Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*
 * Copyright (c) 2017 Codecoup
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <stdio.h>
#include <string.h>
#include <zephyr/types.h>
#include <errno.h>
#include <init.h>
#include <flash.h>
#include <fs.h>
#include <crc.h>
#include <misc/__assert.h>
#include <misc/printk.h>
#include <nffs/os.h>
#include <nffs/nffs.h>

#define NFFS_MAX_FILE_NAME 256

/*
 * NFFS code keeps fs state in RAM but access to these structures is not
 * thread-safe - we need global lock for each fs operation to guarantee two
 * threads won't modify NFFS at the same time.
 */
static struct k_mutex nffs_lock;

/*
 * TODO: Get rid of global flash_dev which limits
 * system to have multiple instances of NFFS.
 */
static struct device *flash_dev;

/* nffs flash area descriptors */
static struct nffs_area_desc descs[CONFIG_NFFS_FILESYSTEM_MAX_AREAS + 1];

K_MEM_SLAB_DEFINE(nffs_file_pool,		sizeof(struct nffs_file),
		  CONFIG_FS_NFFS_NUM_FILES,		4);
K_MEM_SLAB_DEFINE(nffs_dir_pool,		sizeof(struct nffs_dir),
		  CONFIG_FS_NFFS_NUM_DIRS,		4);
K_MEM_SLAB_DEFINE(nffs_inode_entry_pool,	sizeof(struct nffs_inode_entry),
		  CONFIG_FS_NFFS_NUM_INODES,		4);
K_MEM_SLAB_DEFINE(nffs_block_entry_pool,	sizeof(struct nffs_hash_entry),
		  CONFIG_FS_NFFS_NUM_BLOCKS,		4);
K_MEM_SLAB_DEFINE(nffs_cache_inode_pool,	sizeof(struct nffs_cache_inode),
		  CONFIG_FS_NFFS_NUM_CACHE_INODES,	4);
K_MEM_SLAB_DEFINE(nffs_cache_block_pool,	sizeof(struct nffs_cache_block),
		  CONFIG_FS_NFFS_NUM_CACHE_BLOCKS,	4);

static int translate_error(int error)
{
	switch (error) {
	case FS_EOK:
		return 0;
	case FS_ECORRUPT:
	case FS_EHW:
		return -EIO;
	case FS_EOFFSET:
	case FS_EINVAL:
		return -EINVAL;
	case FS_ENOMEM:
		return -ENOMEM;
	case FS_ENOENT:
		return -ENOENT;
	case FS_EEMPTY:
		return -ENODEV;
	case FS_EFULL:
		return -ENOSPC;
	case FS_EUNEXP:
	case FS_EOS:
		return -EIO;
	case FS_EEXIST:
		return -EEXIST;
	case FS_EACCESS:
		return -EACCES;
	case FS_EUNINIT:
		return -EIO;
	}

	return -EIO;
}

int nffs_os_mempool_init(void)
{
	/*
	 * Just reinitialize slabs here - this is what original implementation
	 * does. We assume all references to previously allocated blocks, if
	 * any, are invalidated in NFFS code already.
	 */

	k_mem_slab_init(&nffs_file_pool, _k_mem_slab_buf_nffs_file_pool,
			sizeof(struct nffs_file),
			CONFIG_FS_NFFS_NUM_FILES);
	k_mem_slab_init(&nffs_dir_pool, _k_mem_slab_buf_nffs_dir_pool,
			sizeof(struct nffs_dir),
			CONFIG_FS_NFFS_NUM_DIRS);
	k_mem_slab_init(&nffs_inode_entry_pool,
			_k_mem_slab_buf_nffs_inode_entry_pool,
			sizeof(struct nffs_inode_entry),
			CONFIG_FS_NFFS_NUM_INODES);
	k_mem_slab_init(&nffs_block_entry_pool,
			_k_mem_slab_buf_nffs_block_entry_pool,
			sizeof(struct nffs_hash_entry),
			CONFIG_FS_NFFS_NUM_BLOCKS);
	k_mem_slab_init(&nffs_cache_inode_pool,
			_k_mem_slab_buf_nffs_cache_inode_pool,
			sizeof(struct nffs_cache_inode),
			CONFIG_FS_NFFS_NUM_CACHE_INODES);
	k_mem_slab_init(&nffs_cache_block_pool,
			_k_mem_slab_buf_nffs_cache_block_pool,
			sizeof(struct nffs_cache_block),
			CONFIG_FS_NFFS_NUM_CACHE_BLOCKS);

	return 0;
}

void *nffs_os_mempool_get(nffs_os_mempool_t *pool)
{
	int rc;
	void *ptr;

	rc = k_mem_slab_alloc(pool, &ptr, K_NO_WAIT);
	if (rc) {
		ptr = NULL;
	}

	return ptr;
}

int nffs_os_mempool_free(nffs_os_mempool_t *pool, void *block)
{
	k_mem_slab_free(pool, &block);

	return 0;
}

int nffs_os_flash_read(uint8_t id, uint32_t address, void *dst,
		uint32_t num_bytes)
{
	int rc;

	rc = flash_read(flash_dev, address, dst, num_bytes);

	return rc;
}

int nffs_os_flash_write(uint8_t id, uint32_t address, const void *src,
		uint32_t num_bytes)
{
	int rc;

	rc = flash_write_protection_set(flash_dev, false);
	if (rc) {
		return rc;
	}

	rc = flash_write(flash_dev, address, src, num_bytes);

