Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/*
 * Copyright (c) 2018 Alexander Wachter
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <clock_control/stm32_clock_control.h>
#include <clock_control.h>
#include <misc/util.h>
#include <string.h>
#include <kernel.h>
#include <soc.h>
#include <errno.h>
#include <stdbool.h>
#include <can.h>
#include "stm32_can.h"

#define LOG_LEVEL CONFIG_CAN_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(stm32_can);

/*
 * Translation tables
 * filter_in_bank[enum can_filter_type] = number of filters in bank for this type
 * reg_demand[enum can_filter_type] = how many registers are used for this type
 */
static const u8_t filter_in_bank[] = {2, 4, 1, 2};
static const u8_t reg_demand[] = {2, 1, 4, 2};

static void can_stm32_signal_tx_complete(struct can_mailbox *mb)
{
	if (mb->tx_callback) {
		mb->tx_callback(mb->error_flags);
	} else  {
		k_sem_give(&mb->tx_int_sem);
	}
}

static void can_stm32_get_msg_fifo(CAN_FIFOMailBox_TypeDef *mbox,
				    struct zcan_frame *msg)
{
	if (mbox->RIR & CAN_RI0R_IDE) {
		msg->ext_id = mbox->RIR >> CAN_RI0R_EXID_Pos;
		msg->id_type = CAN_EXTENDED_IDENTIFIER;
	} else {
		msg->std_id =  mbox->RIR >> CAN_RI0R_STID_Pos;
		msg->id_type = CAN_STANDARD_IDENTIFIER;
	}

	msg->rtr = mbox->RIR & CAN_RI0R_RTR ? CAN_REMOTEREQUEST : CAN_DATAFRAME;
	msg->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
	msg->data_32[0] = mbox->RDLR;
	msg->data_32[1] = mbox->RDHR;
}

static inline
void can_stm32_rx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
	CAN_FIFOMailBox_TypeDef *mbox;
	int filter_match_index;
	struct zcan_frame msg;

	while (can->RF0R & CAN_RF0R_FMP0) {
		mbox = &can->sFIFOMailBox[0];
		filter_match_index = ((mbox->RDTR & CAN_RDT0R_FMI)
					   >> CAN_RDT0R_FMI_Pos);

		if (filter_match_index >= CONFIG_CAN_MAX_FILTER) {
			break;
		}

		LOG_DBG("Message on filter index %d", filter_match_index);
		can_stm32_get_msg_fifo(mbox, &msg);

		if (data->rx_response[filter_match_index]) {
			if (data->response_type & (1ULL << filter_match_index)) {
				struct k_msgq *msg_q =
					data->rx_response[filter_match_index];

				k_msgq_put(msg_q, &msg, K_NO_WAIT);
			} else {
				can_rx_callback_t callback =
					data->rx_response[filter_match_index];
				callback(&msg);
			}
		}

		/* Release message */
		can->RF0R |= CAN_RF0R_RFOM0;
	}
}

static inline
void can_stm32_tx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
	u32_t bus_off;

	bus_off = can->ESR & CAN_ESR_BOFF;

	if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
		data->mb0.error_flags =
				can->TSR & CAN_TSR_TXOK0 ? CAN_TX_OK  :
				can->TSR & CAN_TSR_TERR0 ? CAN_TX_ERR :
				can->TSR & CAN_TSR_ALST0 ? CAN_TX_ARB_LOST :
						 bus_off ? CAN_TX_BUS_OFF :
							   CAN_TX_UNKNOWN;
		/* clear the request. */
		can->TSR |= CAN_TSR_RQCP0;
		can_stm32_signal_tx_complete(&data->mb0);
	}

	if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
		data->mb1.error_flags =
				can->TSR & CAN_TSR_TXOK1 ? CAN_TX_OK  :
				can->TSR & CAN_TSR_TERR1 ? CAN_TX_ERR :
				can->TSR & CAN_TSR_ALST1 ? CAN_TX_ARB_LOST :
				bus_off                  ? CAN_TX_BUS_OFF :
							   CAN_TX_UNKNOWN;
		/* clear the request. */
		can->TSR |= CAN_TSR_RQCP1;
		can_stm32_signal_tx_complete(&data->mb1);
	}

