Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#include "nrf_802154_rsch.h"

#include <assert.h>
#include <stddef.h>
#include <nrf.h>

#include "nrf_802154_debug.h"
#include "nrf_802154_priority_drop.h"
#include "platform/clock/nrf_802154_clock.h"
#include "raal/nrf_raal_api.h"
#include "timer_scheduler/nrf_802154_timer_sched.h"

#define PREC_RAMP_UP_TIME 300                                ///< Ramp-up time of preconditions [us]. 300 is worst case for HFclock

static volatile uint8_t     m_ntf_mutex;                     ///< Mutex for notyfying core.
static volatile uint8_t     m_ntf_mutex_monitor;             ///< Mutex monitor, incremented every failed ntf mutex lock.
static volatile uint8_t     m_req_mutex;                     ///< Mutex for requesting preconditions.
static volatile uint8_t     m_req_mutex_monitor;             ///< Mutex monitor, incremented every failed req mutex lock.
static volatile rsch_prio_t m_last_notified_prio;            ///< Last reported approved priority level.
static volatile rsch_prio_t m_approved_prios[RSCH_PREC_CNT]; ///< Priority levels approved by each precondition.
static rsch_prio_t          m_requested_prio;                ///< Priority requested from all preconditions.
static rsch_prio_t          m_cont_mode_prio;                ///< Continuous mode priority level. If continuous mode is not requested equal to @ref RSCH_PRIO_IDLE.

typedef struct
{
    rsch_prio_t        prio;  ///< Delayed timeslot priority level. If delayed timeslot is not scheduled equal to @ref RSCH_PRIO_IDLE.
    uint32_t           t0;    ///< Time base of the delayed timeslot trigger time.
    uint32_t           dt;    ///< Time delta of the delayed timeslot trigger time.
    nrf_802154_timer_t timer; ///< Timer used to trigger delayed timeslot.
} dly_ts_t;

static dly_ts_t m_dly_ts[RSCH_DLY_TS_NUM];

/** @brief Non-blocking mutex for notifying core.
 *
 *  @param[inout]  p_mutex          Pointer to the mutex data.
 *  @param[inout]  p_mutex_monitor  Pointer to the mutex monitor counter.
 *
 *  @retval  true   Mutex was acquired.
 *  @retval  false  Mutex could not be acquired.
 */
static inline bool mutex_trylock(volatile uint8_t * p_mutex, volatile uint8_t * p_mutex_monitor)
{
    do
    {
        uint8_t mutex_value = __LDREXB(p_mutex);

        if (mutex_value)
        {
            __CLREX();

            (*p_mutex_monitor)++;
            return false;
        }
    }
    while (__STREXB(1, p_mutex));

    __DMB();

    return true;
}

/** @brief Release mutex. */
static inline void mutex_unlock(volatile uint8_t * p_mutex)
{
    __DMB();
    *p_mutex = 0;
}

/** @brief Check maximal priority level required by any of delayed timeslots at the moment.
 *
 * To meet delayed timeslot timing requirements there is a time window in which radio
 * preconditions should be requested. This function is used to prevent releasing preconditions
 * in this time window.
 *
 * @return  Maximal priority level required by delayed timeslots.
 */
static rsch_prio_t max_prio_for_delayed_timeslot_get(void)
{
    rsch_prio_t result = RSCH_PRIO_IDLE;
    uint32_t    now    = nrf_802154_timer_sched_time_get();

    for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++)
    {
        dly_ts_t * p_dly_ts = &m_dly_ts[i];
        uint32_t   t0       = p_dly_ts->t0;
        uint32_t   dt       = p_dly_ts->dt - PREC_RAMP_UP_TIME -
                              nrf_802154_timer_sched_granularity_get();

        if ((p_dly_ts->prio > result) && !nrf_802154_timer_sched_time_is_in_future(now, t0, dt))
        {
            result = p_dly_ts->prio;
        }
    }

    return result;
}

static rsch_prio_t required_prio_lvl_get(void)
{
    rsch_prio_t result = max_prio_for_delayed_timeslot_get();

    if (m_cont_mode_prio > result)
    {
        result = m_cont_mode_prio;
    }

    return result;
}

/** @brief Set approved priority level @p prio on given precondition @p prec.
 *
 * When requested priority level equals to the @ref RSCH_PRIO_IDLE this function will approve only
 * the @ref RSCH_PRIO_IDLE priority level and drop other approved levels silently.
 *
 * @param[in]  prec    Precondition which state will be changed.
 * @param[in]  prio    Approved priority level for given precondition.
 */
static inline void prec_approved_prio_set(rsch_prec_t prec, rsch_prio_t prio)
{
    assert(prec <= RSCH_PREC_CNT);

    if ((m_requested_prio == RSCH_PRIO_IDLE) && (prio != RSCH_PRIO_IDLE))
    {
        // Ignore approved precondition - it was not requested.
        return;
    }

    assert((m_approved_prios[prec] != prio) || (prio == RSCH_PRIO_IDLE));