	/* Ignore errors here - this does not affect write operation */
	(void) flash_write_protection_set(flash_dev, true);

	return rc;
}

int nffs_os_flash_erase(uint8_t id, uint32_t address, uint32_t num_bytes)
{
	int rc;

	rc = flash_write_protection_set(flash_dev, false);
	if (rc) {
		return rc;
	}

	rc = flash_erase(flash_dev, address, num_bytes);

	/* Ignore errors here - this does not affect erase operation */
	(void) flash_write_protection_set(flash_dev, true);

	return rc;
}

int nffs_os_flash_info(uint8_t id, uint32_t sector, uint32_t *address,
		uint32_t *size)
{
	struct flash_pages_info pi;
	int rc;

	rc = flash_get_page_info_by_idx(flash_dev, sector, &pi);
	__ASSERT(rc == 0, "Failed to obtain flash page data");

	*address = pi.start_offset;
	*size = pi.size;

	return 0;
}

uint16_t nffs_os_crc16_ccitt(uint16_t initial_crc, const void *buf, int len,
		int final)
{
	return crc16(buf, len, 0x1021, initial_crc, final);
}

static int inode_to_dirent(struct nffs_inode_entry *inode,
			   struct fs_dirent *entry)
{
	u8_t name_len;
	uint32_t size;
	int rc;

	rc = nffs_inode_read_filename(inode, sizeof(entry->name), entry->name,
				      &name_len);
	if (rc) {
		return rc;
	}

	if (nffs_hash_id_is_dir(inode->nie_hash_entry.nhe_id)) {
		entry->type = FS_DIR_ENTRY_DIR;
		entry->size = 0;
	} else {
		entry->type = FS_DIR_ENTRY_FILE;
		rc = nffs_inode_data_len(inode, &size);
		if (rc) {
			return rc;
		}
		entry->size = size;
	}

	return rc;
}

static int nffs_open(struct fs_file_t *zfp, const char *file_name)
{
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	zfp->filep = NULL;

	if (!nffs_misc_ready()) {
		k_mutex_unlock(&nffs_lock);
		return -ENODEV;
	}

	match_len = strlen(zfp->mp->mnt_point);
	rc = nffs_file_open((struct nffs_file **)&zfp->filep, &file_name[match_len],
			    FS_ACCESS_READ | FS_ACCESS_WRITE);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_close(struct fs_file_t *zfp)
{
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	rc = nffs_file_close(zfp->filep);
	if (!rc) {
		zfp->filep = NULL;
	}

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_unlink(struct fs_mount_t *mountp, const char *path)
{
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	match_len = strlen(mountp->mnt_point);
	rc = nffs_path_unlink(&path[match_len]);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static ssize_t nffs_read(struct fs_file_t *zfp, void *ptr, size_t size)
{
	uint32_t br;
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	rc = nffs_file_read(zfp->filep, size, ptr, &br);

	k_mutex_unlock(&nffs_lock);

	if (rc) {
		return translate_error(rc);
	}

	return br;
}

static ssize_t nffs_write(struct fs_file_t *zfp, const void *ptr, size_t size)
{
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	rc = nffs_write_to_file(zfp->filep, ptr, size);

	k_mutex_unlock(&nffs_lock);

	if (rc) {
		return translate_error(rc);
	}

	/* We need to assume all bytes were written */
	return size;
}

static int nffs_seek(struct fs_file_t *zfp, off_t offset, int whence)
{
	uint32_t len;
	u32_t pos;
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	switch (whence) {
	case FS_SEEK_SET:
		pos = offset;
		break;
	case FS_SEEK_CUR:
		pos = ((struct nffs_file *)zfp->filep)->nf_offset + offset;
		break;
	case FS_SEEK_END:
		rc = nffs_inode_data_len(((struct nffs_file *)zfp->filep)->nf_inode_entry, &len);
		if (rc) {
			k_mutex_unlock(&nffs_lock);
			return -EINVAL;
		}
		pos = len + offset;
		break;
	default:
		k_mutex_unlock(&nffs_lock);
		return -EINVAL;
	}

	rc = nffs_file_seek(zfp->filep, pos);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static off_t nffs_tell(struct fs_file_t *zfp)
{
	u32_t offset;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	if (!zfp->filep) {
		k_mutex_unlock(&nffs_lock);
		return -EIO;
	}

	offset = ((struct nffs_file *)zfp->filep)->nf_offset;

	k_mutex_unlock(&nffs_lock);

	return offset;
}

static int nffs_truncate(struct fs_file_t *zfp, off_t length)
{
	/*
	 * FIXME:
	 * There is no API in NFFS to truncate opened file. For now we return
	 * ENOTSUP, but this should be revisited if truncation is implemented
	 * in NFFS at some point.
	 */