	if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
		data->mb2.error_flags =
				can->TSR & CAN_TSR_TXOK2 ? CAN_TX_OK  :
				can->TSR & CAN_TSR_TERR2 ? CAN_TX_ERR :
				can->TSR & CAN_TSR_ALST2 ? CAN_TX_ARB_LOST :
				bus_off                  ? CAN_TX_BUS_OFF :
							   CAN_TX_UNKNOWN;
		/* clear the request. */
		can->TSR |= CAN_TSR_RQCP2;
		can_stm32_signal_tx_complete(&data->mb2);
	}

	if (can->TSR & CAN_TSR_TME) {
		k_sem_give(&data->tx_int_sem);
	}
}

#ifdef CONFIG_SOC_SERIES_STM32F0X

static void can_stm32_isr(void *arg)
{
	struct device *dev;
	struct can_stm32_data *data;
	const struct can_stm32_config *cfg;
	CAN_TypeDef *can;

	dev = (struct device *)arg;
	data = DEV_DATA(dev);
	cfg = DEV_CFG(dev);
	can = cfg->can;

	can_stm32_tx_isr_handler(can, data);
	can_stm32_rx_isr_handler(can, data);

}

#else

static void can_stm32_rx_isr(void *arg)
{
	struct device *dev;
	struct can_stm32_data *data;
	const struct can_stm32_config *cfg;
	CAN_TypeDef *can;

	dev = (struct device *)arg;
	data = DEV_DATA(dev);
	cfg = DEV_CFG(dev);
	can = cfg->can;

	can_stm32_rx_isr_handler(can, data);
}

static void can_stm32_tx_isr(void *arg)
{
	struct device *dev;
	struct can_stm32_data *data;
	const struct can_stm32_config *cfg;
	CAN_TypeDef *can;

	dev = (struct device *)arg;
	data = DEV_DATA(dev);
	cfg = DEV_CFG(dev);
	can = cfg->can;

	can_stm32_tx_isr_handler(can, data);
}

#endif

void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
	ARG_UNUSED(hcan);
}

int can_stm32_runtime_configure(struct device *dev, enum can_mode mode,
				u32_t bitrate)
{
	CAN_HandleTypeDef hcan;
	const struct can_stm32_config *cfg = DEV_CFG(dev);
	CAN_TypeDef *can = cfg->can;
	struct device *clock;
	u32_t clock_rate;
	u32_t prescaler;
	u32_t hal_mode;
	int hal_ret;
	u32_t bs1;
	u32_t bs2;
	u32_t sjw;
	int ret;

	clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
	__ASSERT_NO_MSG(clock);
	hcan.Instance = can;
	ret = clock_control_get_rate(clock, (clock_control_subsys_t *) &cfg->pclken,
				     &clock_rate);
	if (ret != 0) {
		LOG_ERR("Failed call clock_control_get_rate: return [%d]", ret);
		return -EIO;
	}

	if (!bitrate) {
		bitrate = cfg->bus_speed;
	}

	prescaler = clock_rate / (BIT_SEG_LENGTH(cfg) * bitrate);
	if (prescaler == 0U || prescaler > 1024) {
		LOG_ERR("HAL_CAN_Init failed: prescaler > max (%d > 1024)",
					prescaler);
		return -EINVAL;
	}

	if (clock_rate % (BIT_SEG_LENGTH(cfg) * bitrate)) {
		LOG_ERR("Prescaler is not a natural number! "
			    "prescaler = clock_rate / ((PROP_SEG1 + SEG2 + 1)"
			    " * bus_speed); "
			    "prescaler = %d / ((%d + %d + 1) * %d)",
			    clock_rate,
			    cfg->prop_bs1,
			    cfg->bs2,
			    bitrate);
	}