    m_approved_prios[prec] = prio;
}

/** @brief Request all preconditions.
 */
static inline void all_prec_update(void)
{
    rsch_prio_t prev_prio;
    rsch_prio_t new_prio;
    uint8_t     monitor;

    do
    {
        if (!mutex_trylock(&m_req_mutex, &m_req_mutex_monitor))
        {
            return;
        }

        monitor   = m_req_mutex_monitor;
        prev_prio = m_requested_prio;
        new_prio  = required_prio_lvl_get();

        if (prev_prio != new_prio)
        {
            m_requested_prio = new_prio;

            if (new_prio == RSCH_PRIO_IDLE)
            {
                nrf_802154_priority_drop_hfclk_stop();
                prec_approved_prio_set(RSCH_PREC_HFCLK, RSCH_PRIO_IDLE);

                nrf_raal_continuous_mode_exit();
                prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_IDLE);
            }
            else
            {
                nrf_802154_priority_drop_hfclk_stop_terminate();
                nrf_802154_clock_hfclk_start();
                nrf_raal_continuous_mode_enter();
            }
        }

        mutex_unlock(&m_req_mutex);
    }
    while (monitor != m_req_mutex_monitor);
}

/** @brief Get currently approved priority level.
 *
 * @return Maximal priority level approved by all radio preconditions.
 */
static inline rsch_prio_t approved_prio_lvl_get(void)
{
    rsch_prio_t result = RSCH_PRIO_MAX;

    for (uint32_t i = 0; i < RSCH_PREC_CNT; i++)
    {
        if (m_approved_prios[i] < result)
        {
            result = m_approved_prios[i];
        }
    }

    return result;
}

/** @brief Check if all preconditions are requested or met at given priority level or higher.
 *
 * @param[in]  prio  Minimal priority level requested from preconditions.
 *
 * @retval true   All preconditions are requested or met at given or higher level.
 * @retval false  At least one precondition is requested at lower level than required.
 */
static inline bool requested_prio_lvl_is_at_least(rsch_prio_t prio)
{
    return m_requested_prio >= prio;
}

/** @brief Notify core if preconditions are approved or denied if current state differs from last reported.
 */
static inline void notify_core(void)
{
    rsch_prio_t approved_prio_lvl;
    uint8_t     temp_mon;

    do
    {
        if (!mutex_trylock(&m_ntf_mutex, &m_ntf_mutex_monitor))
        {
            return;
        }

        /* It is possible that preemption is not detected (m_ntf_mutex_monitor is read after
         * acquiring mutex). It is not a problem because we will call proper handler function
         * requested by preempting context. Avoiding this race would generate one additional
         * iteration without any effect.
         */
        temp_mon          = m_ntf_mutex_monitor;
        approved_prio_lvl = approved_prio_lvl_get();

        if ((m_cont_mode_prio > RSCH_PRIO_IDLE) && (m_last_notified_prio != approved_prio_lvl))
        {
            m_last_notified_prio = approved_prio_lvl;

            nrf_802154_rsch_continuous_prio_changed(approved_prio_lvl);
        }

        mutex_unlock(&m_ntf_mutex);
    }
    while (temp_mon != m_ntf_mutex_monitor);
}

/** Timer callback used to trigger delayed timeslot.
 *
 * @param[in]  p_context  Index of the delayed timeslot operation (TX or RX).
 */
static void delayed_timeslot_start(void * p_context)
{
    rsch_dly_ts_id_t dly_ts_id = (rsch_dly_ts_id_t)(uint32_t)p_context;
    dly_ts_t       * p_dly_ts  = &m_dly_ts[dly_ts_id];
    rsch_prio_t      req_prio_lvl;

    nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMER_DELAYED_START);

    req_prio_lvl   = p_dly_ts->prio;
    p_dly_ts->prio = RSCH_PRIO_IDLE;

    if (approved_prio_lvl_get() >= req_prio_lvl)
    {
        nrf_802154_rsch_delayed_timeslot_started(dly_ts_id);
    }
    else
    {
        nrf_802154_rsch_delayed_timeslot_failed(dly_ts_id);
    }

    nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMER_DELAYED_START);
}

/** Timer callback used to request preconditions for delayed timeslot.
 *
 * @param[in]  p_context  Index of the delayed timeslot operation (TX or RX).
 */
static void delayed_timeslot_prec_request(void * p_context)
{
    rsch_dly_ts_id_t dly_ts_id = (rsch_dly_ts_id_t)(uint32_t)p_context;
    dly_ts_t       * p_dly_ts  = &m_dly_ts[dly_ts_id];

    nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMER_DELAYED_PREC);

    all_prec_update();

    p_dly_ts->timer.t0        = p_dly_ts->t0;
    p_dly_ts->timer.dt        = p_dly_ts->dt;
    p_dly_ts->timer.callback  = delayed_timeslot_start;
    p_dly_ts->timer.p_context = p_context;

    nrf_802154_timer_sched_add(&p_dly_ts->timer, true);

    nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMER_DELAYED_PREC);
}

/***************************************************************************************************
 * Public API
 **************************************************************************************************/