	return -ENOTSUP;
}

static int nffs_sync(struct fs_file_t *zfp)
{
	/*
	 * Files are written to flash immediately so we do not need to support
	 * sync call - just return success.
	 */

	return 0;
}

static int nffs_mkdir(struct fs_mount_t *mountp, const char *path)
{
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	if (!nffs_misc_ready()) {
		k_mutex_unlock(&nffs_lock);
		return -ENODEV;
	}

	match_len = strlen(mountp->mnt_point);
	rc = nffs_path_new_dir(&path[match_len], NULL);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_opendir(struct fs_dir_t *zdp, const char *path)
{
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	zdp->dirp = NULL;

	if (!nffs_misc_ready()) {
		k_mutex_unlock(&nffs_lock);
		return -ENODEV;
	}

	match_len = strlen(zdp->mp->mnt_point);
	rc = nffs_dir_open(&path[match_len], (struct nffs_dir **)&zdp->dirp);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_readdir(struct fs_dir_t *zdp, struct fs_dirent *entry)
{
	struct nffs_dirent *dirent;
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	rc = nffs_dir_read(zdp->dirp, &dirent);
	switch (rc) {
	case 0:
		rc = inode_to_dirent(dirent->nde_inode_entry, entry);
		break;
	case FS_ENOENT:
		entry->name[0] = 0;
		rc = 0;
		break;
	default:
		break;
	}

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_closedir(struct fs_dir_t *zdp)
{
	int rc;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	rc = nffs_dir_close(zdp->dirp);
	if (!rc) {
		zdp->dirp = NULL;
	}

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_stat(struct fs_mount_t *mountp,
		     const char *path, struct fs_dirent *entry)
{
	struct nffs_path_parser parser;
	struct nffs_inode_entry *parent;
	struct nffs_inode_entry *inode;
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	match_len = strlen(mountp->mnt_point);
	nffs_path_parser_new(&parser, &path[match_len]);

	rc = nffs_path_find(&parser, &inode, &parent);
	if (rc == 0) {
		rc = inode_to_dirent(inode, entry);
	}

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_statvfs(struct fs_mount_t *mountp,
			const char *path, struct fs_statvfs *stat)
{
	/*
	 * FIXME:
	 * There is not API to retrieve such data in NFFS.
	 */

	return -ENOTSUP;
}

static int nffs_rename(struct fs_mount_t *mountp, const char *from,
		       const char *to)
{
	int rc, match_len;

	k_mutex_lock(&nffs_lock, K_FOREVER);

	if (!nffs_misc_ready()) {
		k_mutex_unlock(&nffs_lock);
		return -ENODEV;
	}

	match_len = strlen(mountp->mnt_point);
	rc = nffs_path_rename(&from[match_len], &to[match_len]);

	k_mutex_unlock(&nffs_lock);

	return translate_error(rc);
}

static int nffs_mount(struct fs_mount_t *mountp)
{
	struct nffs_flash_desc *flash_desc =
				(struct nffs_flash_desc *)mountp->fs_data;
	int cnt;
	int rc;

	/* Set flash device */
	flash_dev = (struct device *)mountp->storage_dev;

	/* Set flash descriptor fields */
	flash_desc->id = 0;
	flash_desc->sector_count = flash_get_page_count(flash_dev);
	flash_desc->area_offset = DT_FLASH_AREA_STORAGE_OFFSET;
	flash_desc->area_size = DT_FLASH_AREA_STORAGE_SIZE;

	rc = nffs_misc_reset();
	if (rc) {
		return -EIO;
	}

	cnt = CONFIG_NFFS_FILESYSTEM_MAX_AREAS;
	rc = nffs_misc_desc_from_flash_area(flash_desc, &cnt, descs);
	if (rc) {
		return -EIO;
	}

	rc = nffs_restore_full(descs);
	switch (rc) {
	case 0:
		break;
	case FS_ECORRUPT:
		rc = nffs_format_full(descs);
		if (rc) {
			return -EIO;
		}
		break;
	default:
		return -EIO;
	}

	return 0;
}

/* File system interface */
static struct fs_file_system_t nffs_fs = {
	.open = nffs_open,
	.close = nffs_close,
	.read = nffs_read,
	.write = nffs_write,
	.lseek = nffs_seek,
	.tell = nffs_tell,
	.truncate = nffs_truncate,
	.sync = nffs_sync,
	.opendir = nffs_opendir,
	.readdir = nffs_readdir,
	.closedir = nffs_closedir,
	.mount = nffs_mount,
	.unlink = nffs_unlink,
	.rename = nffs_rename,
	.mkdir = nffs_mkdir,
	.stat = nffs_stat,
	.statvfs = nffs_statvfs,
};

static int nffs_init(struct device *dev)
{
	ARG_UNUSED(dev);

	k_mutex_init(&nffs_lock);

	return fs_register(FS_NFFS, &nffs_fs);
}

SYS_INIT(nffs_init, APPLICATION, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);