	__ASSERT(cfg->sjw <= 0x03,      "SJW maximum is 3");
	__ASSERT(cfg->prop_bs1 <= 0x0F, "PROP_BS1 maximum is 15");
	__ASSERT(cfg->bs2 <= 0x07,      "BS2 maximum is 7");

	bs1 = ((cfg->prop_bs1 & 0x0F) - 1) << CAN_BTR_TS1_Pos;
	bs2 = ((cfg->bs2      & 0x07) - 1) << CAN_BTR_TS2_Pos;
	sjw = ((cfg->sjw      & 0x07) - 1) << CAN_BTR_SJW_Pos;

	hal_mode =  mode == CAN_NORMAL_MODE   ? CAN_MODE_NORMAL   :
		    mode == CAN_LOOPBACK_MODE ? CAN_MODE_LOOPBACK :
		    mode == CAN_SILENT_MODE   ? CAN_MODE_SILENT   :
						CAN_MODE_SILENT_LOOPBACK;

	hcan.Init.TTCM = DISABLE;
	hcan.Init.ABOM = DISABLE;
	hcan.Init.AWUM = DISABLE;
	hcan.Init.NART = DISABLE;
	hcan.Init.RFLM = DISABLE;
	hcan.Init.TXFP = DISABLE;
	hcan.Init.Mode = hal_mode;
	hcan.Init.SJW  = sjw;
	hcan.Init.BS1  = bs1;
	hcan.Init.BS2  = bs2;
	hcan.Init.Prescaler = prescaler;

	hcan.State = HAL_CAN_STATE_RESET;

	hal_ret = HAL_CAN_Init(&hcan);
	if (hal_ret != HAL_OK) {
		LOG_ERR("HAL_CAN_Init failed: %d", hal_ret);
		return -EIO;
	}

	LOG_DBG("Runtime configure of %s done", dev->config->name);
	return 0;
}

static int can_stm32_init(struct device *dev)
{
	const struct can_stm32_config *cfg = DEV_CFG(dev);
	struct can_stm32_data *data = DEV_DATA(dev);
	CAN_TypeDef *can = cfg->can;
	struct device *clock;
	int ret;

	k_mutex_init(&data->tx_mutex);
	k_mutex_init(&data->set_filter_mutex);
	k_sem_init(&data->tx_int_sem, 0, 1);
	k_sem_init(&data->mb0.tx_int_sem, 0, 1);
	k_sem_init(&data->mb1.tx_int_sem, 0, 1);
	k_sem_init(&data->mb2.tx_int_sem, 0, 1);
	data->mb0.tx_callback = NULL;
	data->mb1.tx_callback = NULL;
	data->mb2.tx_callback = NULL;

	data->filter_usage = (1ULL << CAN_MAX_NUMBER_OF_FILTERS) - 1ULL;
	(void)memset(data->rx_response, 0,
		     sizeof(void *) * CONFIG_CAN_MAX_FILTER);
	data->response_type = 0U;

	clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
	__ASSERT_NO_MSG(clock);

	ret = clock_control_on(clock, (clock_control_subsys_t *) &cfg->pclken);
	if (ret != 0) {
		LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
		return -EIO;
	}

	ret = can_stm32_runtime_configure(dev, CAN_NORMAL_MODE, 0);
	if (ret) {
		return ret;
	}

	cfg->config_irq(can);
	can->IER |= CAN_IT_TME;
	LOG_INF("Init of %s done", dev->config->name);
	return 0;
}

int can_stm32_send(struct device *dev, const struct zcan_frame *msg,
		   s32_t timeout, can_tx_callback_t callback)
{
	const struct can_stm32_config *cfg = DEV_CFG(dev);
	struct can_stm32_data *data = DEV_DATA(dev);
	CAN_TypeDef *can = cfg->can;
	u32_t transmit_status_register = can->TSR;
	CAN_TxMailBox_TypeDef *mailbox = NULL;
	struct k_mutex *tx_mutex = &data->tx_mutex;
	struct can_mailbox *mb = NULL;

	LOG_DBG("Sending %d bytes on %s. "
		    "Id: 0x%x, "
		    "ID type: %s, "
		    "Remote Frame: %s"
		    , msg->dlc, dev->config->name
		    , msg->id_type == CAN_STANDARD_IDENTIFIER ?
				      msg->std_id :  msg->ext_id
		    , msg->id_type == CAN_STANDARD_IDENTIFIER ?
		    "standard" : "extended"
		    , msg->rtr == CAN_DATAFRAME ? "no" : "yes");

