Linux Audio

Check our new training course

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 * Copyright (c) 2017 Linaro Limited.
 * Copyright (c) 2018 Nordic Semiconductor ASA.
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#ifndef ZEPHYR_ARCH_ARM_CORE_CORTEX_M_MPU_ARM_MPU_V8_INTERNAL_H_
#define ZEPHYR_ARCH_ARM_CORE_CORTEX_M_MPU_ARM_MPU_V8_INTERNAL_H_

#include <cmse.h>
#define LOG_LEVEL CONFIG_MPU_LOG_LEVEL
#include <logging/log.h>

/**
 * @brief internal structure holding information of
 *        memory areas where dynamic MPU programming
 *        is allowed.
 */
struct dynamic_region_info {
	int index;
	struct arm_mpu_region region_conf;
};

/**
 * Global array, holding the MPU region index of
 * the memory region inside which dynamic memory
 * regions may be configured.
 */
static struct dynamic_region_info dyn_reg_info[MPU_DYNAMIC_REGION_AREAS_NUM];


/* Global MPU configuration at system initialization. */
static void mpu_init(void)
{
	/* Configure the cache-ability attributes for all the
	 * different types of memory regions.
	 */

	/* Flash region(s): Attribute-0
	 * SRAM region(s): Attribute-1
	 * SRAM no cache-able regions(s): Attribute-2
	 */
	MPU->MAIR0 =
		((MPU_MAIR_ATTR_FLASH << MPU_MAIR0_Attr0_Pos) &
			MPU_MAIR0_Attr0_Msk)
		|
		((MPU_MAIR_ATTR_SRAM << MPU_MAIR0_Attr1_Pos) &
			MPU_MAIR0_Attr1_Msk)
		|
		((MPU_MAIR_ATTR_SRAM_NOCACHE << MPU_MAIR0_Attr2_Pos) &
			MPU_MAIR0_Attr2_Msk);
}

/* This internal function performs MPU region initialization.
 *
 * Note:
 *   The caller must provide a valid region index.
 */
static void region_init(const u32_t index,
	const struct arm_mpu_region *region_conf)
{
	ARM_MPU_SetRegion(
		/* RNR */
		index,
		/* RBAR */
		(region_conf->base & MPU_RBAR_BASE_Msk)
		| (region_conf->attr.rbar &
			(MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk)),
		/* RLAR */
		(region_conf->attr.r_limit & MPU_RLAR_LIMIT_Msk)
		| ((region_conf->attr.mair_idx << MPU_RLAR_AttrIndx_Pos)
			& MPU_RLAR_AttrIndx_Msk)
		| MPU_RLAR_EN_Msk
	);

	LOG_DBG("[%d] 0x%08x 0x%08x 0x%08x 0x%08x",
			index, region_conf->base, region_conf->attr.rbar,
			region_conf->attr.mair_idx, region_conf->attr.r_limit);
}

/* @brief Partition sanity check
 *
 * This internal function performs run-time sanity check for
 * MPU region start address and size.
 *
 * @param part Pointer to the data structure holding the partition
 *             information (must be valid).
 * */
static int mpu_partition_is_valid(const struct k_mem_partition *part)
{
	/* Partition size must be a multiple of the minimum MPU region
	 * size. Start address of the partition must align with the
	 * minimum MPU region size.
	 */
	int partition_is_valid =
		(part->size >= CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE)
		&&
		((part->size &
			(~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)))
			== part->size)
		&&
		((part->start &
			(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1)) == 0U);

	return partition_is_valid;
}

/**
 * This internal function returns the MPU region, in which a
 * buffer, specified by its start address and size, lies. If
 * a valid MPU region cannot be derived the function returns
 * -EINVAL.
 *
 * Note that, for the function to work properly, the ARM MPU
 * needs to be enabled.
 *
 */
static inline int get_region_index(u32_t start, u32_t size)
{
	u32_t region_start_addr = arm_cmse_mpu_region_get(start);
	u32_t region_end_addr = arm_cmse_mpu_region_get(start + size - 1);

