Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /* * Copyright (c) 2017, Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_INCLUDE_SYSCALL_H_ #define ZEPHYR_INCLUDE_SYSCALL_H_ #include <syscall_list.h> #include <arch/syscall.h> #include <stdbool.h> #ifndef _ASMLANGUAGE #include <zephyr/types.h> #include <syscall_macros.h> #ifdef __cplusplus extern "C" { #endif /* * System Call Declaration macros * * These macros are used in public header files to declare system calls. * They generate inline functions which have different implementations * depending on the current compilation context: * * - Kernel-only code, or CONFIG_USERSPACE disabled, these inlines will * directly call the implementation * - User-only code, these inlines will marshal parameters and elevate * privileges * - Mixed or indeterminate code, these inlines will do a runtime check * to determine what course of action is needed. * * All system calls require a handler function and an implementation function. * These must follow a naming convention. For a system call named k_foo(): * * - The handler function will be named z_hdlr_k_foo(). Handler functions * are always of type _k_syscall_handler_t, verify arguments passed up * from userspace, and call the implementation function. See * documentation for that typedef for more information. * - The implementation function will be named z_impl_k_foo(). This is the * actual implementation of the system call. * * The basic declartion macros are as follows. System calls with 0 to 10 * parameters are supported. For a system call with N parameters, that returns * a value and is* not implemented inline, the macro is as follows (N noted * as {N} for clarity): * * K_SYSCALL_DECLARE{N}(id, name, ret, t0, p0, ... , t{N-1}, p{N-1}) * @param id System call ID, one of K_SYSCALL_* defines * @param name Symbol name of the system call used to invoke it * @param ret Data type of return value * @param tX Data type of parameter X * @param pX Name of parameter x * * For system calls that return no value: * * K_SYSCALL_DECLARE{n}_VOID(id, name, t0, p0, .... , t{N-1}, p{N-1}) * * This is identical to above except there is no 'ret' parameter. * * For system calls where the implementation is an inline function, we have * * K_SYSCALL_DECLARE{n}_INLINE(id, name, ret, t0, p0, ... , t{N-1}, p{N-1}) * K_SYSCALL_DECLARE{n}_VOID_INLINE(id, name, t0, p0, ... , t{N-1}, p{N-1}) * * These are used in the same way as their non-INLINE counterparts. * * These macros are generated by scripts/gen_syscall_header.py and can be * found in $OUTDIR/include/generated/syscall_macros.h */ /** * @typedef _k_syscall_handler_t * @brief System call handler function type * * These are kernel-side skeleton functions for system calls. They are * necessary to sanitize the arguments passed into the system call: * * - Any kernel object or device pointers are validated with _SYSCALL_IS_OBJ() * - Any memory buffers passed in are checked to ensure that the calling thread * actually has access to them * - Many kernel calls do no sanity checking of parameters other than * assertions. The handler must check all of these conditions using * _SYSCALL_ASSERT() * - If the system call has more than 6 arguments, then arg6 will be a pointer * to some struct containing arguments 6+. The struct itself needs to be * validated like any other buffer passed in from userspace, and its members * individually validated (if necessary) and then passed to the real * implementation like normal arguments * * Even if the system call implementation has no return value, these always * return something, even 0, to prevent register leakage to userspace. * * Once everything has been validated, the real implementation will be executed. * * @param arg1 system call argument 1 * @param arg2 system call argument 2 * @param