	__ASSERT(msg->dlc == 0U || msg->data != NULL, "Dataptr is null");
	__ASSERT(msg->dlc <= CAN_MAX_DLC, "DLC > 8");

	if (can->ESR & CAN_ESR_BOFF) {
		return CAN_TX_BUS_OFF;
	}

	k_mutex_lock(tx_mutex, K_FOREVER);
	while (!(transmit_status_register & CAN_TSR_TME)) {
		k_mutex_unlock(tx_mutex);
		LOG_DBG("Transmit buffer full. Wait with timeout (%dms)",
			    timeout);
		if (k_sem_take(&data->tx_int_sem, timeout)) {
			return CAN_TIMEOUT;
		}

		k_mutex_lock(tx_mutex, K_FOREVER);
		transmit_status_register = can->TSR;
	}

	if (transmit_status_register & CAN_TSR_TME0) {
		LOG_DBG("Using mailbox 0");
		mailbox = &can->sTxMailBox[CAN_TXMAILBOX_0];
		mb = &(data->mb0);
	} else if (transmit_status_register & CAN_TSR_TME1) {
		LOG_DBG("Using mailbox 1");
		mailbox = &can->sTxMailBox[CAN_TXMAILBOX_1];
		mb = &data->mb1;
	} else if (transmit_status_register & CAN_TSR_TME2) {
		LOG_DBG("Using mailbox 2");
		mailbox = &can->sTxMailBox[CAN_TXMAILBOX_2];
		mb = &data->mb2;
	}

	mb->tx_callback = callback;
	k_sem_reset(&mb->tx_int_sem);

	/* mailbix identifier register setup */
	mailbox->TIR &= CAN_TI0R_TXRQ;

	if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
		mailbox->TIR |= (msg->std_id << CAN_TI0R_STID_Pos);
	} else {
		mailbox->TIR |= (msg->ext_id << CAN_TI0R_EXID_Pos)
				| CAN_TI0R_IDE;
	}

	if (msg->rtr == CAN_REMOTEREQUEST) {
		mailbox->TIR |= CAN_TI1R_RTR;
	}

	mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
			((msg->dlc & 0xF) << CAN_TDT1R_DLC_Pos);

	mailbox->TDLR = msg->data_32[0];
	mailbox->TDHR = msg->data_32[1];

	mailbox->TIR |= CAN_TI0R_TXRQ;
	k_mutex_unlock(tx_mutex);

	if (callback == NULL) {
		k_sem_take(&mb->tx_int_sem, K_FOREVER);
		return mb->error_flags;
	}

	return 0;
}

static inline int can_stm32_check_free(void **arr, int start, int end)
{
	int i;

	for (i = start; i <= end; i++) {
		if (arr[i] != NULL) {
			return 0;
		}
	}
	return 1;
}

static int can_stm32_shift_arr(void **arr, int start, int count)
{
	void **start_ptr = arr + start;
	size_t cnt;

	if (start > CONFIG_CAN_MAX_FILTER) {
		return CAN_NO_FREE_FILTER;
	}

	if (count > 0) {
		void *move_dest;

		/* Check if nothing used will be overwritten */
		if (!can_stm32_check_free(arr, CONFIG_CAN_MAX_FILTER - count,
					       CONFIG_CAN_MAX_FILTER - 1)) {
			return CAN_NO_FREE_FILTER;
		}

		/* No need to shift. Destination is already outside the arr*/
		if ((start + count) >= CONFIG_CAN_MAX_FILTER) {
			return 0;
		}

		cnt = (CONFIG_CAN_MAX_FILTER - start - count) * sizeof(void *);
		move_dest = start_ptr + count;
		memmove(move_dest, start_ptr, cnt);
		(void)memset(start_ptr, 0, count * sizeof(void *));
	} else if (count < 0) {
		count = -count;

		if (start - count < 0) {
			return CAN_NO_FREE_FILTER;
		}

		cnt = (CONFIG_CAN_MAX_FILTER - start) * sizeof(void *);
		memmove(start_ptr - count, start_ptr, cnt);
		(void)memset(arr + CONFIG_CAN_MAX_FILTER - count, 0,
			     count * sizeof(void *));
	}

	return 0;
}

static inline void can_stm32_shift_bits(u64_t *bits, int start, int count)
{
	u64_t mask_right;
	u64_t mask_left;

	if (count > 0) {
		mask_right = ~(UINT64_MAX << start);
		*bits = (*bits & mask_right) | ((*bits & ~mask_right) << count);
	} else if (count < 0) {
		count = -count;
		mask_left = UINT64_MAX << start;
		mask_right = ~(UINT64_MAX << (start - count));
		*bits = (*bits & mask_right) | ((*bits & mask_left) >> count);
	}
}