	/* MPU regions are contiguous so return the region number,
	 * if both start and end address are in the same region.
	 */
	if (region_start_addr == region_end_addr) {
		return region_start_addr;
	}
	return -EINVAL;
}

static inline u32_t mpu_region_get_base(const u32_t index)
{
	MPU->RNR = index;
	return MPU->RBAR & MPU_RBAR_BASE_Msk;
}

static inline void mpu_region_set_base(const u32_t index, const u32_t base)
{
	MPU->RNR = index;
	MPU->RBAR = (MPU->RBAR & (~MPU_RBAR_BASE_Msk))
		| (base & MPU_RBAR_BASE_Msk);
}

static inline u32_t mpu_region_get_last_addr(const u32_t index)
{
	MPU->RNR = index;
	return (MPU->RLAR & MPU_RLAR_LIMIT_Msk) | (~MPU_RLAR_LIMIT_Msk);
}

static inline void mpu_region_set_limit(const u32_t index, const u32_t limit)
{
	MPU->RNR = index;
	MPU->RLAR = (MPU->RLAR & (~MPU_RLAR_LIMIT_Msk))
		| (limit & MPU_RLAR_LIMIT_Msk);
}

static inline void mpu_region_get_access_attr(const u32_t index,
	arm_mpu_region_attr_t *attr)
{
	MPU->RNR = index;

	attr->rbar = MPU->RBAR &
		(MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk);
	attr->mair_idx = (MPU->RLAR & MPU_RLAR_AttrIndx_Msk) >>
		MPU_RLAR_AttrIndx_Pos;
}

static inline void mpu_region_get_conf(const u32_t index,
	struct arm_mpu_region *region_conf)
{
	MPU->RNR = index;

	/* Region attribution:
	 * - Cache-ability
	 * - Share-ability
	 * - Access Permissions
	 */
	mpu_region_get_access_attr(index, &region_conf->attr);

	/* Region base address */
	region_conf->base = (MPU->RBAR & MPU_RBAR_BASE_Msk);

	/* Region limit address */
	region_conf->attr.r_limit = MPU->RLAR & MPU_RLAR_LIMIT_Msk;
}

/**
 * This internal function is utilized by the MPU driver to combine a given
 * region attribute configuration and size and fill-in a driver-specific
 * structure with the correct MPU region configuration.
 */
static inline void get_region_attr_from_k_mem_partition_info(
	arm_mpu_region_attr_t *p_attr,
	const k_mem_partition_attr_t *attr, u32_t base, u32_t size)
{
	p_attr->rbar = attr->rbar &
		(MPU_RBAR_XN_Msk | MPU_RBAR_AP_Msk | MPU_RBAR_SH_Msk);
	p_attr->mair_idx = attr->mair_idx;
	p_attr->r_limit = REGION_LIMIT_ADDR(base, size);
}

#if defined(CONFIG_USERSPACE)

/**
 * This internal function returns the minimum HW MPU region index
 * that may hold the configuration of a dynamic memory region.
 *
 * Browse through the memory areas marked for dynamic MPU programming,
 * pick the one with the minimum MPU region index. Return that index.
 *
 * The function is optimized for the (most common) use-case of a single
 * marked area for dynamic memory regions.
 */
static inline int get_dyn_region_min_index(void)
{
	int dyn_reg_min_index = dyn_reg_info[0].index;
#if MPU_DYNAMIC_REGION_AREAS_NUM > 1
	for (int i = 1; i < MPU_DYNAMIC_REGION_AREAS_NUM; i++) {
		if ((dyn_reg_info[i].index != -EINVAL) &&
			(dyn_reg_info[i].index < dyn_reg_min_index)
		) {
			dyn_reg_min_index = dyn_reg_info[i].index;
		}
	}
#endif
	return dyn_reg_min_index;
}

static inline u32_t mpu_region_get_size(u32_t index)
{
	return mpu_region_get_last_addr(index) + 1
		- mpu_region_get_base(index);
}

/**
 * This internal function checks if region is enabled or not.
 *
 * Note:
 *   The caller must provide a valid region number.
 */
static inline int is_enabled_region(u32_t index)
{
	MPU->RNR = index;

	return (MPU->RLAR & MPU_RLAR_EN_Msk) ? 1 : 0;
}

/**
 * This internal function validates whether a given memory buffer
 * is user accessible or not.
 *
 * Note: [Doc. number: ARM-ECM-0359818]
 * "Some SAU, IDAU, and MPU configurations block the efficient implementation
 * of an address range check. The CMSE intrinsic operates under the assumption
 * that the configuration of the SAU, IDAU, and MPU is constrained as follows:
 * - An object is allocated in a single MPU/SAU/IDAU region.
 * - A stack is allocated in a single region.
 *
 * These points imply that the memory buffer does not span across multiple MPU,
 * SAU, or IDAU regions."
 *
 * MPU regions are configurable, however, some platforms might have fixed-size
 * SAU or IDAU regions. So, even if a buffer is allocated inside a single MPU
 * region, it might span across multiple SAU/IDAU regions, which will make the
 * TT-based address range check fail.
 *
 * Therefore, the function performs a second check, which is based on MPU only,
 * in case the fast address range check fails.
 *
 */
static inline int mpu_buffer_validate(void *addr, size_t size, int write)
{
	u32_t _addr = (u32_t)addr;
	u32_t _size = (u32_t)size;