arg3 system call argument 3 * @param arg4 system call argument 4 * @param arg5 system call argument 5 * @param arg6 system call argument 6 * @param ssf System call stack frame pointer. Used to generate kernel oops * via _arch_syscall_oops_at(). Contents are arch-specific. * @return system call return value, or 0 if the system call implementation * return void * */ typedef u32_t (*_k_syscall_handler_t)(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, void *ssf); #ifdef CONFIG_USERSPACE /* * Helper data structures for system calls with large argument lists */ struct _syscall_7_args { u32_t arg6; u32_t arg7; }; struct _syscall_8_args { u32_t arg6; u32_t arg7; u32_t arg8; }; struct _syscall_9_args { u32_t arg6; u32_t arg7; u32_t arg8; u32_t arg9; }; struct _syscall_10_args { u32_t arg6; u32_t arg7; u32_t arg8; u32_t arg9; u32_t arg10; }; /* * Interfaces for invoking system calls */ static inline u32_t z_arch_syscall_invoke0(u32_t call_id); static inline u32_t z_arch_syscall_invoke1(u32_t arg1, u32_t call_id); static inline u32_t z_arch_syscall_invoke2(u32_t arg1, u32_t arg2, u32_t call_id); static inline u32_t z_arch_syscall_invoke3(u32_t arg1, u32_t arg2, u32_t arg3, u32_t call_id); static inline u32_t z_arch_syscall_invoke4(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t call_id); static inline u32_t z_arch_syscall_invoke5(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t call_id); static inline u32_t z_arch_syscall_invoke6(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, u32_t call_id); static inline u32_t z_syscall_invoke7(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, u32_t arg7, u32_t call_id) { struct _syscall_7_args args = { .arg6 = arg6, .arg7 = arg7, }; return z_arch_syscall_invoke6(arg1, arg2, arg3, arg4, arg5, (u32_t)&args, call_id); } static inline u32_t z_syscall_invoke8(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, u32_t arg7, u32_t arg8, u32_t call_id) { struct _syscall_8_args args = { .arg6 = arg6, .arg7 = arg7, .arg8 = arg8, }; return z_arch_syscall_invoke6(arg1, arg2, arg3, arg4, arg5, (u32_t)&args, call_id); } static inline u32_t z_syscall_invoke9(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, u32_t arg7, u32_t arg8, u32_t arg9, u32_t call_id) { struct _syscall_9_args args = { .arg6 = arg6, .arg7 = arg7, .arg8 = arg8, .arg9 = arg9, }; return z_arch_syscall_invoke6(arg1, arg2, arg3, arg4, arg5, (u32_t)&args, call_id); } static inline u32_t z_syscall_invoke10(u32_t arg1, u32_t arg2, u32_t arg3, u32_t arg4, u32_t arg5, u32_t arg6, u32_t arg7, u32_t arg8, u32_t arg9, u32_t arg10, u32_t call_id) { struct _syscall_10_args args = { .arg6 = arg6, .arg7 = arg7, .arg8 = arg8, .arg9 = arg9, .arg10 = arg10 }; return z_arch_syscall_invoke6(arg1, arg2, arg3, arg4, arg5, (u32_t)&args, call_id); } static inline u64_t z_syscall_ret64_invoke0(u32_t call_id) { u64_t ret; (void)z_arch_syscall_invoke1((u32_t)&ret, call_id); return ret; } static inline u64_t z_syscall_ret64_invoke1(u32_t arg1, u32_t call_id) { u64_t ret; (void)z_arch_syscall_invoke2(arg1, (u32_t)&ret, call_id); return ret; } static inline u64_t z_syscall_ret64_invoke2(u32_t arg1, u32_t arg2, u32_t call_id) { u64_t ret; (void)z_arch_syscall_invoke3(arg1, arg2, (u32_t)&ret, call_id); return ret; } /** * Indicate whether we are currently running in user mode * * @return true if the CPU is currently running with user permissions */ static inline bool z_arch_is_user_context(void); #endif /* CONFIG_USERSPACE */ /** * Indicate whether the CPU is currently in user mode * * @return true if the CPU is currently running with user permissions */ static inline bool _is_user_context(void) { #ifdef CONFIG_USERSPACE return z_arch_is_user_context(); #else return false; #endif } #ifdef __cplusplus } #endif #endif /* _ASMLANGUAGE */ #endif |