enum can_filter_type can_stm32_get_filter_type(int bank_nr, u32_t mode_reg,
					       u32_t scale_reg)
{
	u32_t mode_masked  = (mode_reg  >> bank_nr) & 0x01;
	u32_t scale_masked = (scale_reg >> bank_nr) & 0x01;
	enum can_filter_type type = (scale_masked << 1) | mode_masked;

	return type;
}

static int can_calc_filter_index(int filter_nr, u32_t mode_reg, u32_t scale_reg)
{
	int filter_bank = filter_nr / 4;
	int cnt = 0;
	u32_t mode_masked, scale_masked;
	enum can_filter_type filter_type;
	/*count filters in the banks before */
	for (int i = 0; i < filter_bank; i++) {
		filter_type = can_stm32_get_filter_type(i, mode_reg, scale_reg);
		cnt += filter_in_bank[filter_type];
	}

	/* plus the filters in the same bank */
	mode_masked  = mode_reg & (1U << filter_bank);
	scale_masked = scale_reg & (1U << filter_bank);
	cnt += (!scale_masked && mode_masked) ? filter_nr & 0x03 :
					       (filter_nr & 0x03) >> 1;
	return cnt;
}

static void can_stm32_set_filter_bank(int filter_nr,
				      CAN_FilterRegister_TypeDef *filter_reg,
				      enum can_filter_type filter_type,
				      u32_t id, u32_t mask)
{
	switch (filter_type) {
	case CAN_FILTER_STANDARD:
		switch (filter_nr & 0x03) {
		case 0:
			filter_reg->FR1 = (filter_reg->FR1 & 0xFFFF0000) | id;
			break;
		case 1:
			filter_reg->FR1 = (filter_reg->FR1 & 0x0000FFFF)
					  | (id << 16);
			break;
		case 2:
			filter_reg->FR2 = (filter_reg->FR2 & 0xFFFF0000) | id;
			break;
		case 3:
			filter_reg->FR2 = (filter_reg->FR2 & 0x0000FFFF)
					   | (id << 16);
			break;
		}

		break;
	case CAN_FILTER_STANDARD_MASKED:
		switch (filter_nr & 0x02) {
		case 0:
			filter_reg->FR1 = id | (mask << 16);
			break;
		case 2:
			filter_reg->FR2 = id | (mask << 16);
			break;
		}

		break;
	case CAN_FILTER_EXTENDED:
		switch (filter_nr & 0x02) {
		case 0:
			filter_reg->FR1 = id;
			break;
		case 2:
			filter_reg->FR2 = id;
			break;
		}

		break;
	case CAN_FILTER_EXTENDED_MASKED:
		filter_reg->FR1 = id;
		filter_reg->FR2 = mask;
		break;
	}
}

static inline void can_stm32_set_mode_scale(enum can_filter_type filter_type,
					    u32_t *mode_reg, u32_t *scale_reg,
					    int  bank_nr)
{
	u32_t mode_reg_bit  = (filter_type & 0x01) << bank_nr;
	u32_t scale_reg_bit = (filter_type >>   1) << bank_nr;

	*mode_reg &= ~(1 << bank_nr);
	*mode_reg |= mode_reg_bit;

	*scale_reg &= ~(1 << bank_nr);
	*scale_reg |= scale_reg_bit;
}

static inline u32_t can_generate_std_mask(const struct zcan_filter *filter)
{
	return  (filter->std_id_mask << CAN_FIRX_STD_ID_POS) |
		(filter->rtr_mask    << CAN_FIRX_STD_RTR_POS) |
		(1U                  << CAN_FIRX_STD_IDE_POS);
}

static inline u32_t can_generate_ext_mask(const struct zcan_filter *filter)
{
	return  (filter->ext_id_mask << CAN_FIRX_EXT_EXT_ID_POS) |
		(filter->rtr_mask    << CAN_FIRX_EXT_RTR_POS) |
		(1U                  << CAN_FIRX_EXT_IDE_POS);
}

static inline u32_t can_generate_std_id(const struct zcan_filter *filter)
{

	return  (filter->std_id << CAN_FIRX_STD_ID_POS) |
		(filter->rtr    << CAN_FIRX_STD_RTR_POS);

