK_0_IRQ_0); irq_enable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); } else { NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); } /* release resource guard */ m16src_grd = 0U; hf_already_started: /* rollover should not happen as start and stop shall be * called in pairs. */ __ASSERT_NO_MSG(m16src_ref); stat = NRF_CLOCK_HFCLK_HIGH_ACCURACY | CLOCK_HFCLKSTAT_STATE_Msk; if ((NRF_CLOCK->HFCLKSTAT & stat) == stat) { return 0; } else { return -EINPROGRESS; } } static int m16src_stop(struct device *dev, clock_control_subsys_t sub_system) { u32_t imask; ARG_UNUSED(sub_system); /* Test for started resource, if so, decrement reference and acquire * resource guard. */ imask = irq_lock(); if (!m16src_ref) { irq_unlock(imask); return -EALREADY; } if (--m16src_ref) { irq_unlock(imask); return -EBUSY; } if (m16src_grd) { m16src_ref++; irq_unlock(imask); return -EAGAIN; } m16src_grd = 1U; irq_unlock(imask); /* re-entrancy and mult-context safe, and reference count is zero, */ nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP); /* release resource guard */ m16src_grd = 0U; return 0; } static int k32src_start(struct device *dev, clock_control_subsys_t sub_system) { u32_t lf_clk_src; u32_t imask; u32_t stat; #if defined(CONFIG_CLOCK_CONTROL_NRF_K32SRC_BLOCKING) u32_t intenset; #endif /* CONFIG_CLOCK_CONTROL_NRF_K32SRC_BLOCKING */ /* If the LF clock is already started, but wasn't initialized with * this function, allow it to run once. This is needed because if a * soft reset is triggered while watchdog is active, the LF clock will * already be running, but won't be configured yet (watchdog forces LF * clock to be running). * * That is, a hardware check won't work here, because even if the LF * clock is already running it might not be initialized. We need an * initialized flag. */ imask = irq_lock(); if (k32src_initialized) { irq_unlock(imask); goto lf_already_started; } k32src_initialized = 1U; irq_unlock(imask); /* Clear events if any */ NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; /* Set LF Clock Source */ lf_clk_src = POINTER_TO_UINT(sub_system); NRF_CLOCK->LFCLKSRC = lf_clk_src; #if defined(CONFIG_CLOCK_CONTROL_NRF_K32SRC_BLOCKING) irq_disable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); intenset = NRF_CLOCK->INTENSET; nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); /* Start and spin-wait until clock settles */ nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) { __WFE(); __SEV(); __WFE(); } NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; if (!(intenset & CLOCK_INTENSET_LFCLKSTARTED_Msk)) { nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK); } NVIC_ClearPendingIRQ(DT_NORDIC_NRF_CLOCK_0_IRQ_0); irq_enable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); #else /* !CONFIG_CLOCK_CONTROL_NRF_K32SRC_BLOCKING */ /* NOTE: LFCLK will initially start running from the LFRC if LFXO is * selected. */ nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); #endif /* !CONFIG_CLOCK_CONTROL_NRF_K32SRC_BLOCKING */ #if NRF_CLOCK_HAS_CALIBRATION /* If RC selected, calibrate and start timer for consecutive * calibrations. */ nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK | NRF_CLOCK_INT_CTTO_MASK); NRF_CLOCK->EVENTS_DONE = 0; NRF_CLOCK->EVENTS_CTTO = 0; if ((lf_clk_src & CLOCK_LFCLKSRC_SRC_Msk) == CLOCK_LFCLKSRC_SRC_RC) { int err; /* Set the Calibration Timer Initial