void nrf_802154_rsch_init(void)
{
    nrf_raal_init();

    m_ntf_mutex          = 0;
    m_req_mutex          = 0;
    m_last_notified_prio = RSCH_PRIO_IDLE;
    m_cont_mode_prio     = RSCH_PRIO_IDLE;
    m_requested_prio     = RSCH_PRIO_IDLE;

    for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++)
    {
        m_dly_ts[i].prio = RSCH_PRIO_IDLE;
    }

    for (uint32_t i = 0; i < RSCH_PREC_CNT; i++)
    {
        m_approved_prios[i] = RSCH_PRIO_IDLE;
    }
}

void nrf_802154_rsch_uninit(void)
{
    for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++)
    {
        nrf_802154_timer_sched_remove(&m_dly_ts[i].timer);
    }

    nrf_raal_uninit();
}

void nrf_802154_rsch_continuous_mode_priority_set(rsch_prio_t prio)
{
    nrf_802154_log(EVENT_TRACE_ENTER, (prio > RSCH_PRIO_IDLE) ? FUNCTION_RSCH_CONTINUOUS_ENTER :
                   FUNCTION_RSCH_CONTINUOUS_EXIT);

    m_cont_mode_prio = prio;
    __DMB();

    all_prec_update();
    notify_core();

    if (prio == RSCH_PRIO_IDLE)
    {
        m_last_notified_prio = RSCH_PRIO_IDLE;
    }

    nrf_802154_log(EVENT_TRACE_EXIT, (prio > RSCH_PRIO_IDLE) ? FUNCTION_RSCH_CONTINUOUS_ENTER :
                   FUNCTION_RSCH_CONTINUOUS_EXIT);
}

void nrf_802154_rsch_continuous_ended(void)
{
    nrf_raal_continuous_ended();
}

bool nrf_802154_rsch_timeslot_request(uint32_t length_us)
{
    return nrf_raal_timeslot_request(length_us);
}

bool nrf_802154_rsch_delayed_timeslot_request(uint32_t         t0,
                                              uint32_t         dt,
                                              uint32_t         length,
                                              rsch_prio_t      prio,
                                              rsch_dly_ts_id_t dly_ts_id)
{
    (void)length;

    nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_DELAYED_TIMESLOT_REQ);
    assert(dly_ts_id < RSCH_DLY_TS_NUM);

    dly_ts_t * p_dly_ts = &m_dly_ts[dly_ts_id];
    uint32_t   now      = nrf_802154_timer_sched_time_get();
    uint32_t   req_dt   = dt - PREC_RAMP_UP_TIME;
    bool       result;

    assert(!nrf_802154_timer_sched_is_running(&p_dly_ts->timer));
    assert(p_dly_ts->prio == RSCH_PRIO_IDLE);
    assert(prio != RSCH_PRIO_IDLE);

    if (nrf_802154_timer_sched_time_is_in_future(now, t0, req_dt))
    {
        p_dly_ts->prio = prio;
        p_dly_ts->t0   = t0;
        p_dly_ts->dt   = dt;

        p_dly_ts->timer.t0        = t0;
        p_dly_ts->timer.dt        = req_dt;
        p_dly_ts->timer.callback  = delayed_timeslot_prec_request;
        p_dly_ts->timer.p_context = (void *)dly_ts_id;

        nrf_802154_timer_sched_add(&p_dly_ts->timer, false);

        result = true;
    }
    else if (requested_prio_lvl_is_at_least(RSCH_PRIO_MAX) &&
             nrf_802154_timer_sched_time_is_in_future(now, t0, dt))
    {
        p_dly_ts->prio = prio;
        p_dly_ts->t0   = t0;
        p_dly_ts->dt   = dt;

        p_dly_ts->timer.t0        = t0;
        p_dly_ts->timer.dt        = dt;
        p_dly_ts->timer.callback  = delayed_timeslot_start;
        p_dly_ts->timer.p_context = (void *)dly_ts_id;

        nrf_802154_timer_sched_add(&p_dly_ts->timer, true);

        result = true;
    }
    else
    {
        result = false;
    }

    nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_DELAYED_TIMESLOT_REQ);

    return result;
}

bool nrf_802154_rsch_prec_is_approved(rsch_prec_t prec, rsch_prio_t prio)
{
    assert(prec < RSCH_PREC_CNT);
    return m_approved_prios[prec] >= prio;
}

uint32_t nrf_802154_rsch_timeslot_us_left_get(void)
{
    return nrf_raal_timeslot_us_left_get();
}

// External handlers

void nrf_raal_timeslot_started(void)
{
    nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMESLOT_STARTED);

    prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_MAX);
    notify_core();

    nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMESLOT_STARTED);
}

void nrf_raal_timeslot_ended(void)
{
    nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMESLOT_ENDED);

    prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_IDLE);
    notify_core();

    nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMESLOT_ENDED);
}

void nrf_802154_clock_hfclk_ready(void)
{
    prec_approved_prio_set(RSCH_PREC_HFCLK, RSCH_PRIO_MAX);
    notify_core();
}