}

static inline u32_t can_generate_ext_id(const struct zcan_filter *filter)
{
	return  (filter->ext_id << CAN_FIRX_EXT_EXT_ID_POS) |
		(filter->rtr    << CAN_FIRX_EXT_RTR_POS) |
		(1U             << CAN_FIRX_EXT_IDE_POS);
}

static inline int can_stm32_set_filter(const struct zcan_filter *filter,
				       struct can_stm32_data *device_data,
				       CAN_TypeDef *can,
				       int *filter_index)
{
	u32_t mask = 0U;
	u32_t id = 0U;
	int filter_nr = 0;
	int filter_index_new = CAN_NO_FREE_FILTER;
	int bank_nr;
	u32_t bank_bit;
	int register_demand;
	enum can_filter_type filter_type;
	enum can_filter_type bank_mode;

	if (filter->id_type == CAN_STANDARD_IDENTIFIER) {
		id = can_generate_std_id(filter);
		filter_type = CAN_FILTER_STANDARD;

		if (filter->std_id_mask != CAN_STD_ID_MASK) {
			mask = can_generate_std_mask(filter);
			filter_type = CAN_FILTER_STANDARD_MASKED;
		}
	} else {
		id = can_generate_ext_id(filter);
		filter_type = CAN_FILTER_EXTENDED;

		if (filter->ext_id_mask != CAN_EXT_ID_MASK) {
			mask = can_generate_ext_mask(filter);
			filter_type = CAN_FILTER_EXTENDED_MASKED;
		}
	}

	register_demand = reg_demand[filter_type];

	LOG_DBG("Setting filter ID: 0x%x, mask: 0x%x", filter->ext_id,
		    filter->ext_id_mask);
	LOG_DBG("Filter type: %s ID %s mask (%d)",
		    (filter_type == CAN_FILTER_STANDARD ||
		     filter_type == CAN_FILTER_STANDARD_MASKED) ?
		    "standard" : "extended",
		    (filter_type == CAN_FILTER_STANDARD_MASKED ||
		     filter_type == CAN_FILTER_EXTENDED_MASKED) ?
		    "with" : "without",
		    filter_type);

	do {
		u64_t usage_shifted = (device_data->filter_usage >> filter_nr);
		u64_t usage_demand_mask = (1ULL << register_demand) - 1;
		bool bank_is_empty;

		bank_nr = filter_nr / 4;
		bank_bit = (1U << bank_nr);
		bank_mode = can_stm32_get_filter_type(bank_nr, can->FM1R,
						      can->FS1R);

		bank_is_empty = CAN_BANK_IS_EMPTY(device_data->filter_usage,
						  bank_nr);

		if (!bank_is_empty && bank_mode != filter_type) {
			filter_nr = (bank_nr + 1) * 4;
		} else if (usage_shifted & usage_demand_mask) {
			device_data->filter_usage &=
				~(usage_demand_mask << filter_nr);
			break;
		} else {
			filter_nr += register_demand;
		}

		if (!usage_shifted) {
			LOG_INF("No free filter bank found");
			return CAN_NO_FREE_FILTER;
		}
	} while (filter_nr < CAN_MAX_NUMBER_OF_FILTERS);

	/* set the filter init mode */
	can->FMR |= CAN_FMR_FINIT;
	can->FA1R &= ~bank_bit;

	/* TODO fifo balancing */
	if (filter_type != bank_mode) {
		int shift_width, start_index;
		int res;
		u32_t mode_reg  = can->FM1R;
		u32_t scale_reg = can->FS1R;

		can_stm32_set_mode_scale(filter_type, &mode_reg, &scale_reg,
					 bank_nr);

		shift_width = filter_in_bank[filter_type] - filter_in_bank[bank_mode];

		filter_index_new = can_calc_filter_index(filter_nr, mode_reg,
							 scale_reg);

		start_index = filter_index_new + filter_in_bank[bank_mode];

		if (shift_width && start_index <= CAN_MAX_NUMBER_OF_FILTERS) {
			res = can_stm32_shift_arr(device_data->rx_response,
						start_index,
						shift_width);

			if (filter_index_new >= CONFIG_CAN_MAX_FILTER || res) {
				LOG_INF("No space for a new filter!");
				filter_nr = CAN_NO_FREE_FILTER;
				goto done;
			}