Value */ NRF_CLOCK->CTIV = 16; /* 4s in 0.25s units */ /* Enable DONE and CTTO IRQs */ nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK | NRF_CLOCK_INT_CTTO_MASK); /* If non-blocking LF clock start, then start HF clock in ISR */ if ((NRF_CLOCK->LFCLKSTAT & CLOCK_LFCLKSTAT_STATE_Msk) == 0) { nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); goto lf_already_started; } /* Start HF clock, if already started then explicitly * assert IRQ. * NOTE: The INTENSET is used as state flag to start * calibration in ISR. */ nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); err = m16src_start(dev, false); if (!err) { NVIC_SetPendingIRQ(DT_NORDIC_NRF_CLOCK_0_IRQ_0); } else { __ASSERT_NO_MSG(err == -EINPROGRESS); } } #endif /* NRF_CLOCK_HAS_CALIBRATION */ lf_already_started: stat = (NRF_CLOCK->LFCLKSRCCOPY & CLOCK_LFCLKSRCCOPY_SRC_Msk) | CLOCK_LFCLKSTAT_STATE_Msk; if ((NRF_CLOCK->LFCLKSTAT & stat) == stat) { return 0; } else { return -EINPROGRESS; } } #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) static inline void power_event_cb(nrf_power_event_t event) { extern void usb_dc_nrfx_power_event_callback(nrf_power_event_t event); usb_dc_nrfx_power_event_callback(event); } #endif /* Note: this function has public linkage, and MUST have this * particular name. The platform architecture itself doesn't care, * but there is a test (tests/kernel/arm_irq_vector_table) that needs * to find it to it can set it in a custom vector table. Should * probably better abstract that at some point (e.g. query and reset * it by pointer at runtime, maybe?) so we don't have this leaky * symbol. */ void nrf_power_clock_isr(void *arg) { u8_t pof, hf_intenset, hf, lf_intenset, lf; #if NRF_CLOCK_HAS_CALIBRATION u8_t ctto, done; struct device *dev = arg; #endif #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) bool usb_detected, usb_pwr_rdy, usb_removed; #endif pof = (NRF_POWER->EVENTS_POFWARN != 0); hf_intenset = ((NRF_CLOCK->INTENSET & CLOCK_INTENSET_HFCLKSTARTED_Msk) != 0); hf = (NRF_CLOCK->EVENTS_HFCLKSTARTED != 0); lf_intenset = ((NRF_CLOCK->INTENSET & CLOCK_INTENSET_LFCLKSTARTED_Msk) != 0); lf = (NRF_CLOCK->EVENTS_LFCLKSTARTED != 0); #if NRF_CLOCK_HAS_CALIBRATION done = (NRF_CLOCK->EVENTS_DONE != 0); ctto = (NRF_CLOCK->EVENTS_CTTO != 0); #endif #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) usb_detected = nrf_power_event_check(NRF_POWER_EVENT_USBDETECTED); usb_pwr_rdy = nrf_power_event_check(NRF_POWER_EVENT_USBPWRRDY); usb_removed = nrf_power_event_check(NRF_POWER_EVENT_USBREMOVED); #endif __ASSERT_NO_MSG(pof || hf || hf_intenset || lf #if NRF_CLOCK_HAS_CALIBRATION || done || ctto #endif #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) || usb_detected || usb_pwr_rdy || usb_removed #endif ); if (pof) { NRF_POWER->EVENTS_POFWARN = 0; } if (hf) { NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; } if (hf_intenset && (hf || ((NRF_CLOCK->HFCLKSTAT & (CLOCK_HFCLKSTAT_STATE_Msk | CLOCK_HFCLKSTAT_SRC_Msk)) == (CLOCK_HFCLKSTAT_STATE_Msk | CLOCK_HFCLKSTAT_SRC_Msk)))){ /* INTENSET is used as state flag to start calibration, * hence clear it here. */ NRF_CLOCK->INTENCLR = CLOCK_INTENCLR_HFCLKSTARTED_Msk; #if defined(CONFIG_SOC_SERIES_NRF52X) /* NOTE: Errata [192] CLOCK: LFRC frequency offset after * calibration. * Calibration start, workaround. */ *(volatile u32_t *)0x40000C34 = 0x00000002; #endif /* CONFIG_SOC_SERIES_NRF52X */ #if NRF_CLOCK_HAS_CALIBRATION /* Start Calibration */ NRF_CLOCK->TASKS_CAL = 1; #endif } if (lf) { NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; if (lf_intenset) { /* INTENSET is used as state flag to start calibration, * hence clear it here. */ NRF_CLOCK->INTENCLR = CLOCK_INTENCLR_LFCLKSTARTED_Msk; #if NRF_CLOCK_HAS_CALIBRATION /* Start HF Clock if LF RC is used. */ if ((NRF_CLOCK->LFCLKSRCCOPY & CLOCK_LFCLKSRCCOPY_SRC_Msk) == CLOCK_LFCLKSRCCOPY_SRC_RC) { ctto = 1U; } #endif } } #if NRF_CLOCK_HAS_CALIBRATION if (done) { int err; #if defined(CONFIG_SOC_SERIES_NRF52X) /* NOTE: Errata [192] CLOCK: LFRC frequency offset after * calibration. * Calibration done, workaround. */ *(volatile u32_t *)0x40000C34 = 0x00000000; #endif /* CONFIG_SOC_SERIES_NRF52X */ NRF_CLOCK->EVENTS_DONE = 0; /* Calibration done, stop 16M Xtal. */ err = m16src_stop(dev, NULL); __ASSERT_NO_MSG(!err || err == -EBUSY); /* Start timer for next calibration. */ NRF_CLOCK->TASKS_CTSTART = 1; } if (ctto) { int err; NRF_CLOCK->EVENTS_CTTO = 0; /* Start HF clock, if already started * then explicitly assert IRQ; we use the INTENSET * as a state flag to start calibration. */ NRF_CLOCK->INTENSET = CLOCK_INTENSET_HFCLKSTARTED_Msk; err = m16src_start(dev, false); if (!err) { NVIC_SetPendingIRQ(DT_NORDIC_NRF_CLOCK_0_IRQ_0); } else { __ASSERT_NO_MSG(err == -EINPROGRESS); } } #endif /* NRF_CLOCK_HAS_CALIBRATION */ #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) if (usb_detected) { nrf_power_event_clear(NRF_POWER_EVENT_USBDETECTED); power_event_cb(NRF_POWER_EVENT_USBDETECTED); } if (usb_pwr_rdy) { nrf_power_event_clear(NRF_POWER_EVENT_USBPWRRDY); power_event_cb(NRF_POWER_EVENT_USBPWRRDY); } if (usb_removed) { nrf_power_event_clear(NRF_POWER_EVENT_USBREMOVED); power_event_cb(NRF_POWER_EVENT_USBREMOVED); } #endif } static int clock_control_init(struct device *dev) { /* TODO: Initialization will be called twice, once for 32KHz and then * for 16 MHz clock. The vector is also shared for other power related * features. Hence, design a better way to init IRQISR when adding * power peripheral driver and/or new SoC series. * NOTE: Currently the operations here are idempotent. */ IRQ_CONNECT(DT_NORDIC_NRF_CLOCK_0_IRQ_0, DT_NORDIC_NRF_CLOCK_0_IRQ_0_PRIORITY, nrf_power_clock_isr, 0, 0); irq_enable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); return 0; } static const struct clock_control_driver_api _m16src_clock_control_api = { .on = m16src_start, .off = m16src_stop, .get_rate = NULL, }; DEVICE_AND_API_INIT(clock_nrf5_m16src, DT_NORDIC_NRF_CLOCK_0_LABEL "_16M", clock_control_init, NULL, NULL, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &_m16src_clock_control_api); static const struct clock_control_driver_api _k32src_clock_control_api = { .on = k32src_start, .off = NULL, .get_rate = NULL, }; DEVICE_AND_API_INIT(clock_nrf5_k32src, DT_NORDIC_NRF_CLOCK_0_LABEL "_32K", clock_control_init, NULL, NULL, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &_k32src_clock_control_api); #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) void nrf5_power_usb_power_int_enable(bool enable) { u32_t mask; mask = NRF_POWER_INT_USBDETECTED_MASK | NRF_POWER_INT_USBREMOVED_MASK | NRF_POWER_INT_USBPWRRDY_MASK; if (enable) { nrf_power_int_enable(mask); irq_enable(DT_NORDIC_NRF_CLOCK_0_IRQ_0); } else { nrf_power_int_disable(mask); } } #endif |