	if (write) {
		if (arm_cmse_addr_range_readwrite_ok(_addr, _size, 1)) {
			return 0;
		}
	} else {
		if (arm_cmse_addr_range_read_ok(_addr, _size, 1)) {
			return 0;
		}
	}

#if defined(CONFIG_CPU_HAS_TEE)
	/*
	 * Validation failure may be due to SAU/IDAU presence.
	 * We re-check user accessibility based on MPU only.
	 */
	s32_t r_index_base = arm_cmse_mpu_region_get(_addr);
	s32_t r_index_last = arm_cmse_mpu_region_get(_addr + _size - 1);

	if ((r_index_base != -EINVAL) && (r_index_base == r_index_last)) {
		/* Valid MPU region, check permissions on base address only. */
		if (write) {
			if (arm_cmse_addr_readwrite_ok(_addr, 1)) {
				return 0;
			}
		} else {
			if (arm_cmse_addr_read_ok(_addr, 1)) {
				return 0;
			}
		}
	}
#endif /* CONFIG_CPU_HAS_TEE */
	return -EPERM;
}


#endif /* CONFIG_USERSPACE */

static int region_allocate_and_init(const u8_t index,
	const struct arm_mpu_region *region_conf);

static int mpu_configure_region(const u8_t index,
	const struct k_mem_partition *new_region);

/* This internal function programs a set of given MPU regions
 * over a background memory area, optionally performing a
 * sanity check of the memory regions to be programmed.
 */
static int mpu_configure_regions(const struct k_mem_partition
	*regions[], u8_t regions_num, u8_t start_reg_index,
	bool do_sanity_check)
{
	int i;
	int reg_index = start_reg_index;

	for (i = 0; i < regions_num; i++) {
		if (regions[i]->size == 0U) {
			continue;
		}
		/* Non-empty region. */

		if (do_sanity_check &&
			(!mpu_partition_is_valid(regions[i]))) {
			LOG_ERR("Partition %u: sanity check failed.", i);
			return -EINVAL;
		}

		/* Derive the index of the underlying MPU region,
		 * inside which the new region will be configured.
		 */
		int u_reg_index =
			get_region_index(regions[i]->start, regions[i]->size);

		if ((u_reg_index == -EINVAL) ||
			(u_reg_index > (reg_index - 1))) {
			LOG_ERR("Invalid underlying region index %u",
				u_reg_index);
			return -EINVAL;
		}

		/*
		 * The new memory region is to be placed inside the underlying
		 * region, possibly splitting the underlying region into two.
		 */
		u32_t u_reg_base = mpu_region_get_base(u_reg_index);
		u32_t u_reg_last = mpu_region_get_last_addr(u_reg_index);
		u32_t reg_last = regions[i]->start + regions[i]->size - 1;

		if ((regions[i]->start == u_reg_base) &&
			(reg_last == u_reg_last)) {
			/* The new region overlaps entirely with the
			 * underlying region. In this case we simply
			 * update the partition attributes of the
			 * underlying region with those of the new
			 * region.
			 */
			mpu_configure_region(u_reg_index, regions[i]);
		} else if (regions[i]->start == u_reg_base) {
			/* The new region starts exactly at the start of the
			 * underlying region; the start of the underlying
			 * region needs to be set to the end of the new region.
			 */
			mpu_region_set_base(u_reg_index,
				regions[i]->start + regions[i]->size);

			reg_index =
				mpu_configure_region(reg_index, regions[i]);

			if (reg_index == -EINVAL) {
				return reg_index;
			}

			reg_index++;
		} else if (reg_last == u_reg_last) {
			/* The new region ends exactly at the end of the
			 * underlying region; the end of the underlying
			 * region needs to be set to the start of the
			 * new region.
			 */
			mpu_region_set_limit(u_reg_index,
				regions[i]->start - 1);

			reg_index =
				mpu_configure_region(reg_index, regions[i]);

			if (reg_index == -EINVAL) {
				return reg_index;
			}

			reg_index++;
		} else {
			/* The new regions lies strictly inside the
			 * underlying region, which needs to split
			 * into two regions.
			 */
			mpu_region_set_limit(u_reg_index,
				regions[i]->start - 1);

			reg_index =
				mpu_configure_region(reg_index, regions[i]);

			if (reg_index == -EINVAL) {
				return reg_index;
			}
			reg_index++;