			can_stm32_shift_bits(&device_data->response_type,
					start_index,
					shift_width);
		}

		can->FM1R = mode_reg;
		can->FS1R = scale_reg;
	} else {
		filter_index_new = can_calc_filter_index(filter_nr, can->FM1R,
							 can->FS1R);
		if (filter_index_new >= CAN_MAX_NUMBER_OF_FILTERS) {
			filter_nr = CAN_NO_FREE_FILTER;
			goto done;
		}
	}

	can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
				  filter_type, id, mask);
done:
	can->FA1R |= bank_bit;
	can->FMR &= ~(CAN_FMR_FINIT);
	LOG_DBG("Filter set! Filter number: %d (index %d)",
		    filter_nr, filter_index_new);
	*filter_index = filter_index_new;
	return filter_nr;
}


static inline int can_stm32_attach(struct device *dev, void *response_ptr,
				   const struct zcan_filter *filter,
				   int *filter_index)
{
	const struct can_stm32_config *cfg = DEV_CFG(dev);
	struct can_stm32_data *data = DEV_DATA(dev);
	CAN_TypeDef *can = cfg->can;
	int filter_index_tmp = 0;
	int filter_nr;

	filter_nr = can_stm32_set_filter(filter, data, can, &filter_index_tmp);
	if (filter_nr != CAN_NO_FREE_FILTER) {
		data->rx_response[filter_index_tmp] = response_ptr;
	}

	*filter_index = filter_index_tmp;
	return filter_nr;
}

int can_stm32_attach_msgq(struct device *dev, struct k_msgq *msgq,
			  const struct zcan_filter *filter)
{
	int filter_nr;
	int filter_index;
	struct can_stm32_data *data = DEV_DATA(dev);

	k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
	filter_nr = can_stm32_attach(dev, msgq, filter, &filter_index);
	data->response_type |= (1ULL << filter_index);
	k_mutex_unlock(&data->set_filter_mutex);
	return filter_nr;
}

int can_stm32_attach_isr(struct device *dev, can_rx_callback_t isr,
			 const struct zcan_filter *filter)
{
	struct can_stm32_data *data = DEV_DATA(dev);
	int filter_nr;
	int filter_index;

	k_mutex_lock(&data->set_filter_mutex, K_FOREVER);
	filter_nr = can_stm32_attach(dev, isr, filter, &filter_index);
	data->response_type &= ~(1ULL << filter_index);
	k_mutex_unlock(&data->set_filter_mutex);
	return filter_nr;
}

void can_stm32_detach(struct device *dev, int filter_nr)
{
	const struct can_stm32_config *cfg = DEV_CFG(dev);
	struct can_stm32_data *data = DEV_DATA(dev);
	CAN_TypeDef *can = cfg->can;
	int bank_nr;
	int filter_index;
	u32_t bank_bit;
	u32_t mode_reg;
	u32_t scale_reg;
	enum can_filter_type type;
	u32_t reset_mask;

	__ASSERT_NO_MSG(filter_nr >= 0 && filter_nr < CAN_MAX_NUMBER_OF_FILTERS);

	k_mutex_lock(&data->set_filter_mutex, K_FOREVER);

	bank_nr = filter_nr / 4;
	bank_bit = (1U << bank_nr);
	mode_reg  = can->FM1R;
	scale_reg = can->FS1R;

	filter_index = can_calc_filter_index(filter_nr, mode_reg, scale_reg);
	type = can_stm32_get_filter_type(bank_nr, mode_reg, scale_reg);

	LOG_DBG("Detatch filter number %d (index %d), type %d", filter_nr,
		    filter_index,
		    type);

	reset_mask = ((1 << (reg_demand[type])) - 1) << filter_nr;
	data->filter_usage |= reset_mask;
	can->FMR |= CAN_FMR_FINIT;
	can->FA1R &= ~bank_bit;

	can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
				  type, 0, 0xFFFFFFFF);

	if (!CAN_BANK_IS_EMPTY(data->filter_usage, bank_nr)) {
		can->FA1R |= bank_bit;
	} else {
		LOG_DBG("Bank number %d is empty -> deakivate", bank_nr);
	}

	can->FMR &= ~(CAN_FMR_FINIT);
	data->rx_response[filter_index] = NULL;
	data->response_type &= ~(1ULL << filter_index);

	k_mutex_unlock(&data->set_filter_mutex);
}

static const struct can_driver_api can_api_funcs = {
	.configure = can_stm32_runtime_configure,
	.send = can_stm32_send,
	.attach_msgq = can_stm32_attach_msgq,
	.attach_isr = can_stm32_attach_isr,
	.detach = can_stm32_detach
};

