Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | /*
* Copyright (c) 2017 Linaro Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Software driven 'bit-banging' library for I2C
*
* This code implements the I2C single master protocol in software by directly
* manipulating the levels of the SCL and SDA lines of an I2C bus. It supports
* the Standard-mode and Fast-mode speeds and doesn't support optional
* protocol feature like 10-bit addresses or clock stretching.
*
* Timings and protocol are based Rev. 6 of the I2C specification:
* http://www.nxp.com/documents/user_manual/UM10204.pdf
*/
#include <errno.h>
#include <kernel.h>
#include <i2c.h>
#include "i2c_bitbang.h"
/*
* Indexes into delay table for each part of I2C timing waveform we are
* interested in. In practice, for Standard and Fast modes, there are only two
* different numerical values (T_LOW and T_HIGH) so we alias the others to
* these. (Actually, we're simplifying a little, T_SU_STA could be T_HIGH on
* Fast mode)
*/
#define T_LOW 0
#define T_HIGH 1
#define T_SU_STA T_LOW
#define T_HD_STA T_HIGH
#define T_SU_STP T_HIGH
#define T_BUF T_LOW
#define NS_TO_SYS_CLOCK_HW_CYCLES(ns) \
((u64_t)CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * (ns) / NSEC_PER_SEC + 1)
static const u32_t delays_fast[] = {
[T_LOW] = NS_TO_SYS_CLOCK_HW_CYCLES(1300),
[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(600),
};
static const u32_t delays_standard[] = {
[T_LOW] = NS_TO_SYS_CLOCK_HW_CYCLES(4700),
[T_HIGH] = NS_TO_SYS_CLOCK_HW_CYCLES(4000),
};
int i2c_bitbang_configure(struct i2c_bitbang *context, u32_t dev_config)
{
/* Check for features we don't support */
if (I2C_ADDR_10_BITS & dev_config) {
return -ENOTSUP;
}
/* Setup speed to use */
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
context->delays = delays_standard;
break;
case I2C_SPEED_FAST:
context->delays = delays_fast;
break;
default:
return -ENOTSUP;
}
return 0;
}
static void i2c_set_scl(struct i2c_bitbang *context, int state)
{
context->io->set_scl(context->io_context, state);
}
static void i2c_set_sda(struct i2c_bitbang *context, int state)
{
context->io->set_sda(context->io_context, state);
}
static int i2c_get_sda(struct i2c_bitbang *context)
{
return context->io->get_sda(context->io_context);
}
static void i2c_delay(unsigned int cycles_to_wait)
{
u32_t start = k_cycle_get_32();
/* Wait until the given number of cycles have passed */
while (k_cycle_get_32() - start < cycles_to_wait) {
}
}
static void i2c_start(struct i2c_bitbang *context)
{
if (!i2c_get_sda(context)) {
/*
* SDA is already low, so we need to do something to make it
* high. Try pulsing clock low to get slave to release SDA.
*/
i2c_set_scl(context, 0);
i2c_delay(context->delays[T_LOW]);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_SU_STA]);
}
i2c_set_sda(context, 0);
i2c_delay(context->delays[T_HD_STA]);
}
static void i2c_repeated_start(struct i2c_bitbang *context)
{
i2c_delay(context->delays[T_SU_STA]);
i2c_start(context);
}
static void i2c_stop(struct i2c_bitbang *context)
{
if (i2c_get_sda(context)) {
/*
* SDA is already high, so we need to make it low so that
* we can create a rising edge. This means we're effectively
* doing a START.
*/
i2c_delay(context->delays[T_SU_STA]);
i2c_set_sda(context, 0);
i2c_delay(context->delays[T_HD_STA]);
}
i2c_delay(context->delays[T_SU_STP]);
i2c_set_sda(context, 1);
i2c_delay(context->delays[T_BUF]); /* In case we start again too soon */
}
static void i2c_write_bit(struct i2c_bitbang *context, int bit)
{
i2c_set_scl(context, 0);
/* SDA hold time is zero, so no need for a delay here */
i2c_set_sda(context, bit);
i2c_delay(context->delays[T_LOW]);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
}
static bool i2c_read_bit(struct i2c_bitbang *context)
{
bool bit;
i2c_set_scl(context, 0);
/* SDA hold time is zero, so no need for a delay here */
i2c_set_sda(context, 1); /* Stop driving low, so slave has control */
i2c_delay(context->delays[T_LOW]);
bit = i2c_get_sda(context);
i2c_set_scl(context, 1);
i2c_delay(context->delays[T_HIGH]);
return bit;
}
static bool i2c_write_byte(struct i2c_bitbang *context, u8_t byte)
{
u8_t mask = 1 << 7;
do {
i2c_write_bit(context, byte & mask);
} while (mask >>= 1);
/* Return inverted ACK bit, i.e. 'true' for ACK, 'false' for NACK */
return !i2c_read_bit(context);
}
static u8_t i2c_read_byte(struct i2c_bitbang *context)
{
unsigned int byte = 1U;
do {
byte <<= 1;
byte |= i2c_read_bit(context);
} while (!(byte & (1 << 8)));
return byte;
}
int i2c_bitbang_transfer(struct i2c_bitbang *context,
struct i2c_msg *msgs, u8_t num_msgs,
u16_t slave_address)
{
u8_t *buf, *buf_end;
unsigned int flags;
int result = -EIO;
if (!num_msgs) {
return 0;
}
/* We want an initial Start condition */
flags = I2C_MSG_RESTART;
/* Make sure we're in a good state so slave recognises the Start */
i2c_set_scl(context, 1);
flags |= I2C_MSG_STOP;
do {
/* Stop flag from previous message? */
if (flags & I2C_MSG_STOP) {
i2c_stop(context);
}
/* Forget old flags except start flag */
flags &= I2C_MSG_RESTART;
/* Start condition? */
if (flags & I2C_MSG_RESTART) {
i2c_start(context);
} else if (msgs->flags & I2C_MSG_RESTART) {
i2c_repeated_start(context);
}
/* Get flags for new message */
flags |= msgs->flags;
/* Send address after any Start condition */
if (flags & I2C_MSG_RESTART) {
unsigned int byte0 = slave_address << 1;
byte0 |= (flags & I2C_MSG_RW_MASK) == I2C_MSG_READ;
if (!i2c_write_byte(context, byte0)) {
goto finish; /* No ACK received */
}
flags &= ~I2C_MSG_RESTART;
}
/* Transfer data */
buf = msgs->buf;
buf_end = buf + msgs->len;
if ((flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
/* Read */
while (buf < buf_end) {
*buf++ = i2c_read_byte(context);
/* ACK the byte, except for the last one */
i2c_write_bit(context, buf == buf_end);
}
} else {
/* Write */
while (buf < buf_end) {
if (!i2c_write_byte(context, *buf++)) {
goto finish; /* No ACK received */
}
}
}
/* Next message */
msgs++;
num_msgs--;
} while (num_msgs);
/* Complete without error */
result = 0;
finish:
i2c_stop(context);
return result;
}
void i2c_bitbang_init(struct i2c_bitbang *context,
const struct i2c_bitbang_io *io, void *io_context)
{
context->io = io;
context->io_context = io_context;
i2c_bitbang_configure(context, I2C_SPEED_STANDARD << I2C_SPEED_SHIFT);
}
|