Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | #include "nrf_802154_rsch.h" #include <assert.h> #include <stddef.h> #include <nrf.h> #include "nrf_802154_debug.h" #include "nrf_802154_priority_drop.h" #include "platform/clock/nrf_802154_clock.h" #include "raal/nrf_raal_api.h" #include "timer_scheduler/nrf_802154_timer_sched.h" #define PREC_RAMP_UP_TIME 300 ///< Ramp-up time of preconditions [us]. 300 is worst case for HFclock static volatile uint8_t m_ntf_mutex; ///< Mutex for notyfying core. static volatile uint8_t m_ntf_mutex_monitor; ///< Mutex monitor, incremented every failed ntf mutex lock. static volatile uint8_t m_req_mutex; ///< Mutex for requesting preconditions. static volatile uint8_t m_req_mutex_monitor; ///< Mutex monitor, incremented every failed req mutex lock. static volatile rsch_prio_t m_last_notified_prio; ///< Last reported approved priority level. static volatile rsch_prio_t m_approved_prios[RSCH_PREC_CNT]; ///< Priority levels approved by each precondition. static rsch_prio_t m_requested_prio; ///< Priority requested from all preconditions. static rsch_prio_t m_cont_mode_prio; ///< Continuous mode priority level. If continuous mode is not requested equal to @ref RSCH_PRIO_IDLE. typedef struct { rsch_prio_t prio; ///< Delayed timeslot priority level. If delayed timeslot is not scheduled equal to @ref RSCH_PRIO_IDLE. uint32_t t0; ///< Time base of the delayed timeslot trigger time. uint32_t dt; ///< Time delta of the delayed timeslot trigger time. nrf_802154_timer_t timer; ///< Timer used to trigger delayed timeslot. } dly_ts_t; static dly_ts_t m_dly_ts[RSCH_DLY_TS_NUM]; /** @brief Non-blocking mutex for notifying core. * * @param[inout] p_mutex Pointer to the mutex data. * @param[inout] p_mutex_monitor Pointer to the mutex monitor counter. * * @retval true Mutex was acquired. * @retval false Mutex could not be acquired. */ static inline bool mutex_trylock(volatile uint8_t * p_mutex, volatile uint8_t * p_mutex_monitor) { do { uint8_t mutex_value = __LDREXB(p_mutex); if (mutex_value) { __CLREX(); (*p_mutex_monitor)++; return false; } } while (__STREXB(1, p_mutex)); __DMB(); return true; } /** @brief Release mutex. */ static inline void mutex_unlock(volatile uint8_t * p_mutex) { __DMB(); *p_mutex = 0; } /** @brief Check maximal priority level required by any of delayed timeslots at the moment. * * To meet delayed timeslot timing requirements there is a time window in which radio * preconditions should be requested. This function is used to prevent releasing preconditions * in this time window. * * @return Maximal priority level required by delayed timeslots. */ static rsch_prio_t max_prio_for_delayed_timeslot_get(void) { rsch_prio_t result = RSCH_PRIO_IDLE; uint32_t now = nrf_802154_timer_sched_time_get(); for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++) { dly_ts_t * p_dly_ts = &m_dly_ts[i]; uint32_t t0 = p_dly_ts->t0; uint32_t dt = p_dly_ts->dt - PREC_RAMP_UP_TIME - nrf_802154_timer_sched_granularity_get(); if ((p_dly_ts->prio > result) && !nrf_802154_timer_sched_time_is_in_future(now, t0, dt)) { result = p_dly_ts->prio; } } return result; } static rsch_prio_t required_prio_lvl_get(void) { rsch_prio_t result = max_prio_for_delayed_timeslot_get(); if (m_cont_mode_prio > result) { result = m_cont_mode_prio; } return result; } /** @brief Set approved priority level @p prio on given precondition @p prec. * * When requested priority level equals to the @ref RSCH_PRIO_IDLE this function will approve only * the @ref RSCH_PRIO_IDLE priority level and drop other approved levels silently. * * @param[in] prec Precondition which state will be changed. * @param[in] prio Approved priority level for given precondition. */ static inline void prec_approved_prio_set(rsch_prec_t prec, rsch_prio_t prio) { assert(prec <= RSCH_PREC_CNT); if ((m_requested_prio == RSCH_PRIO_IDLE) && (prio != RSCH_PRIO_IDLE)) { // Ignore approved precondition - it was not requested. return; } assert((m_approved_prios[prec] != prio) || (prio == RSCH_PRIO_IDLE)); m_approved_prios[prec] = prio; } /** @brief Request all preconditions. */ static inline void all_prec_update(void) { rsch_prio_t prev_prio; rsch_prio_t new_prio; uint8_t monitor; do { if (!mutex_trylock(&m_req_mutex, &m_req_mutex_monitor)) { return; } monitor = m_req_mutex_monitor; prev_prio = m_requested_prio; new_prio = required_prio_lvl_get(); if (prev_prio != new_prio) { m_requested_prio = new_prio; if (new_prio == RSCH_PRIO_IDLE) { nrf_802154_priority_drop_hfclk_stop(); prec_approved_prio_set(RSCH_PREC_HFCLK, RSCH_PRIO_IDLE); nrf_raal_continuous_mode_exit(); prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_IDLE); } else { nrf_802154_priority_drop_hfclk_stop_terminate(); nrf_802154_clock_hfclk_start(); nrf_raal_continuous_mode_enter(); } } mutex_unlock(&m_req_mutex); } while (monitor != m_req_mutex_monitor); } /** @brief Get currently approved priority level. * * @return Maximal priority level approved by all radio preconditions. */ static inline rsch_prio_t approved_prio_lvl_get(void) { rsch_prio_t result = RSCH_PRIO_MAX; for (uint32_t i = 0; i < RSCH_PREC_CNT; i++) { if (m_approved_prios[i] < result) { result = m_approved_prios[i]; } } return result; } /** @brief Check if all preconditions are requested or met at given priority level or higher. * * @param[in] prio Minimal priority level requested from preconditions. * * @retval true All preconditions are requested or met at given or higher level. * @retval false At least one precondition is requested at lower level than required. */ static inline bool requested_prio_lvl_is_at_least(rsch_prio_t prio) { return m_requested_prio >= prio; } /** @brief Notify core if preconditions are approved or denied if current state differs from last reported. */ static inline void notify_core(void) { rsch_prio_t approved_prio_lvl; uint8_t temp_mon; do { if (!mutex_trylock(&m_ntf_mutex, &m_ntf_mutex_monitor)) { return; } /* It is possible that preemption is not detected (m_ntf_mutex_monitor is read after * acquiring mutex). It is not a problem because we will call proper handler function * requested by preempting context. Avoiding this race would generate one additional * iteration without any effect. */ temp_mon = m_ntf_mutex_monitor; approved_prio_lvl = approved_prio_lvl_get(); if ((m_cont_mode_prio > RSCH_PRIO_IDLE) && (m_last_notified_prio != approved_prio_lvl)) { m_last_notified_prio = approved_prio_lvl; nrf_802154_rsch_continuous_prio_changed(approved_prio_lvl); } mutex_unlock(&m_ntf_mutex); } while (temp_mon != m_ntf_mutex_monitor); } /** Timer callback used to trigger delayed timeslot. * * @param[in] p_context Index of the delayed timeslot operation (TX or RX). */ static void delayed_timeslot_start(void * p_context) { rsch_dly_ts_id_t dly_ts_id = (rsch_dly_ts_id_t)(uint32_t)p_context; dly_ts_t * p_dly_ts = &m_dly_ts[dly_ts_id]; rsch_prio_t req_prio_lvl; nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMER_DELAYED_START); req_prio_lvl = p_dly_ts->prio; p_dly_ts->prio = RSCH_PRIO_IDLE; if (approved_prio_lvl_get() >= req_prio_lvl) { nrf_802154_rsch_delayed_timeslot_started(dly_ts_id); } else { nrf_802154_rsch_delayed_timeslot_failed(dly_ts_id); } nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMER_DELAYED_START); } /** Timer callback used to request preconditions for delayed timeslot. * * @param[in] p_context Index of the delayed timeslot operation (TX or RX). */ static void delayed_timeslot_prec_request(void * p_context) { rsch_dly_ts_id_t dly_ts_id = (rsch_dly_ts_id_t)(uint32_t)p_context; dly_ts_t * p_dly_ts = &m_dly_ts[dly_ts_id]; nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMER_DELAYED_PREC); all_prec_update(); p_dly_ts->timer.t0 = p_dly_ts->t0; p_dly_ts->timer.dt = p_dly_ts->dt; p_dly_ts->timer.callback = delayed_timeslot_start; p_dly_ts->timer.p_context = p_context; nrf_802154_timer_sched_add(&p_dly_ts->timer, true); nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMER_DELAYED_PREC); } /*************************************************************************************************** * Public API **************************************************************************************************/ void nrf_802154_rsch_init(void) { nrf_raal_init(); m_ntf_mutex = 0; m_req_mutex = 0; m_last_notified_prio = RSCH_PRIO_IDLE; m_cont_mode_prio = RSCH_PRIO_IDLE; m_requested_prio = RSCH_PRIO_IDLE; for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++) { m_dly_ts[i].prio = RSCH_PRIO_IDLE; } for (uint32_t i = 0; i < RSCH_PREC_CNT; i++) { m_approved_prios[i] = RSCH_PRIO_IDLE; } } void nrf_802154_rsch_uninit(void) { for (uint32_t i = 0; i < RSCH_DLY_TS_NUM; i++) { nrf_802154_timer_sched_remove(&m_dly_ts[i].timer); } nrf_raal_uninit(); } void nrf_802154_rsch_continuous_mode_priority_set(rsch_prio_t prio) { nrf_802154_log(EVENT_TRACE_ENTER, (prio > RSCH_PRIO_IDLE) ? FUNCTION_RSCH_CONTINUOUS_ENTER : FUNCTION_RSCH_CONTINUOUS_EXIT); m_cont_mode_prio = prio; __DMB(); all_prec_update(); notify_core(); if (prio == RSCH_PRIO_IDLE) { m_last_notified_prio = RSCH_PRIO_IDLE; } nrf_802154_log(EVENT_TRACE_EXIT, (prio > RSCH_PRIO_IDLE) ? FUNCTION_RSCH_CONTINUOUS_ENTER : FUNCTION_RSCH_CONTINUOUS_EXIT); } void nrf_802154_rsch_continuous_ended(void) { nrf_raal_continuous_ended(); } bool nrf_802154_rsch_timeslot_request(uint32_t length_us) { return nrf_raal_timeslot_request(length_us); } bool nrf_802154_rsch_delayed_timeslot_request(uint32_t t0, uint32_t dt, uint32_t length, rsch_prio_t prio, rsch_dly_ts_id_t dly_ts_id) { (void)length; nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_DELAYED_TIMESLOT_REQ); assert(dly_ts_id < RSCH_DLY_TS_NUM); dly_ts_t * p_dly_ts = &m_dly_ts[dly_ts_id]; uint32_t now = nrf_802154_timer_sched_time_get(); uint32_t req_dt = dt - PREC_RAMP_UP_TIME; bool result; assert(!nrf_802154_timer_sched_is_running(&p_dly_ts->timer)); assert(p_dly_ts->prio == RSCH_PRIO_IDLE); assert(prio != RSCH_PRIO_IDLE); if (nrf_802154_timer_sched_time_is_in_future(now, t0, req_dt)) { p_dly_ts->prio = prio; p_dly_ts->t0 = t0; p_dly_ts->dt = dt; p_dly_ts->timer.t0 = t0; p_dly_ts->timer.dt = req_dt; p_dly_ts->timer.callback = delayed_timeslot_prec_request; p_dly_ts->timer.p_context = (void *)dly_ts_id; nrf_802154_timer_sched_add(&p_dly_ts->timer, false); result = true; } else if (requested_prio_lvl_is_at_least(RSCH_PRIO_MAX) && nrf_802154_timer_sched_time_is_in_future(now, t0, dt)) { p_dly_ts->prio = prio; p_dly_ts->t0 = t0; p_dly_ts->dt = dt; p_dly_ts->timer.t0 = t0; p_dly_ts->timer.dt = dt; p_dly_ts->timer.callback = delayed_timeslot_start; p_dly_ts->timer.p_context = (void *)dly_ts_id; nrf_802154_timer_sched_add(&p_dly_ts->timer, true); result = true; } else { result = false; } nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_DELAYED_TIMESLOT_REQ); return result; } bool nrf_802154_rsch_prec_is_approved(rsch_prec_t prec, rsch_prio_t prio) { assert(prec < RSCH_PREC_CNT); return m_approved_prios[prec] >= prio; } uint32_t nrf_802154_rsch_timeslot_us_left_get(void) { return nrf_raal_timeslot_us_left_get(); } // External handlers void nrf_raal_timeslot_started(void) { nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMESLOT_STARTED); prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_MAX); notify_core(); nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMESLOT_STARTED); } void nrf_raal_timeslot_ended(void) { nrf_802154_log(EVENT_TRACE_ENTER, FUNCTION_RSCH_TIMESLOT_ENDED); prec_approved_prio_set(RSCH_PREC_RAAL, RSCH_PRIO_IDLE); notify_core(); nrf_802154_log(EVENT_TRACE_EXIT, FUNCTION_RSCH_TIMESLOT_ENDED); } void nrf_802154_clock_hfclk_ready(void) { prec_approved_prio_set(RSCH_PREC_HFCLK, RSCH_PRIO_MAX); notify_core(); } |