#ifdef CONFIG_CAN_1

static void config_can_1_irq(CAN_TypeDef *can);

static const struct can_stm32_config can_stm32_cfg_1 = {
	.can = (CAN_TypeDef *)DT_CAN_1_BASE_ADDRESS,
	.bus_speed = DT_CAN_1_BUS_SPEED,
	.sjw = DT_CAN_1_SJW,
	.prop_bs1 = DT_CAN_1_PROP_SEG_PHASE_SEG1,
	.bs2 = DT_CAN_1_PHASE_SEG2,
	.pclken = {
		.enr = DT_CAN_1_CLOCK_BITS,
		.bus = DT_CAN_1_CLOCK_BUS,
	},
	.config_irq = config_can_1_irq
};

static struct can_stm32_data can_stm32_dev_data_1;

DEVICE_AND_API_INIT(can_stm32_1, DT_CAN_1_NAME, &can_stm32_init,
		    &can_stm32_dev_data_1, &can_stm32_cfg_1,
		    POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		    &can_api_funcs);

static void config_can_1_irq(CAN_TypeDef *can)
{
	LOG_DBG("Enable CAN1 IRQ");
#ifdef CONFIG_SOC_SERIES_STM32F0X
	IRQ_CONNECT(DT_CAN_1_IRQ, DT_CAN_1_IRQ_PRIORITY, can_stm32_isr,
		    DEVICE_GET(can_stm32_1), 0);
	irq_enable(DT_CAN_1_IRQ);
#else
	IRQ_CONNECT(DT_CAN_1_IRQ_RX0, DT_CAN_1_IRQ_PRIORITY,
		    can_stm32_rx_isr, DEVICE_GET(can_stm32_1), 0);
	irq_enable(DT_CAN_1_IRQ_RX0);

	IRQ_CONNECT(DT_CAN_1_IRQ_TX, DT_CAN_1_IRQ_PRIORITY,
		    can_stm32_tx_isr, DEVICE_GET(can_stm32_1), 0);
	irq_enable(DT_CAN_1_IRQ_TX);

	IRQ_CONNECT(DT_CAN_1_IRQ_SCE, DT_CAN_1_IRQ_PRIORITY,
		    can_stm32_tx_isr, DEVICE_GET(can_stm32_1), 0);
	irq_enable(DT_CAN_1_IRQ_SCE);
#endif
	can->IER |= CAN_IT_TME | CAN_IT_ERR | CAN_IT_FMP0 | CAN_IT_FMP1;
}

#if defined(CONFIG_NET_SOCKETS_CAN)

#include "socket_can_generic.h"

static int socket_can_init_1(struct device *dev)
{
	struct device *can_dev = DEVICE_GET(can_stm32_1);
	struct socket_can_context *socket_context = dev->driver_data;

	LOG_DBG("Init socket CAN device %p (%s) for dev %p (%s)",
		dev, dev->config->name, can_dev, can_dev->config->name);

	socket_context->can_dev = can_dev;
	socket_context->msgq = &socket_can_msgq;

	socket_context->rx_tid =
		k_thread_create(&socket_context->rx_thread_data,
				rx_thread_stack,
				K_THREAD_STACK_SIZEOF(rx_thread_stack),
				rx_thread, socket_context, NULL, NULL,
				RX_THREAD_PRIORITY, 0, K_NO_WAIT);

	return 0;
}

NET_DEVICE_INIT(socket_can_stm32_1, SOCKET_CAN_NAME_1, socket_can_init_1,
		&socket_can_context_1, NULL,
		CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
		&socket_can_api,
		CANBUS_L2, NET_L2_GET_CTX_TYPE(CANBUS_L2), CAN_MTU);

#endif /* CONFIG_NET_SOCKETS_CAN */

#endif /*CONFIG_CAN_1*/