			/* The additional region shall have the same
			 * access attributes as the initial underlying
			 * region.
			 */
			struct arm_mpu_region fill_region;

			mpu_region_get_access_attr(u_reg_index,
				&fill_region.attr);
			fill_region.base = regions[i]->start +
				regions[i]->size;
			fill_region.attr.r_limit =
			REGION_LIMIT_ADDR((regions[i]->start +
				regions[i]->size), (u_reg_last - reg_last));

			reg_index =
				region_allocate_and_init(reg_index,
					(const struct arm_mpu_region *)
						&fill_region);

			if (reg_index == -EINVAL) {
				return reg_index;
			}

			reg_index++;
		}
	}

	return reg_index;
}

/* This internal function programs the static MPU regions.
 *
 * It returns the number of MPU region indices configured.
 *
 * Note:
 * If the static MPU regions configuration has not been successfully
 * performed, the error signal is propagated to the caller of the function.
 */
static int mpu_configure_static_mpu_regions(const struct k_mem_partition
	*static_regions[], const u8_t regions_num,
	const u32_t background_area_base,
	const u32_t background_area_end)
{
	int mpu_reg_index = static_regions_num;

	/* In ARMv8-M architecture the static regions are programmed on SRAM,
	 * forming a full partition of the background area, specified by the
	 * given boundaries.
	 */
	ARG_UNUSED(background_area_base);
	ARG_UNUSED(background_area_end);

	mpu_reg_index = mpu_configure_regions(static_regions,
		regions_num, mpu_reg_index, true);

	static_regions_num = mpu_reg_index;

	return mpu_reg_index;
}

/* This internal function marks and stores the configuration of memory areas
 * where dynamic region programming is allowed. Return zero on success, or
 * -EINVAL on error.
 */
static int mpu_mark_areas_for_dynamic_regions(
		const struct k_mem_partition dyn_region_areas[],
		const u8_t dyn_region_areas_num)
{
	/* In ARMv8-M architecture we need to store the index values
	 * and the default configuration of the MPU regions, inside
	 * which dynamic memory regions may be programmed at run-time.
	 */
	for (int i = 0; i < dyn_region_areas_num; i++) {
		if (dyn_region_areas[i].size == 0U) {
			continue;
		}
		/* Non-empty area */

		/* Retrieve HW MPU region index */
		dyn_reg_info[i].index =
			get_region_index(dyn_region_areas[i].start,
					dyn_region_areas[i].size);

		if (dyn_reg_info[i].index == -EINVAL) {

			return -EINVAL;
		}

		if (dyn_reg_info[i].index >= static_regions_num) {

			return -EINVAL;
		}

		/* Store default configuration */
		mpu_region_get_conf(dyn_reg_info[i].index,
			&dyn_reg_info[i].region_conf);
	}

	return 0;
}

/* This internal function programs the dynamic MPU regions.
 *
 * It returns the number of MPU region indices configured.
 *
 * Note:
 * If the dynamic MPU regions configuration has not been successfully
 * performed, the error signal is propagated to the caller of the function.
 */
static int mpu_configure_dynamic_mpu_regions(const struct k_mem_partition
	*dynamic_regions[], u8_t regions_num)
{
	int mpu_reg_index = static_regions_num;

	/* Disable all MPU regions except for the static ones. */
	for (int i = mpu_reg_index; i < get_num_regions(); i++) {
		ARM_MPU_ClrRegion(i);
	}

	/* Reset MPU regions inside which dynamic memory regions may
	 * be programmed.
	 */
	for (int i = 0; i < MPU_DYNAMIC_REGION_AREAS_NUM; i++) {
		region_init(dyn_reg_info[i].index,
			&dyn_reg_info[i].region_conf);
	}

	/* In ARMv8-M architecture the dynamic regions are programmed on SRAM,
	 * forming a full partition of the background area, specified by the
	 * given boundaries.
	 */

	mpu_reg_index = mpu_configure_regions(dynamic_regions,
		regions_num, mpu_reg_index, true);

	return mpu_reg_index;
}

#endif	/* ZEPHYR_ARCH_ARM_CORE_CORTEX_M_MPU_ARM_MPU_V8_INTERNAL_H_ */